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LIMIT LAWS FOR TRANSIENT RANDOM WALKS IN RANDOM

ENVIRONMENT ON Z

NATHANAËL ENRIQUEZ, CHRISTOPHE SABOT, AND OLIVIER ZINDY

Abstract. We consider transient random walks in random environment on Z with zero asymptotic

speed. A classical result of Kesten, Kozlov and Spitzer says that the hitting time of the level n

converges in law, after a proper normalization, towards a positive stable law, but they do not obtain

a description of its parameter. A different proof of this result is presented, that leads to a complete

characterization of this stable law. The case of Dirichlet environment turns out to be remarkably

explicit.

1. Introduction

One-dimensional random walks in random environment to the nearest neighbors
have been introduced in the sixties in order to give a model of DNA replication.
Recently, this model has known a strong revival in view of applications to the detection
of genetics anomalies (see for instance [5]). In 1975, Solomon gives, in a seminal work
[21], a criterion of transience-recurrence for these walks, and shows that three different
regimes can be distinguished: the random walk may be recurrent, or transient with a
positive asymptotic speed, but it may also be transient with zero asymptotic speed.
This last regime, which does not exist among usual random walks, is probably the one
which is the less well understood and its study is the purpose of the present paper.

Let us first remind the main existing results concerning the other regimes. In his
paper, Solomon computes the asymptotic speed of transient regimes. In 1982, Sinai
states, in [19], a limit theorem in the recurrent case. It turns out that the motion
in this case is unusually slow since the position of the walk at time n has to be
normalized by (log n)2 in order to present a non trivial limit. In 1986, the limiting
law is characterized independently by Kesten [16] and Golosov [11]. Let us notice
here that, beyond the interest of his result, Sinai introduces a very powerful and
intuitive tool in the study of one-dimensional random walks in random environment.
This tool is the potential, which is a function on Z canonically associated to the
random environment. It turns out to be an usual random walk when the transition
probabilities at each site are independent and identically distributed (i.i.d.).

Let us now focus on the works about the transient walk with zero asymptotic speed.
The main result was obtained by Kesten, Kozlov and Spitzer in [17] who proved that,
when normalized by a suitable power of n, the hitting time of the level n converges
towards a positive stable law whose index corresponds to the power of n lying in the
normalization. Recently, Mayer-Wolf, Roitershtein and Zeitouni [18] generalized this
result to the case when the environment is defined by an irreducible Markov chain.
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Our purpose is to characterize the positive stable law in the case of i.i.d. transition
probabilities. Let us mention here that the stable limiting law has been characterized
in the case of diffusions in random potential when the potential is either a Brownian
motion with drift [14], [12] or a Lévy process [20], but we remind here that despite the
similarities of both models one cannot transport results from the continuous model
to the discrete one.

The proof chooses a radically different approach than previous ones dealing with the
transient case. While the proofs in [17] and [18] are mainly based on the representation
of the trajectory of the walk in terms of branching processes in random environment
(with immigration), our approach relies heavily on Sinai’s interpretation of a particle
living in a random potential. However, in the recurrent case, the potential one has
to deal with is a recurrent random walk and Sinai introduces a notion of valleys
which does not make sense anymore in our setting where the potential is a (let’s say
negatively) drifted random walk. Therefore, we introduce a different notion of valley
which is closely related to the excursion of this random walk above its past minimum.
It turns out that a result of Iglehart [13] gives an equivalent of the tail of the height
of these excursions. Now, as soon as one can prove that the hitting time of the level
n can be reduced to the time spent by the random walk to cross the high excursions
of the potential above its past minimum, between 0 and n, which are well separated
in space, an i.i.d. property comes out, and the problem is reduced to the study of the
tail of the time spent by the walker to cross a single excursion.

It turns out that this tail involves the expectation of the functional of some meander
associated with the random walk defining the potential. Now, this functional is itself
related to the constant that appears in Kesten’s renewal theorem [15]. These last
two facts are contained in [7]. Now, in the case when the transition probabilities
follow some Beta distribution a result of Chamayou and Letac [4] gives an explicit
formula for this constant which yields finally an explicit formula for the parameter of
the positive stable law which is obtained at the limit.

The paper is organized as follows: the results are stated in Section 2, a detailed
sketch of the proof is presented in Section 3, and the rest of the paper is devoted to
proofs.

2. Notations and main results

Let ω := (ωi, i ∈ Z) be a family of i.i.d. random variables taking values in (0, 1)
defined on Ω, which stands for the random environment. Denote by P the distribution
of ω and by E the corresponding expectation. Conditioning on ω (i.e. choosing
an environment), we define the random walk in random environment (Xn, n ≥ 0)
as a nearest-neighbor random walk on Z with transition probabilities given by ω:
(Xn, n ≥ 0) is the Markov chain satisfying X0 = 0 and for n ≥ 0,

Pω (Xn+1 = x+ 1 |Xn = x) = ωx = 1 − Pω (Xn+1 = x− 1 |Xn = x) .

We denote by Pω the law of (Xn, n ≥ 0) and Eω the corresponding expectation. We
denote by P the joint law of (ω, (Xn)n≥0). We refer to Zeitouni [22] for an overview
of results on random walks in random environment.

In the study of one-dimensional random walks in random environment, an impor-
tant role is played by a process called the potential, denoted by V = (V (x), x ∈ Z).
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Let us introduce

ρi :=
1 − ωi

ωi

, i ∈ Z.

Then, the potential is a function of the environment ω, and is defined as follows:

V (x) :=






∑x
i=1 log ρi if x ≥ 1,

0 if x = 0,

−
∑0

i=x+1 log ρi if x ≤ −1.

Furthermore, we consider the weak descending ladder epochs for the potential defined
by e0 := 0 and

ei := inf{k > ei−1 : V (k) ≤ V (ei−1)}, i ≥ 1,

which play a crucial role in our proof. Observe that (ei − ei−1)i≥1 is a family of i.i.d.
random variables. Moreover, classical results of fluctuation theory (see [8], p. 396),
tell us that, under assumptions (a)-(b) of Theorem 1,

E[e1] <∞.(2.1)

Now, observe that the ((ei, ei+1])i≥0 stand for the set of excursions of the potential
above its past minimum. Let us introduce Hi, the height of the excursion (ei, ei+1]
defined by Hi := maxei≤k≤ei+1

(V (k) − V (ei)) , for i ≥ 0. Note that the (Hi)i≥0’s are
i.i.d. random variables.

We now introduce the hitting time τ(x) of level x for the random walk (Xn, n ≥ 0),

(2.2) τ(x) := inf{n ≥ 1 : Xn = x}, x ∈ Z.

For α ∈ (0, 1), let Sca
α be a completely asymmetric stable random variable of index α

with Laplace transform, for λ > 0,

E[e−λSca
α ] = e−λα

.

Moreover, let us introduce the constant CK describing the tail of Kesten’s renewal
series, see [15], defined by R :=

∑
k≥0 eV (k):

P{R > x} ∼ CK

xκ
, x→ ∞.(2.3)

Then the main result of the paper can be stated as follows. The symbols “
law−→”

denotes the convergence in distribution.

Theorem 1. Let ω := (ωi, i ∈ Z) be a family of independent and identically dis-
tributed random variables such that

(a) there exists 0 < κ < 1 for which E [ρκ
0 ] = 1 and E

[
ρκ

0 log+ ρ0

]
<∞,

(b) the distribution of log ρ0 is non-lattice.

Then, we have, when n goes to infinity,

τ(n)

n1/κ

law−→ 2

(
πκ2

sin(πκ)
C2

KE[ρκ
0 log ρ0]

) 1
κ

Sca
κ ,

Xn

nκ

law−→ sin(πκ)

2κπκ2C2
KE[ρκ

0 log ρ0]

(
1

Sca
κ

)κ

.
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Remark 1. We think that the method used in this paper could also treat the case
κ = 1 (see Section 9 for conjecture and comments).

The result of Theorem 1 is interesting when CK is explicitly known. In the case
of Dirichlet environment, i.e. when the law of the environment satisfies ω1( dx) =

1
B(α,β)

xα−1(1 − x)β−11[0,1](x) dx, with α, β > 0 and B(α, β) :=
∫ 1

0
xα−1(1 − x)β−1 dx,

things can be made much more explicit. The assumption of Theorem 1 correspond to
the case where 0 < α− β < 1 and an easy computation leads to κ = α− β.

Corollary 1. In the case when ω1 has a distribution Beta(α, β), with 0 < α− β < 1,
Theorem 1 applies with κ = α− β. Then, we have, when n goes to infinity,

τ(n)

n1/κ

law−→ 2

(
π

sin(π(α− β))

ψ(α) − ψ(β)

B(α, β)2

) 1
α−β

Sca
κ ,

Xn

nκ

law−→ sin(π(α− β))

2α−βπ

B(α, β)2

ψ(α) − ψ(β)

(
1

Sca
κ

)κ

,

where ψ denotes the classical Digamma function, ψ(z) := (log Γ)′(z) = Γ′(z)
Γ(z)

.

In the case where CK is unknown, it is possible to give a probabilistic representation
of the parameter. Actually, we obtain first Theorem 2, from which we deduce Theorem
1. In this aim, let us introduce the classical distribution P̃ associated with the random
walk (V (x), x ∈ Z) under P (denoted by aP in [8], p. 406). If µ denotes the law of
log ρ0, thanks to assumption (a) of Theorem 1 we can define the law µ̃ = ρκ

0µ, and

the law P̃ = µ̃⊗Z which is the law of a sequence of i.i.d. random variables with law µ̃.
The definition of κ implies that

∫
log ρ µ̃(dρ) > 0.

Theorem 2. Let ω := (ωi, i ∈ Z) be a family of independent and identically dis-
tributed random variables satisfying assumptions (a)–(b) of Theorem 1. Then, we
have, when n goes to infinity,

τ(n)

n1/κ

law−→ 2

(
π

sin(πκ)

E[Mκ]2

E[e1]2
(1 − E[eκV (e1)])2

E[ρκ
0 log ρ0]

) 1
κ

Sca
κ ,

Xn

nκ

law−→ sin(πκ)

2κπ

E[e1]
2

E[Mκ]2
E[ρκ

0 log ρ0]

(1 − E[eκV (e1)])2

(
1

Sca
κ

)κ

.

where M has the law of the exponential of a meander, i.e.

M
law
=

∑

k<0

e−V ′
k +

∑

k≥0

e−V ′′
k ,

with (V ′
k)k<0 under P{·|V ′

k ≥ 0, ∀k < 0} and independent of (V ′′
k )k≥0 under P̃{·|V ′′

k >
0, ∀k > 0}.

Remark 2. When CK is not explicit it is better to use the expression of the parameter
in terms of E[Mκ] which is easy to evaluate numerically.

In the following, the constant C stands for a positive constant large enough, whose
value can change from line to line.
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3. Sketch of the proof

Let us start now with the outlines of our proof.

Since assumption (a) of Theorem 1 implies E[log ρ0] < 0, the random walk describ-
ing the potential is negatively drifted, so that the random walker will converge almost
surely to the region of lowest potential, i.e. to infinity. Along its way, it will have
to overcome some obstacles which are represented by the excursions of the random
potential above its past minimum.

Now, a result of Iglehart [13] says that, under assumptions (a)-(b) of Theorem 1,
the tail of the height H of an excursion above its past minimum is given by

(3.1) P{H > h} ∼ CI e−κh, h→ ∞,

where

CI =
(1 − E[eκV (e1)])2

κE[ρκ
0 log ρ0]E[e1]

,(3.2)

with e1 denoting the endpoint of the first excursion, so that V (e1) ≤ 0. Iglehart’s
result is actually deduced from a former well-known result of Cramer, whose proof
was later simplified by Feller [8], concerning the tail of the maximum S of a N-time
indexed random walk which claims that

(3.3) P{S > h} ∼ CF e−κh, h→ ∞.

Since S is stochastically bigger than H , CI must be smaller than CF , and a rather
straight argument of Iglehart shows that the ratio between both constants is equal to
1 − E[eκV (e1)].

Recalling (2.1), the law of large numbers implies that the number of excursions
between 0 and n is almost surely equivalent to n/E[e1]. We will be therefore interested
in the asymptotic of the hitting time of the n-th excursion, we will denote by τ(en).

3.1. The general case. In a first step, we show (see Lemma 10) that τ(en) reduces
to the time spent by the walker to climb high excursions, namely, higher than hn :=
(1−ε)

κ
log n. Let us notice here, that, statistically, by Iglehart’s result, no excursion of

height larger than (1+ε)
κ

logn can be found among the first n excursions.

It turns out that these excursions are spatially well separated (see Lemma 3), and
that there are asymptotically nP{H ≥ hn} of these, i.e. CIn

ε (see Lemma 2). One
can therefore define boxes around, we shall denote by ([ak, dk])0≤k≤CInε , such that the
random walker will have a small probability to go back to a box which was already
visited. More precisely, let bk and ck denote respectively the starting point of the
k-th high excursion and the first time this excursion reaches its maximum, so that the
following ranking ak ≤ bk ≤ ck ≤ dk holds. With an overwhelming probability, for all
k ∈ [0, CIn

ε], the walker, once arrived at bk, will never visit ak again (see Lemma 9).

In addition, one can prove that the portions of potential between ak and dk, we
call “deep valleys” are almost i.i.d. The proof of this fact requires the introduction
of what we call “∗-valleys” which are i.i.d., and coincide with the sequence of “deep
valleys” with a high probability (see Lemma 5).

Now, gathering these two previous facts, we get that τ(en) can be roughly written:

τ(en) = τ(b1, d1) + ...+ τ(bCI nε, dCInε),
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where the τ(bk, dk)’s are i.i.d. random variables representing the time spent by the
walker to cross the k-th excursion, i.e. to go from bk to dk.

Consequently, considering the Laplace transform of n−1/κτ(en), we are led to the

study of the asymptotic when λ goes to 0 of E[e
− λ

n1/κ
τ(b1,d1)]CInε

(see Proposition 1).

Now, the passage from b1 to d1 can be decomposed into the sum of a random
geometrically distributed number of unsuccessful attempts to cross the excursion, fol-
lowed by a successful attempt. The accurate estimation of the time spent by each
(successful and unsuccessful) attempt leads us to consider two h−processes where the
random walker evolves in two modified potentials, one corresponding to the condi-

tioning on a failure (potential V̂ , see Lemma 11), and the other to the conditioning
on a success (potential V , see Lemma 12).

It turns out that the contribution of the last successful attempt to the quantity

τ(b1, d1) is negligible so that E[e
− λ

n1/κ
τ(b1,d1)

]CInε
is approximately equal to

E

[∑

k≥0

(1 − p(ω))Eω[e−λF ]kp(ω)k

]CInε

= E

[
1 − p(ω)

1 − p(ω)Eω[e
− λ

n1/κ
F
]

]CInε

,

where F denotes the time of an unsuccessful attempt (failure), and 1 − p(ω) denotes
the (small) probability of success which is known, by classical arguments, to be equal

to ωb
eV (b)

∑d−1
x=b eV (x)

(a first step of probability ωb to go to b+ 1 and then, starting at b+ 1,

a probability eV (b)
∑d−1

x=b eV (x)
to hit d before b).

Now, a key step consists in the fact that the linearization Eω[e
− λ

n1/κ
F
] ∼ 1 −

λ
n1/κEω[F ] can be justified. The error is expressed in terms of Eω[F 2] which is ex-
plicitly computed (see Lemma 11) and dominated by a function of the maximal fall of
the potential during its rise from V (b) to V (c), and the maximal rise of the potential
during its fall from V (c) to V (d) which can be uniformly controlled on all the CIn

ε

boxes (see Lemma 13). We are therefore led to the study of
(
E

[
1

1 + λ
n1/κ

p
1−p

Eω[F ]

])CInε

.

Now, Eω[F ] is known to be equal to 2ωb

∑d−1
a+1 e−(V̂ (x)−V̂ (b)). Therefore we are back to

the study of (
E

[
1

1 + 2λ
n1/κ eHM̂1M2

])CInε

,

where H = eV (c)−V (b) denotes the height of an high excursion and where M̂1 :=∑d−1
a+1 e−(V̂ (x)−V̂ (b)) and M2 :=

∑d−1
b e−(V (x)−V (c)) are two functionals of the potential

that depends very locally on the potential respectively around the local minimum b
and the local maximum c.

Since V (b) and V (c) are locally extremal, these functionals can be assimilated to
two functionals of meanders associated to the random walk defining the potential.

Furthermore, a reversal time argument and the proximity of V and V̂ around b show
that these two quantities are asymptotically the same functionals of the same meander.
It is defined as follows M :=

∑
n∈Z

e−Yn , where Yn is the random walk of step log ρ,
conditioned to be positive on all Z. This conditioning has to be understood as follows:
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on Z− it is the natural one (we condition on an event having a strictly positive
probability), whereas on Z+ it represents the limit in law of random walks of step
log ρ that are conditioned to overshoot a high level before visiting R− (see for instance
the paper of Bertoin and Doney [3] and the references therein for detailed discussions
on the subject) .

Furthermore, it turns out that the three quantities eH , M̂1 and M2 are asymptoti-
cally independent. This delicate step based on coupling arguments, which are adapted
from the proof of the renewal theorem for the sum of i.i.d. variables, is treated in the

paper [7], see Proposition 7.1. As a consequence, the tail of eHM̂1M2 can be derived,
see Theorem 2.2 in [7], as well as a Tauberian result about 1

1+λeHM̂1M2
, see Corollary

9.1 in [7]. This Tauberian result yields to
(
E

[
1

1 + 2λ
n1/κ eHM̂1M2

])CInε

= exp
{
−

(
2κ πκ

sin(πκ)
E[Mκ]2CI

)
λκ

}
+ o(1).

where CI is given in (3.2). Now, one can be tempted to express the functional E[Mκ]
in terms of the more usual constant CK , see (2.3). This is the content of Theorem 1.1
in [7], which yields

CK = E[Mκ]CF = E[Mκ]
(1 −E[eκV (e1)])

κE[ρκ
0 log ρ0]E[e1]

.

Therefore, the Laplace transform of n−1/κτ(en) writes

E[e
− λ

n1/κ
τ(en)

] = exp
{
−

(
2κ πκ

sin(πκ)

C2
KCI

C2
F

)
λκ

}
+ o(1)

= exp
{
−

(
2κ πκ2

sin(πκ)
C2

KE[ρκ
0 log ρ0]E[e1]

)
λκ

}
+ o(1).

Finally, since, by the law of large numbers, en/n converges a.s. to E[e1], we conclude
that

E[e
− λ

n1/κ
τ(n)

] = exp
{
−

(
2κ πκ2

sin(πκ)
C2

KE[ρκ
0 log ρ0]

)
λκ

}
+ o(1).

Hence, we obtain that the limit is the positive stable law with index κ and parameter
2κ πκ2

sin(πκ)
C2

KE[ρκ
0 log ρ0].

3.2. The case of a Dirichlet environment. In the case of a Dirichlet environment,
namely when ω1(dx) = 1

B(α,β)
xα−1(1−x)β−11[0,1](x)dx, (α, β > 0) things can be made

much more explicit. The assumptions of Theorem 1 correspond to the case when
0 < α − β ≤ 1 and an easy computation shows that κ = α − β. Now, a classical
argument of derivation under the sign integral shows that

E[ρκ
0 log ρ0] = ψ(α) − ψ(β),

where ψ denotes the classical Digamma function ψ(z) := (log Γ)′(z) = Γ′(z)
Γ(z)

.

Furthermore, a work of Chamayou and Letac [4] shows that CK can be made

explicit. Indeed, with the notations of [4], ρ0 follows the law β
(2)
p,q (dx) := 1

B(p,q)
xp−1(1+

x)−p−q1R+(x)dx with p = β and q = α. Then, Example 9 of [4] says that
∑

k≥1 eV (k)

follows the law of β
(2)
β,α−β having density 1

B(α,β)
xβ−1(1 + x)−α1R+(x). But we have

β
(2)
β,α−β([t,+∞[) ∼ 1

(α−β)B(α,β)
1

tα−β , t→ ∞. Hence, CK = 1
(α−β)B(α,β)

.



8 N. ENRIQUEZ, C. SABOT, AND O. ZINDY

The expression of the parameter can be simplified into

2κ πκ2

sin(πκ)
C2

KE[ρκ
0 log ρ0] =

π2α−β

sin(π(α− β))

ψ(α) − ψ(β)

B(α, β)2
.

4. Two notions of valleys

Sinai introduced in [19] the notion of valley in a context where the random walk
defining the potential was recurrent. We have to do a similar job in our framework
where the random walk defining the potential is negatively drifted. The deep valleys
we introduce here are closely related to the excursions of the random walk above its
past minimum which are higher than a critical height. They consist actually in some
portion of potential including these excursions. When the critical height is taken
sufficiently large, the excursions are quite seldom and the valleys are likely to be
disjoint. In order to deal with almost sure disjoint valleys, we also introduce ∗-valleys
which coincide with deep valleys with high probability.

4.1. The deep valleys. Let us define the maximal variations of the potential before
site x by:

V ↑(x) := max
0≤i≤j≤x

(V (j) − V (i)), x ∈ N,

V ↓(x) := min
0≤i≤j≤x

(V (j) − V (i)), x ∈ N.

By extension, we introduce

V ↑(x, y) := max
x≤i≤j≤y

(V (j) − V (i)), x < y,

V ↓(x, y) := min
x≤i≤j≤y

(V (j) − V (i)), x < y.

In order to define deep valleys, we extract from the first n excursions of the potential
above its minimum, these whose heights are greater than a critical height hn, defined
by

(4.1) hn :=
(1 − ε)

κ
log n,

for some 0 < ε < 1/3. Let (σ(i))i≥1 be the successive indexes of excursions, whose
heights are greater than hn. More precisely,

σ(1) := inf{i ≥ 0 : Hi ≥ hn, },
σ(j) := inf{i > σ(j − 1) : Hi ≥ hn}, j ≥ 2,

Kn := max{j ≥ 0 : σ(j) ≤ n}.

We consider now some random variables depending only on the environment, which
define the deep valleys.
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Definition 1. For 1 ≤ j ≤ Kn + 1, let us introduce

bj := eσ(j),

aj := sup{k ≤ bj : V (k) − V (bj) ≥ Dn},
T ↑

j := inf{k ≥ bj : V (k) − V (bj) ≥ hn},
dj := eσ(j)+1,

cj := inf{k ≥ bj : V (k) = max
bj≤x≤dj

V (x)},

dj := inf{k ≥ dj : V (k) − V (dj) ≤ −Dn}.

where Dn := (1 + 1
κ
) logn. We call (aj, bj , cj, dj) a deep valley and denote by H(j) the

height of the j-th deep valley.

Remark 3. It may happen that two different deep valleys are not disjoint, even if this
event is highly improbable as it will be shown in Lemma 3 and Lemma 4 in Subsection
5.1.

4.2. The ∗-valleys. Let us introduce now a subsequence of the deep valleys defined
above. It will turn out that both sequences coincide with probability tending to 1 as
n goes to infinity. This will be specified in Lemma 5. Let us first introduce

γ∗1 := inf{k ≥ 0 : V (k) ≤ Dn},
T ∗

1 := inf{k ≥ γ∗1 : V ↑(γ∗1 , k) ≥ hn},
b∗1 := sup{k ≤ T ∗

1 : V (k) = min
0≤x≤T ∗

1

V (x)},

a∗1 := sup{k ≤ b∗1 : V (k) − V (b∗1) ≥ Dn},
d
∗

1 := inf{k ≥ T ∗
1 : V (k) ≤ V (b∗1)},

c∗1 := inf{k ≥ b∗1 : V (k) = max
b∗1≤x≤d

∗
1

V (x)},

d∗1 := inf{k ≥ d
∗

1 : V (k) − V (d
∗

1) ≤ −Dn}.

Let us define the following sextuplets of points by iteration

(γ∗j , a
∗
j , b

∗
j , T

∗
j , c

∗
j , d

∗

j , d
∗
j) := (γ∗1 , a

∗
1, b

∗
1, T

∗
1 , c

∗
1, d

∗

1, d
∗
1) ◦ θd∗j−1

, j ≥ 2,

Definition 2. We call a ∗-valley any quadruplet (a∗j , b
∗
j , c

∗
j , d

∗
j) for j ≥ 1. Moreover,

we shall denote by K∗
n the number of such ∗-valleys before en, i.e. K∗

n := sup{j ≥ 0 :
T ∗

j ≤ en}.

It will be made of independent and identically distributed portions of potential (up
to some translation).

5. Reduction to a single valley

This section is devoted to the proof of Proposition 1 which tells that the study of
τ(en) can be reduced to the analysis of the time spent by the random walk to cross
the first deep valley. To ease notations, we introduce λn := λ

n1/κ .
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Proposition 1. For all n large enough, we have

E
[
e−λn τ(en)

]
∈

[
E

[
Eb1

ω,|a1

[
e−λnτ(d1)

]]Kn

+ o(1) , E
[
Eb1

ω,|a1

[
e−λnτ(d1)

]]Kn

+ o(1)

]
.

where Kn := ⌊nqn(1− n−ε/4)⌋, Kn := ⌈nqn(1 + n−ε/4)⌉, qn := P{H0 ≥ hn} and where
Ex

ω,|y denotes the quenched law of the random walk in the environment ω, starting at
x and reflected at site y.

5.1. Introducing “good” environments. Let us define the four following events,
that concern exclusively the potential V. The purpose of this subsection is to show
that they are realized with an asymptotically overwhelming probability when n goes
to infinity. These results will then make it possible to restrict the study of τ(en) to
these events.

A1(n) := {en < C ′n} ,
A2(n) :=

{
⌊nqn(1 − n−ε/4)⌋ ≤ Kn ≤ ⌈nqn(1 + n−ε/4)⌉

}
,

A3(n) := ∩Kn
j=0

{
σ(j + 1) − σ(j) ≥ n1−3ε

}
,

A4(n) := ∩Kn+1
j=1 {dj − aj ≤ C ′′ log n} ,

where σ(0) := 0 (for convenience of notation) and C ′, C ′′ stand for positive constants
which will be specified below.

In words, A1(n) allows us to bound the total length of the first n excursions. The
event A2(n) gives a control on the number of deep valleys. The event A3(n) ensures
that the deep valleys are well separated, while A4(n) bounds finely the length of each
of them.

Let us introduce the following hitting times (for the potential)

Th := min{x ≥ 0 : V (x) ≥ h}, h > 0,

TA := min{x ≥ 0 : V (x) ∈ A}, A ⊂ R.

Then, we obtain the following results.

Lemma 1. The probability P{A1(n)} converges to 1 when n goes to infinity.

Proof. It is a direct consequence of the law of large numbers as soon as C ′ is taken
bigger than E[e1]. �

Lemma 2. The probability P{A2(n)} converges to 1 when n goes to infinity.

In words, Lemma 2 means that Kn “behaves” like CIn
ε, when n tends to infinity. In

particular, (3.1), which yields qn ∼ CI

n1−ε , and Lemma 2 imply

P{Kn + 1 ≥ 2CIn
ε} → 0, n→ ∞.(5.1)
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Proof. At first, observe that

P
{Kn

nqn
≥ 1 + n−ε/4

}
= P{Kn − nqn ≥ n1−ε/4qn} ≤ Var(Kn)

n2(1−ε/4)q2
n

,

the inequality being a consequence of Markov inequality and the fact that Kn follows
a binomial distribution of parameter (n, qn). Moreover, Var(Kn) = nqn(1− qn) ≤ nqn
implies

P{Kn

nqn
≥ 1 + n−ε/4} ≤ C

n1−ε/2qn
.

Now, Iglehart’s result (see (3.1)) implies qn ∼ CI

n1−ε , n → ∞. Therefore we get that

P{Kn

nqn
≤ 1 + n−ε/4} converges to 1 when n goes to infinity. Using similar arguments,

we get the convergence to 1 of P{Kn

nqn
≥ 1 − n−ε/4}. �

Lemma 3. The probability P{A3(n)} converges to 1 when n goes to infinity.

Proof. We make first the trivial observation that

P{A3(n)} ≥ P{σ(j + 1) − σ(j) ≥ n1−3ε, 0 ≤ j ≤ ⌊2CIn
ε⌋ ; Kn ≤ 2CIn

ε}
≥ P{σ(j + 1) − σ(j) ≥ n1−3ε, 0 ≤ j ≤ ⌊2CIn

ε⌋} − P{Kn ≥ 2CIn
ε},

the second inequality being a consequence of P{A ;B} ≥ P{A} − P{Bc}, for any
couple of events A and B. Therefore, recalling (5.1) and using the fact that (σ(j +
1) − σ(j))0≤j≤⌊2CInε⌋ are i.i.d. random variables, it remains to prove that

P{σ(1) ≥ n1−3ε}⌊2CInε⌋ → 1, n→ ∞.

Since σ(1) is a geometrical random variable with parameter qn, P{σ(1) ≥ n1−3ε} is

equal to (1 − qn)⌈n
1−3ε⌉, which implies

P{σ(1) ≥ n1−3ε}⌊2CInε⌋ = (1 − qn)⌊2CInε⌋ ⌈n1−3ε⌉ ≥ exp
{
−Cn1−2εqn

}
.

Then, the conclusion follows from (3.1), which implies that qn ∼ CI/n
1−ε, n→ ∞. �

Lemma 4. For C ′′ large enough, The probability P{A4(n)} converges to 1 when n
goes to infinity.

Proof. Looking at the proof of Lemma 3, we have to prove that P{dj −aj ≥ C ′′ logn}
is equal to a o(n−ε), n → ∞. Moreover, observing that dj − aj = (dj − dj) + (dj −
T ↑

j ) + (T ↑
j − bj) + (bj − aj), the proof of Lemma 4 boils down to showing that, for C ′′

large enough,

P{dj − dj ≥
C ′′

4
logn} = o(n−ε), n→ ∞,(5.2)

P{dj − T ↑
j ≥ C ′′

4
logn} = o(n−ε), n→ ∞,(5.3)

P{T ↑
j − bj ≥

C ′′

4
logn} = o(n−ε), n→ ∞,(5.4)

P{bj − aj ≥
C ′′

4
logn} = o(n−ε), n→ ∞.(5.5)
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To prove (5.2), we apply the strong Markov property at time dj such that we get

P{dj − dj ≥ C′′

4
log n} ≤ P{T(−∞,−Dn] ≥ C′′

4
logn}. Therefore, we have

P{dj − dj ≥
C ′′

4
log n} ≤ P{ inf

0≤x≤C′′

4
log n

V (x) > −Dn} ≤ P{V (
C ′′

4
logn) > −Dn}.

Recalling that Dn := (1 + 1
κ
) log n and observing that large deviations do occur, we

obtain, from Cramer’s theory, that P{V (C′′

4
logn) > −Dn} ≤ e−

C′′

4
log n I(− 4

C′′ (1+
1
κ
)),

with I(·) the convex rate function associated to V. This inequality implies (5.2) by
choosing C ′′ large enough such that C′′

4
I(− 4

C′′ (1 + 1
κ
)) > ε, which is possible since

I(0) > 0.

To prove (5.3), observe first that (3.1) implies P{H(j) > (1+ε′)
κ

logn} ∼ n−(ε′+ε) =

o(n−ε), n → ∞. Therefore, we obtain that P{dj − T ↑
j ≥ C′′

4
logn} is less or equal

than P{T
(−∞,− 1+ε′

κ
log n]

≥ C′′

4
log n} + o(n−ε) and conclude the proof with the same

arguments we used to treat (5.2).

To get (5.4), observe first that

P{T ↑
j − bj ≥

C ′′

4
log n} = P{Thn ≥ C ′′

4
logn |H0 ≥ hn}

≤ P{C
′′

4
log n ≤ Thn <∞}/P{H0 ≥ hn}.

Therefore, Cramer’s theory, see [6], yields

P{C
′′

4
log n ≤ Thn <∞} ≤

∑

k≥C′′

4
log n

P{V (k) ≥ hn} ≤
∑

k≥C′′

4
log n

e−k I(hn
k )

≤
∑

k≥C′′

4
log n

e−k I(0) ≤ C

n
C′′

4
I(0)

,

the second inequality being a consequence of the fact that the convex rate function
I(·) is an increasing function on (m,+∞). Using (3.1), we get, for all large n,

P{T ↑
j − bj ≥

C ′′

4
logn} ≤ C

n
C′′

4
I(0)−(1−ε)

,

which yields (5.4), by choosing C ′′ large enough such that C ′′ > 4
I(0)

.

For (5.5), observe first that ((V (k−bj)−V (bj))aj≤k≤bj
, aj, bj) has the same distribu-

tion as ((V (k))a−≤k≤0, a
−, 0) under P{·|V (k) ≥ 0, a− ≤ k ≤ 0}, where a− := sup{k ≤

0 : V (k) ≥ Dn}. Then, since P{V (k) ≥ 0, k ≤ 0} > 0 and since (V (−k), k ≥ 0) has
the same as (−V (k), k ≥ 0), we obtain

P{bj − aj ≥
C ′′

4
log n} ≤ CP{T(−∞,−Dn] >

C ′′

4
logn} ≤ CP{V (

C ′′

4
log n) > −Dn}.

Now, the arguments are the same as in the proof of (5.2). �

Defining A(n) := A1(n)∩A2(n)∩A3(n)∩A4(n), a consequence of Lemma 1, Lemma
2, Lemma 3 and Lemma 4, is that

P{A(n)} → 1.(5.6)



LIMIT LAWS FOR TRANSIENT RWRE 13

The following Lemma tells us that the ∗-valleys coincide with the sequence of deep
valleys with an overwhelming probability when n goes to infinity.

Lemma 5. If A∗(n) := {Kn = K∗
n ; (aj , bj , cj, dj) = (a∗j , b

∗
j , c

∗
j , d

∗
j), 1 ≤ j ≤ Kn}, then

we have that the probability P{A∗(n)} converges to 1, when n goes to infinity.

Proof. Since, by definition, the ∗-valleys constitute a subsequence of the deep valleys,
Lemma 5 is a consequence of Lemma 3 together with Lemma 4. �

Remark 4. Another meaning of this result is that, with probability tending to 1, two
deep valleys are necessarily disjoint.

5.2. Preparatory lemmas. In this subsection, we develop some technical tools al-
lowing us to improve our understanding of the random walk’s behavior. In Lemma
8, we prove that, after exiting a deep valley, the random walk will not come back to
another deep valley it has already visited, with probability tending to one. Moreover,
Lemma 9 specifies that the random walk typically exits from a ∗-valley on the right,
while Lemma 10 shows that the time spent between two deep valleys is negligible.

5.2.1. Preliminary estimates for inter-arrival times. Let us first give a preliminary
result concerning large deviations, more precisely about the convex rate function
associated to the potential V (·), denoted by I(·).

Lemma 6. Under assumptions (a)–(b), we have

inf
x≥0

I(x)

x
= κ.

Moreover, the minimum is reached at x0 := Λ′(κ), with Λ(t) := logE[ρt
0].

Proof. Recalling that I(·) is defined by I(x) := supt≥0{tx− Λ(t)}, for x ≥ 0, we have
I(x) ≥ κx−Λ(κ) = κx, since Λ(κ) = 0. Moreover, under assumption (a)–(b), formula
(2.2.10) in ([6], p. 28) implies I(Λ′(κ)) = κΛ′(κ), which concludes the proof of Lemma
6. �

Let us introduce

T ↑(h) := min{x ≥ 0 : V ↑(x) ≥ h}, h > 0,

T ↓(h) := min{x ≥ 0 : V ↓(x) ≤ −h}, h > 0.

Lemma 7. Under assumptions (a)–(b), we have, for h large enough,

E|0 [τh] ≤ C h6eh,

where E|0 denotes the expectation under the law P|0 of the random walk in the random
environment ω (under P ) reflected at 0 and τh := τ(T ↑(h) − 1).
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Proof. Using (Zeitouni [22], formula (2.1.14)), we obtain that E|0 [τh] is bounded from

above by E
[∑

1≤i≤j<T ↑(h) eV (j)−V (i)
]
. Moreover, observe that

E

[ ∑

1≤i≤j<T ↑(h)

eV (j)−V (i)

]
≤ ehE1(h) + E2(h),(5.7)

where we define

E1(h) := E
[
(T ↑(h))21{T ↑(h)≥β(h)}

]
,

E2(h) := E

[ ∑

1≤i≤j<T ↑(h)

eV (j)−V (i)1{T ↑(h)≤β(h)}

]
,

with β(h) := exp
{

κh
1−ε0

}
, for some ε0 > 0. Therefore, the proof of Lemma 7 boils

down to showing the following inequalities, for h large enough,

E1(h) ≤ C,(5.8)

E2(h) ≤ C h6eh.(5.9)

To prove (5.9), observe that

E2(h) ≤ eh +
∑

1≤i≤j<β(h)

E
[
eV (j)−V (i)1{1≤i≤j<T ↑(h) ; V (j)−V (i)≥γh}

]
,

where γ := 1 − 2κ
1−ε0

. Then, we introduce the following sequence

α0 := γh,

αk := α0 + k log h, k ≥ 1,

and define N = N(h) := inf {k ≥ 0 : αk ≥ h}. The definition of T ↑(h), which implies
that V (j) − V (i) ≤ h, for i ≤ j < T ↑(h), enables us to partition the set {(i, j) : 1 ≤
i ≤ j < T ↑(h)} according to the value of V (j) − V (i). We write

E2(h) ≤ eh +
∑

1≤i≤j<β(h)

N−1∑

k=0

eαk+1P{i ≤ j < T ↑(h) ; αk ≤ V (j) − V (i) ≤ αk+1}

≤ eh +
N−1∑

k=0

eαk+1

∑

1≤i≤j<β(h)

P{T ↑(h) > i}P{V (j) − V (i) ≥ αk}.

Observing that
∑

i≥0 P{T ↑(h) > i} ≤ E[T ↑(h)] and that αk+1 = αk + log h, we get

E2(h) ≤ eh + hE[T ↑(h)]

N−1∑

k=0

(Uk + U),(5.10)

where

Uk := eαk

θh∑

j=1

P{V (j) ≥ αk}, 0 ≤ k ≤ N − 1,(5.11)

U := eh

β(h)∑

j=θh

P{V (j) ≥ γh},(5.12)

with θ > 0, which will be fixed later.
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Let us first look at U. If γh/j > m, Cramer’s theory implies that

P{V (j) ≥ γh} ≤ exp
{
− j I

(γh
j

)}
.

We fix 0 < ε1 < |m| and recall that I(−ε1) > 0. Moreover, we choose θ large enough
such that γ/θ > −ε1, and that θI(−ε1) > 1 + κ/(1 − ε0). Therefore, since I(·) is
increasing on (m,∞), we obtain P{V (j) ≥ γh} ≤ exp {−θh I(−ε1)} , for j ≥ θh.
Recalling (5.12), this yields U ≤ ehβ(h) exp {−θh I(−ε1)} . Since θI(−ε1) > 1 +
κ/(1 − ε0), we get U = o(1), h→ ∞.

To treat the Uk’s, let us introduce k0 := inf{k ≥ 0 : αk ≥ 0}. Note that γ > 0
implies k0 = 0. If k < k0, the fact that αk < 0, and (5.11) imply that

Uk ≤ θh, k < k0.(5.13)

If k ≥ k0, then αk/j > 0 > m, for 1 ≤ j ≤ θh. Therefore, since large deviations
do occur, we obtain, from Cramer’s theory, see [6], that P{V (j) ≥ αk} ≤ exp

{
−

j I
(

αk

j

)}
≤ exp{−καk}, the second inequality being a consequence of Lemma 6.

Recalling (5.11), this yields

Uk ≤ θhe(1−κ)αk ≤ θhe(1−κ)h, k0 ≤ k < N.(5.14)

Recalling that U = o(1), and putting together (5.13) and (5.14), we obtain
∑N−1

k=0 (Uk+
U) ≤ CNh e(1−κ)h, for all large h.

Recall (5.10). Since the definition of N implies that N ≤ h, we have

E2(h) ≤ eh + C h3E
[
T ↑(h)

]
e(1−κ)h.(5.15)

Then, to prove (5.9), we only have to bound from above E
[
T ↑(h)

]
. Recalling that

E
[
T ↑(h)

]
≤

∑
k≥1 P{T ↑(h) ≥ k} =:

∑
k≥1 pk, we easily get

E
[
T ↑(h)

]
≤ h3eκh +

∑

k≥h3eκh

pk.(5.16)

Since pk ≤ P
(⋂⌊k/ℓ⌋

i=0 {V ((i+ 1)ℓ) − V (i ℓ) < h}
)
, for any ℓ > 0, we have pk ≤

(1 − P{V (ℓ) ≥ h})⌊k/ℓ⌋ ≤ exp {−⌊k/ℓ⌋P{V (ℓ) ≥ h}} . Then, to bound P{V (ℓ) ≥ h}
from below, we use a fine large deviations result, due to Bahadur and Ranga Rao [2].
Choosing ℓ = h/x0, we obtain P{V (ℓ) ≥ h} ≥ 1−ε2√

2πσ(x0)2ℓ
e−ℓ I(x0), for some ε2 > 0 and

h large enough. Then, by Lemma 6, we get

pk ≤ exp
{
− c(κ)

ke−κh

h3/2

}
,(5.17)

for some c(κ) > 0. On one hand, (5.17) yields pk ≤ exp
{
−c1(κ)h3/2

}
, for k ∈

[h3eκh, β(h)], such that
∑

h3eκh≤k≤β(h)

pk ≤ β(h)e−c1(κ)h3/2

= o(1), h→ ∞.(5.18)

To the other hand, using (5.17), we obtain, for all k larger than β(h),

pk ≤ exp
{
−c2(κ)k

ε0
2

}
,(5.19)
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implying that
∑

k≥β(h)

pk = O(1), h→ ∞.(5.20)

Putting together (5.16), (5.18) and (5.20), we get

E
[
T ↑(h)

]
≤ C h3eκh.(5.21)

Recalling (5.15), this concludes the proof of (5.9).

Back to E1(h), we observe that

E1(h) = E
[
(T ↑(h))21{T ↑(h)≥β(h)}

]
≤

∑

k≥β(h)

(k + 1)pk,

and using (5.19), we obtain E1(h) = O(1), h→ ∞, which yields (5.8). �

5.2.2. Important preliminary results. Before establishing the announced lemmas, we
introduce, for any x, y ∈ Z,

τ(x, y) := inf{k ≥ 0 : Xτ(x)+k = y}.

Then, we have the following results.

Lemma 8. Defining DT (n) := A(n) ∩
⋂Kn

j=1

{
τ(dj , bj+1) < τ(dj , dj)

}
, we have

P {DT (n)} → 1, n→ ∞.

Proof. Recalling (5.6), we only have to prove that

E

[
1A(n)

Kn∑

j=1

P dj
ω {τ(bj+1) > τ(dj)}

]
→ 0.(5.22)

By (Zeitouni [22], formula (2.1.4)), we get, for 1 ≤ j ≤ Kn and for all ω in A(n) :

P dj
ω {τ(bj+1) > τ(cj)} =

∑bj+1−1
k=dj

eV (k)

∑bj+1−1

k=dj
eV (k)

≤ (bj+1 − dj)e
V (dj )−V (dj)+hn .

Combining (5.21) and Markov inequality, we easily get that bKn+1 − dKn = o(n)
with probability tending to 1. Moreover, by definition, V (dj) − V (dj) ≤ −Dn for
1 ≤ j ≤ Kn, and bj+1 − dj ≤ en ≤ C ′ n, for 1 ≤ j ≤ Kn − 1 on A1(n). Therefore, we
have

E

[
1A(n)

Kn∑

j=1

P dj
ω {τ(bj+1) > τ(dj)}

]
≤ C nE[Kn]e−Dn+hn.

Recalling that Dn = (1 + 1
κ
) logn, hn = 1−ε

κ
logn and since E[Kn] ≤ C nε, we obtain

E

[
1A(n)

Kn∑

j=1

P dj
ω {τ(bj+1) > τ(dj)}

]
≤ C eε(1−1/κ) log n,

which implies (5.22). �
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Lemma 9. Defining DT ∗(n) :=
⋂K∗

n
j=1

{
τ(b∗j , d

∗
j) < τ(b∗j , γ

∗
j )

}
, we have

P{DT ∗(n)} → 1, n→ ∞.

Proof. Since, by definition, the ∗-valleys correspond to the Kn deep valleys on A∗(n),
we consider A†(n) := A∗(n) ∩ A3(n) ∩ A∗

4(n) to control the ∗-valleys, where A∗
4(n) is

defined by A∗
4(n) := ∩K∗

n
j=1

{
γ∗j+1 − a∗j ≤ C ′′ logn

}
∩ {γ∗1 ≤ C ′′ logn} . Using the same

arguments as in the proof of Lemma 4, we can prove that P{A∗
4(n)} → 1, n → ∞,

for C ′′ large enough. Then, recalling that Lemma 3 and Lemma 5 imply P{A∗(n) ∩
A3(n)} → 1, n→ ∞, it remains only to prove that

E

[
1A†(n)

Kn∑

j=1

P bj
ω {τ(dj) > τ(γ∗j )}

]
→ 0.(5.23)

Observe that by (Zeitouni [22], formula (2.1.4)) we get, for 1 ≤ j ≤ Kn,

P bj
ω {τ(dj) > τ(γ∗j )} ≤ (dj − bj)e

H(j)−(V (γ∗
j )−V (bj))

≤ C logn eH(j)−(V (γ∗
j )−V (bj)),

the second inequality being a consequence of ω ∈ A∗(n) ∩ A∗
4(n). Then, to bound

eH(j)−(V (γ∗
j )−V (bj)) from above, observe that (3.1) implies P{H(j) > (1+ε′)

κ
log n} ∼

n−(ε′+ε) = o(n−ε), n → ∞, for any ε′ > 0, which yields that P{
⋂Kn

j=1{H(j) <
(1+ε′)

κ
logn}} tends to 1, when n tends to ∞. Therefore, recalling (5.23), we only

have to prove that

C logn n
(1+ε′)

κ E

[
1A†(n)

Kn∑

j=1

e−(V (γ∗
j )−V (bj))

]
→ 0.(5.24)

Since γ∗j − bj−1 ≤ C ′′ log n on A∗
4(n) and bj − bj−1 ≥ n1−3ε on A3(n), we get bj − γ∗j ≥

1
2
n1−3ε for 2 ≤ j ≤ Kn on A†(n), for all large n. Similarly, γ∗0 ≤ C ′′ log n on A∗

4(n)
and b1 ≥ n1−3ε on A3(n) yield b1 − γ∗1 ≥ 1

2
n1−3ε on A†(n). Therefore, by definition of

bj and since large deviations do occur, we obtain from Cramer’s theory, see [6],

P{A†(n) ; V (bj) − V (γ∗j−1) ≥ −n 1−3ε
2 } ≤ P{V (

1

2
n1−3ε) ≥ −n 1−3ε

2 }

≤ e−
n1−3ε

2
I
(

n
−1−3ε

2

)
= o(n−ε),

for any 1 ≤ j ≤ Kn. This result implies that the term on the left-hand side in (5.24) is

bounded from above by C log n n
(1+ε′)

κ E[Kn]e−
n1−3ε

2 . Then, since E[Kn] ≤ C nε, this
concludes the proof of Lemma 9. �

Lemma 10. For any 0 < η < ε( 1
κ
− 1), let us introduce the following event IA(n) :=

A(n) ∩
{∑Kn

j=1 τ(dj → bj+1) < n1/κ−η
}
. Then, we have

P{IA(n)} → 1, n→ ∞.
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Proof. Recalling that P{Kn ≥ 2CIn
ε} → 0, n → ∞, and that Lemma 8 implies that

P{DT (n)} → 1, n→ ∞, it only remains to prove

P

{
DT (n) ∩

{ ⌊2CI nε⌋∑

j=1

τ(dj → bj+1) > n1/κ−η

}}
→ 0, n→ ∞.

Using Markov inequality, we have to prove that

E

[
1DT (n)

⌊2CInε⌋∑

j=1

τ(dj → bj+1)

]
= o

(
1

n1/κ−η

)
, n→ ∞.(5.25)

Furthermore, by definition of the event DT (see Lemma 8), we get

E

[
1DT (n)

⌊2CInε⌋∑

j=1

τ(dj → bj+1)

]
≤ E

[
1A(n)

⌊2CInε⌋∑

j=1

E
dj

ω,|dj
[τ(bj+1)]

]

≤ E

[
1A(n)

⌊2CInε⌋∑

j=1

E
dj

ω,|dj
[τ(bj+1)]

]
.

Applying successively the strong Markov property at d⌊2CInε⌋, . . . , d2, d1, this implies

E

[
1DT (n)

⌊2CInε⌋∑

j=1

τ(dj → bj+1)

]
≤ 2CIn

ε
E|0[τ(T

↑(hn) − 1)].

Therefore, Lemma 7 implies

E

[
1DT (n)

⌊2CInε⌋∑

j=1

τ(dj → bj+1)

]
≤ 2CIn

εh6
n ehn ≤ C(log n)6n

1
κ
−ε( 1

κ
−1),

which yields (5.25) and concludes the proof, since 0 < η < ε( 1
κ
− 1). �

5.3. Proof of Proposition 1. Since the time spent on Z− is almost surely finite,
we reduce our study to the random walk in random environment reflected at 0 and
observe that

E
[
e−λn τ(en)

]
= E|0

[
e−λn τ(en)

]
+ o(1), n→ ∞,

where E|0 denotes the expectation under the law P|0 of the random walk in the random
environment ω (under P ) reflected at 0.

Furthermore, by definition, τ(en) satisfies

τ(b1) +

Kn−1∑

j=1

{τ(bj , dj) + τ(dj, bj+1)} ≤ τ(en) ≤ τ(b1) +

Kn∑

j=1

{τ(bj , dj) + τ(dj, bj+1)},

such that we easily get that E|0

[
e−λn τ(en)

]
belongs to

[
E|0

[
e−λn (τ(b1)+

∑Kn
j=1{τ(bj ,dj)+τ(dj ,bj+1)})

]
, E|0

[
e−λn (τ(b1)+

∑Kn−1
j=1 {τ(bj ,dj)+τ(dj ,bj+1)})

]]
.
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Let us introduce A+(n) := DT (n) ∩ IA(n) and recall that Lemma 8 and Lemma
10 imply that P{A+(n)} → 1, n → ∞. Then, we get that the lower bound in the
previous interval is equal to

E|0

[
1A+(n)e

−λn(τ(b1)+
∑Kn

j=1{τ(bj ,dj)+τ(dj ,bj+1)})
]

+ o(1)

= E|0

[
1A+(n) e−λn

∑Kn
j=1 τ(bj ,dj)

]
+ o(1)

= E|0

[
e−λn

∑Kn
j=1 τ(bj ,dj)

]
+ o(1).

Then, applying the strong Markov property for the random walk successively at
τ(bKn), τ(bKn−1), . . . , τ(b2) and τ(b1) we get

E|0

[
e−λn

∑Kn
j=1 τ(bj ,dj)

]
= E

[ Kn∏

j=1

E
bj

ω,|0

[
e−λnτ(dj)

] ]

= E

[
1A∗(n)

K∗
n∏

j=1

E
b∗j
ω,|0

[
e−λnτ(d∗j )

] ]
+ o(1)

= E

[ K∗
n∏

j=1

E
b∗j
ω,|0

[
e−λnτ(d∗j )

] ]
+ o(1),

the second equality being a consequence of Lemma 5. Then, since Lemma 9 implies
P{DT ∗(n)} → 1, we have

E|0

[
e−λn

∑Kn
j=1 τ(bj ,dj)

]
= E

[ K∗
n∏

j=1

E
b∗j
ω,|0

[
1DT ∗(n) e−λnτ(d∗j )

] ]
+ o(1)

= E

[ K∗
n∏

j=1

E
b∗j
ω,|γ∗

j

[
1DT ∗(n) e−λnτ(d∗j )

] ]
+ o(1)

= E

[ K∗
n∏

j=1

E
b∗j
ω,|γ∗

j

[
e−λnτ(d∗j )

] ]
+ o(1),

Since P{Kn = K∗
n} → 1, and P{Kn ≤ Kn} → 1, with Kn = ⌈nqn(1 + n−ε/4)⌉, we get

E|0

[
e−λn τ(en)

]
≥ E

[ Kn∏

j=1

E
b∗j
ω,|γ∗

j

[
e−λnτ(d∗j )

] ]
+ o(1).

Then, applying the strong Markov property (for the potential V ) successively at

times γ∗
Kn
, ..., γ∗2 and observing that the

(
E

b∗j
ω,|γ∗

j

[
e−λnτ(d∗j )

])

1≤j≤Kn

are i.i.d. random

variables, we obtain that

E|0

[
e−λn τ(en)

]
≥ E

[
E

b∗1
ω,|γ∗

1
e−λnτ(d∗1)

]Kn

+ o(1).

Since we can easily prove that P{(a1, b1, c1, d1) 6= (a∗1, b
∗
1, c

∗
1, d

∗
1)} = o(n−ε), and since

Kn = O(nε), n→ ∞, the strong Markov property applied at γ∗1 yields

E|0

[
e−λn τ(en)

]
≥ E

[
Eb1

ω,|0

[
e−λnτ(d1)

]]Kn

+ o(1).
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Using similar arguments for the upper bound in the aforementioned interval, we get

E|0

[
e−λn τ(en)

]
∈

[
E

[
Eb1

ω,|0

[
e−λnτ(d1)

]]Kn

+ o(1) , E
[
Eb1

ω,|0

[
e−λnτ(d1)

]]Kn

+ o(1)

]
.

Furthermore, observe that E
[
Eb1

ω,|0

[
e−λnτ(d1)

]]
is equal to E

[
Eb1

ω,|a1

[
e−λnτ(d1)

]]
with

probability of order 1− o(n−ε). This is a consequence of Lemma 4, definition of a and

the fact that (3.1) implies P{H(1) > (1+ε′)
κ

log n} ∼ n−(ε′+ε) = o(n−ε), n→ ∞, for any
ε′ > 0, which gives

E
[
P b1

ω {τ(a1) < τ(d1)}
]
≤ C logn e

(1+ε′)
κ

log n−Dn = o(n−ε).

This concludes the proof of Proposition 1. �

6. Annealed Laplace transform for the exit time from a deep valley

This section is devoted to the proof of the linearization. It involves h-processes
theory and “sculpture” of a typical deep valley. To ease notations, we shall use a, b, c,
and d instead of a1, b1, c1 and d1. Moreover, let us introduce, for any random variable
Z ≥ 0,

Rn(λ, Z) := E

[
1

1 + λ
n1/κZ

]
.(6.1)

Then, the result can be expressed in the following way.

Proposition 2. For any ξ > 0, we have, for all large n,

Rn(eξλ, 2eH(1)

M̂1M2)+o(n
−ε)≤E

[
Eb

ω,|a[e
−λnτ(d)]

]
≤Rn(e−ξλ, 2eH(1)

M̂1M2)+o(n
−ε).

where M̂1 :=
∑d−1

x=a+1 e−(V̂ (x)−V̂ (b)) and M2 :=
∑d−1

x=b eV (x)−V (c). Note that V̂ is defined
in the following Subsection.

6.1. Two h-processes. In order to estimate Eb
ω,|a

[
e−λnτ(d)

]
, we decompose the pas-

sage from b to d into the sum of a random geometrically distributed number, denoted
by N , of unsuccessful attempts to cross the excursion, followed by a successful at-
tempt. More precisely, since N is a geometrically distributed random variable of
parameter 1 − p satisfying

1 − p = ωb
eV (b)

∑d−1
x=b eV (x)

,(6.2)

we can write τ(d) =
∑N

i=1 Fi +G, where the Fi’s are the successive i.i.d. failures and
G the first success. The accurate estimation of the time spent by each (successful and
unsuccessful) attempt leads us to consider two h-processes where the random walker
evolves in two modified potentials, one corresponding to the conditioning on a failure

(see the potential V̂ and Lemma 11) and the other to the conditioning on a success
(see the potential V̄ and Lemma 12).
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6.1.1. The failure case: the h-potential V̂ . Let us fix a realization of ω. To introduce
the h-potential V̂ , we consider the valley a < b < c < d and define h(x) := P x

ω{τ(b) <
τ(d)}. Therefore, for any b < x < d, we define ω̂x := ωx

h(x+1)
h(x)

and similarly (1−ω̂x) :=

(1 − ωx)
h(x−1)

h(x)
. We obtain for any b ≤ x < y < d,

V̂ (y) − V̂ (x) = (V (y) − V (x)) + log

(
h(x) h(x+ 1)

h(y) h(y + 1)

)
.(6.3)

Using (Zeitouni [22], formula (2.1.4)), we get

h(x) h(x+ 1)

h(y) h(y + 1)
=

∑d−1
j=x eV (j)

∑d−1
j=x+1 eV (j)

∑d−1
j=y eV (j)

∑d−1
j=y+1 eV (j)

≥ 1.(6.4)

Thus we obtain for any b ≤ x < y ≤ c,

(6.5) V̂ (y) − V̂ (x) ≥ V (y) − V (x).

Lemma 11. For any environment ω, we have

(6.6) Eω [F1] = 2ωb

( b−1∑

i=a+1

e−(V (i)−V (b)) +

d−1∑

i=b

e−(V̂ (i)−V̂ (b))

)
,

and

(6.7) Eω

[
F 2

1

]
= 4ωbR

+ + 4(1 − ωb)R
−,

where

R+ :=
d−1∑

i=b+1

(
1 + 2

i−2∑

j=b

eV̂ (j)−V̂ (i−1)

)(
e−(V̂ (i−1)−V̂ (b)) + 2

d−1∑

j=i+1

e−(V̂ (j−1)−V̂ (b))

)
,

R− :=

b−1∑

i=a+1

(
1 + 2

b∑

j=i+2

eV (j)−V (i+1)

)(
e−(V (i+1)−V (b)) + 2

i−1∑

j=a+1

e−(V (j+1)−V (b))

)
.

Remark 5. Alili [1] and Goldsheid [10] prove a similar result for a non-conditioned
hitting time. Here we give the proof in order to be self-contained.

Proof. Let us first introduce

N+
i := ♯{k < τ(b) : Xk = i− 1, Xk+1 = i}, i > b,

N−
i := ♯{k < τ(b) : Xk = i+ 1, Xk+1 = i}, i < b.

Observe that, under Pω̂, for i > b and conditionally on N+
i = x, N+

i+1 is the sum
of x independent geometrical random variables with parameter ω̂i. It means that
Eω̂[N+

i+1|N+
i = x] = x

ρ̂i
and Varω̂[N+

i+1|N+
i = x] = x

ω̂iρ̂2
i
. Similarly, under Pω, for

i < b and conditionally on N−
i = x, N−

i−1 is the sum of x independent geometric
random variables with parameter 1 − ωi. It means that Eω[N−

i−1|N−
i = x] = xρi and

Varω[N−
i−1|N−

i = x] =
xρ2

i

(1−ωi)
.

Since

Eω[F1] = 2ωbEω̂[

d−1∑

b+1

N+
i ] + 2(1 − ωb)Eω[

b−1∑

a+1

N−
i ],
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an easy calculation yields (6.6).

To calculate Eω[F 2
1 ], observe first that

Eω[F 2
1 ] = 4ωbEω̂

[
(

d−1∑

i=b+1

N+
i )2

]
+ 4(1 − ωb)Eω

[
(

b−1∑

i=a+1

N−
i )2

]
.

Then, it remains to prove that Eω̂[(
∑d−1

b+1 N
+
i )2] = R+ and Eω[(

∑b−1
a+1N

−
i )2] = R−.

We will only treat Eω̂[(
∑d−1

b+1 N
+
i )2], the case of Eω[(

∑b−1
a+1N

−
i )2] being similar. We

get first

Eω̂

[
(

d−1∑

b+1

N+
i )2

]
=

d−1∑

i=b+1

Eω̂[(N+
i )2] + 2

d−1∑

i=b+1

d−1∑

j=i+1

Eω̂[N+
i N

+
j ].(6.8)

Observe that Eω̂

[
N+

i N
+
j

]
= Eω̂

[
N+

i Eω̂

[
N+

j |N+
i , . . . , N

+
j−1

]]
= Eω̂

[
N+

i

N+
j−1

ρ̂j−1

]
, for

i < j, so that we get, by iterating,

Eω̂

[
N+

i N
+
j

]
= Eω̂

[
(N+

i )2
] 1

ρ̂j−1 . . . ρ̂i

.

Recalling (6.8), this yields

Eω̂

[
(

d−1∑

b+1

N+
i )2

]
=

d−1∑

i=b+1

Eω̂

[
(N+

i )2
](

1 + 2
d−1∑

j=i+1

1

ρ̂i . . . ρ̂j−1

)

=
d−1∑

i=b+1

Eω̂

[
(N+

i )2
](

1 + 2
d−1∑

j=i+1

e−(V̂ (j−1)−V̂ (i−1))

)
.(6.9)

Now, observe that Eω̂

[
(N+

i )2
]

= Eω̂

[
Eω̂

[
(N+

i )2|N+
i−1

]]
, which implies

Eω̂

[
(N+

i )2
]

= Eω̂

[∑

k≥1

Eω̂[G
(i)
1 + · · · +G

(i)
k ]1{N+

i−1=k}

]
.

Since the G
(i)
· ’s are i.i.d., we get Eω̂[G

(i)
1 + · · · + G

(i)
k ] = kVarω̂[G

(i)
1 ] + k2Eω̂[G

(i)
1 ]2.

Recalling that Eω̂[G
(i)
1 ] = 1

ρ̂i−1
and Varω̂[G

(i)
1 ] = 1

ω̂i−1ρ̂2
i−1
, this yields

Eω̂

[
(N+

i )2
]

=
Eω̂

[
N+

i−1

]

ω̂i−1ρ̂2
i−1

+
Eω̂

[
(N+

i−1)
2
]

ρ̂2
i−1

=
1

ω̂i−1ρ̂b+1 . . . ρ̂i−2ρ̂
2
i−1

+
Eω̂

[
(N+

i−1)
2
]

ρ̂2
i−1

.(6.10)

Denoting Wb+1 := 1 and Wi := (ρ̂b+1 . . . ρ̂i−1)
2Eω̂

[
(N+

i )2
]

for b + 1 < i < d, (6.10)
becomes

Wi −Wi−1 =
ρ̂b+1 . . . ρ̂i−1

ω̂i−1
= ρ̂b+1 . . . ρ̂i−1 + ρ̂b+1 . . . ρ̂i−2,
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the second equality being a consequence of 1/ω̂i−1 = ρ̂i−1 + 1. Therefore, we have

Wi =
∑i

b+2(Wj −Wj−1)+Wb+1 = ρ̂b+1 . . . ρ̂i−1 +2(1+
∑i−2

b+1 ρ̂b+1 . . . ρ̂j), which implies

Eω̂

[
(N+

i )2
]

=
1

ρ̂b+1 . . . ρ̂i−1

+ 2
i−2∑

j=b

ρ̂b+1 . . . ρ̂j

(ρ̂b+1 . . . ρ̂i−1)2

= e−(V̂ (i−1)−V̂ (b)) + 2

i−2∑

j=b

eV̂ (j)−2V̂ (i−1)+V̂ (b).(6.11)

Assembling (6.9) and (6.11) yields (6.7). �

6.1.2. The success case: the h-potential V̄ . In a similar way, we introduce the h-
potential V̄ by considering the valley a < b < c < d and defining g(x) := P x

ω{τ(d) <
τ(b)}. Therefore, for any b < x < d, we define ω̄x := ωx

g(x+1)
g(x)

and similarly (1− ω̄x) :=

(1 − ωx)
g(x−1)

g(x)
. We obtain for any b < x < y ≤ d,

V̄ (y) − V̄ (x) = (V (y) − V (x)) + log

(
g(x) g(x+ 1)

g(y)g(y + 1)

)
.(6.12)

Recalling (Zeitouni [22], formula (2.1.4)), we have

g(x) g(x+ 1)

g(y) g(y + 1)
=

∑x−1
j=b eV (j)

∑x
j=b eV (j)

∑y−1
j=b eV (j)

∑y
j=b eV (j)

≤ 1.(6.13)

Therefore, we obtain for any c ≤ x < y ≤ d,

V̄ (y) − V̄ (x) ≤ V (y) − V (x).(6.14)

Using the same arguments as in the failure case, we get the following result.

Lemma 12. For any environment ω, we have

(6.15) Eω[G] ≤ 1 +
d∑

i=b+1

d∑

j=i

eV̄ (j)−V̄ (i).

6.2. Preparatory lemmas. The study of a typical deep valley involves the following
event

A5(n) :=
{
max{V ↑(a, b) ; −V ↓(b, c) ; V ↑(c, d)} ≤ δ logn

}
,

where δ > ε/κ. In words, A5(n) ensures that the potential does not have excessive
fluctuations in a typical box. Moreover, we have the following result.

Lemma 13. For any δ > ε/κ,

P{A5(n)} = 1 − o(n−ε), n→ ∞.
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Proof. We easily observe that the proof of Lemma 13 boils down to showing that

P{V ↑(a, b) ≥ δ log n} = o(n−ε), n→ ∞,(6.16)

P{−V ↓(b, c) ≥ δ log n} = o(n−ε), n→ ∞,(6.17)

P{V ↑(c, d) ≥ δ log n} = o(n−ε), n→ ∞.(6.18)

In order to prove (6.18), let us first observe the following trivial inequality

P{V ↑(c, d) ≥ δ log n} ≤ P{V ↑(T ↑
1 , d) ≥ δ logn}.

Looking at the proof of (5.3), we observe that P{d−T ↑
1 ≥ C logn} = o(n−ε′), for any

ε′ > 0, by choosing C large enough, depending on ε′. Therefore, we only have to prove
that P{V ↑(T ↑

1 , T
↑
1 + C log n) ≥ δ log n} = o(n−ε). Then, applying the strong Markov

property at time T ↑
1 , we have to prove that P{V ↑(0, C log n) ≥ δ logn} = o(n−ε).

Now, by Cramer’s theory, see [6], and Lemma 6, we get

P{V ↑(0, C log n) ≥ δ log n} ≤ (C log n)2 max
0≤k≤C log n

P{V (k) ≥ δ logn}

≤ (C log n)2 max
0≤k≤C log n

e−kI( δ log n
k )

≤ (C log n)2 exp{−κδ logn}.

Since δ > ε/κ, this yields (6.18).

To get (6.17), observe first that

P{−V ↓(b, c) ≥ δ log n} ≤ P{−V ↓(b, T ↑
1 ) ≥ δ logn} + P{−V ↓(T ↑

1 , c) ≥ δ log n}.

The first term on the right-hand side is equal to P{V ↓(0, T ↑(hn)) ≥ δ log n|H0 > hn}.
Recalling that (3.1) implies P{H0 > hn} ≤ Cn−(1−ε) for all large n and observing the
trivial inclusion

{
V ↓(0, T ↑(hn)) ≥ δ log n ; H0 > hn

}
⊂

{
T ↓(δ log n)< Thn< T(−∞,0]

}
,

it follows that P{−V ↓(b, T ↑
1 ) ≥ δ log n} is less or equal than

Cn1−εP{T ↓(δ log n) < Thn < T(−∞,0]}

≤ Cn1−ε

⌊hn⌋∑

p=⌊δ log n⌋

P{Mδ ∈ [p, p+ 1) ; T ↓(δ log n) < Thn < T(−∞,0]},

where Mδ := max{V (k); 0 ≤ k ≤ T ↓(δ log n)}. Applying the strong Markov property
at time T ↓(δ log n) and recalling (3.3) we bound the term of the previous sum, for
⌊δ logn⌋ ≤ p ≤ ⌊hn⌋ and all large n, by

P{S ≥ p}P{S ≥ hn − (p− δ logn)} ≤ Ce−κpe−κ(hn−p+δ log n)),

where S := sup{V (k); k ≥ 0}. Thus, we get P{−V ↓(b, T ↑
1 ) ≥ δ log n} ≤ C⌊hn⌋n−κδ,

for all large n, which yields P{−V ↓(b, T ↑
1 ) ≥ δ logn} = o(n−ε), n → ∞, since

δ > ε/κ. Furthermore, applying the strong Markov property at T ↑
1 , we obtain that

P{−V ↓(T ↑
1 , c) ≥ δ log n} ≤ P{−V ↓(0, Vmax) ≥ δ log n}. In a similar way we used

before (but easier), we get, by applying the strong Markov property at T ↓(δ log n),

that P{−V ↓(T ↑
1 , c) ≥ δ log n} ≤ n−κδ for all large n. Since δ > ε/κ this yields (6.17).

For (6.16), observe first that ((V (k−b)−V (b))a≤k≤b, a, b) has the same distribution
as ((V (k))a−≤k≤0, a

−, 0) under P{·|V (k) ≥ 0 , a− ≤ k ≤ 0}, where a− := sup{k ≤ 0 :
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V (k) ≥ Dn}. Then, since P{V (k) ≥ 0 , k ≤ 0} > 0 and since (V (−k) , k ≥ 0) has
the same as (−V (k) , k ≥ 0), we obtain

P{V ↑(a, b) ≥ δ logn} ≤ CP{V ↑(0, T(−∞,−Dn]) ≥ δ logn}.

Now, the arguments are the same as in the proof of (6.18). �

6.3. Proof of Proposition 2. Recall that we can write τ(d) =
∑N

i=1 Fi + G, where
the Fi’s are the successive i.i.d. failures and G the first success. Then, denoting F1

by F, we have

Eb
ω,|a[e

−λnτ(d)] = Eb
ω,|a[e

−λnG]
∑

k≥0

Eb
ω,|a[e

−λnF ]k(1 − p)pk

= Eb
ω,|a[e

−λnG]
1 − p

1 − pEb
ω,|a[e

−λnF ]
.(6.19)

In order to replace Eb
ω,|a[e

−λnF ] by 1 − λnE
b
ω,|a[F ], we observe that 1 − λnE

b
ω,|a[F ] ≤

Eb
ω,|a[e

−λnF ] ≤ 1 − λnE
b
ω,|a[F ] + λ2

n

2
Eb

ω,|a[F
2], which implies that E[ 1−p

1−p Eb
ω,|a

[e−λnF ]
] be-

longs to
[
E

[
1 − p

1 − p(1 − λnEb
ω,|a[F ])

]
; E

[
1 − p

1 − p(1 − λnEb
ω,|a[F ] + λ2

n

2
Eb

ω,|a[F
2])

]]
.

Now, we have to bound λnE
b
ω,|a[F

2] from above. Then, recalling (6.7), which implies

Eb
ω,|a[F

2] ≤ 4(R+ +R−), we only have to bound R+ and R−. By definition of R+, we
obtain

R+ ≤ (d− b)
(
1 + 2(d− b)e−V̂ ↓(b,d)

)(
3(d− b) max

b≤j≤d
e−(V̂ (j)−V̂ (b))

)
.(6.20)

Recalling that the proof of Lemma 4 contains the fact that P{d − a ≥ C ′′ log n} =
o(n−ε) and that Lemma 13 tells that P{A5(n)} = 1 − o(n−ε), we can consider the
event A‡(n) := {d−a ≤ C ′′ logn}∩A5(n), whose probability is greater than 1−o(n−ε)
for n large enough. It allows us to sculpt the deep valley (a, b, c, d), such that we can

bound R+. We are going to show that the fluctuations of V̂ are, in a sense, related to

the fluctuations of V controlled by A5(n). Indeed, (6.5) yields V̂ ↓(b, c) ≥ V ↓(b, c) ≥
−δ log n on A‡(n). Moreover, (6.3) together with (6.4) imply that V̂ (y) − V̂ (x) is
greater than

[V (y) − max
y≤j≤d−1

V (j)] − [V (x) − max
x≤j≤d−1

V (j)] −O(log2 n),

for any c ≤ x ≤ y ≤ d, on A‡(n). Since V (x) − maxx≤j≤d−1 V (j) ≤ 0 and V (y) −
maxy≤j≤d−1 V (j) ≥ −δ log n on A‡(n), this yields V̂ ↓(c, d) ≥ −δ logn − O(log2 n).

Furthermore, since (6.3) and (6.4) imply that V̂ (c) is larger than maxb≤j≤c V̂ (j) −
O(log2 n), assembling V̂ ↓(b, c) ≥ −δ log n with V̂ ↓(c, d) ≥ −δ log n− O(log2 n) yield

V̂ ↓(b, d) ≥ −δ log n− O(log2 n),(6.21)

on A‡(n). Therefore, we have, on A‡(n) and for all large n,

R+ ≤ C(log n)3nδ max
b≤j≤d

e−(V̂ (j)−V̂ (b)).(6.22)
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Since V̂ (b) = V (b) and (6.4) implies V̂ (x) ≥ V (x), for all b ≤ x ≤ c (in particular

V̂ (c) ≥ V (c)), it follows from (6.21) that V̂ (j) − V̂ (b) = (V̂ (j) − V̂ (c)) + (V̂ (c) −
V̂ (b)) ≥ hn − δ log n−O(log2 n), which is greater than 0 for n large enough whenever
δ < (1 − ε)/κ (it is possible since δ > ε/κ and 0 < ε < 1/3). Therefore, recalling
(6.22), we obtain, on A‡(n),

R+ ≤ C(log n)3nδ.(6.23)

In a similar way, we prove that R− ≤ C(log n)3nδ, on A‡(n), which implies that

λnE
b
ω,|a[F

2] ≤ C(logn)3nδ− 1
κ . Now, observe that, for any ξ > 0, {λnE

b
ω,|a[F

2] ≤ 2(1 −
e−ξ)} is included in A‡(n), such that λnE

b
ω,|a[F

2] ≤ 2(1−e−ξ)Eb
ω,|a[F ] with probability

larger than 1 − o(n−ε). Then, introducing

R′
n(λ) := E

[
1

1 + λ
n1/κ

p
1−p

Eb
ω,|a[F ]

]
,

we get, for n large enough,

R′
n(λ) + o(n−ε) ≤ E

[
1 − p

1 − pEb
ω,|a[e

−λnF ]

]
≤ R′

n(e−ξλ) + o(n−ε).(6.24)

In order to bound Eb
ω,|a

[
e−λnG

]
by below, we observe that e−x ≥ 1 − x, for any

x ≥ 0, such that Eb
ω,|a[e

−λnG] ≥ 1 − λnE
b
ω,|a[G]. Therefore, we only have to bound

Eb
ω,|a[G] from above. Recalling (6.15), we get Eb

ω,|a[G] ≤ (d − b)2eV̄ ↑(b,d). Now, let

us bound V̄ ↑(b, d). We observe first that (6.14) implies V̄ ↑(c, d) ≤ V ↑(c, d), which
yields V̄ ↑(c, d) ≤ δ log n on A‡(n). Moreover, (6.12) together with (6.13) imply that
V̄ (y) − V̄ (x) is less or equal than

[V (y) − max
b≤j≤y

V (j)] − [V (x) − max
b≤j≤x

V (j)] +O(log2 n),

for any b ≤ x ≤ y ≤ c, on A‡(n). Since V (y) − maxb≤j≤y V (j) ≤ 0 and V (x) −
maxb≤j≤x V (j) ≤ δ logn on A‡(n), this yields V̄ ↑(b, c) ≤ δ logn + O(log2 n). Further-
more, (6.14) and the fact that V (y) ≤ V (c), for c ≤ y ≤ d, imply that V̄ (y) ≤ V̄ (c)
for c ≤ y ≤ d. Therefore, we have

V̄ ↑(b, d) ≤ δ log n+O(log2 n),

on A‡(n). It means that Eb
ω,|a[e

−λnG] is greater than 1 − o(n−ε) on A‡(n) whenever

δ < 1
κ
−ε, which is possible since δ > ε/κ and 0 < ε < 1/3. Therefore, recalling (6.24),

we obtain

R′
n(λ) + o(n−ε) ≤ E

[
Eb

ω,|a[e
−λnτ(d)]

]
≤ R′

n(e−ξλ) + o(n−ε).(6.25)

Recalling (6.6) and (6.2), we get

Rn(λ, 2M̂1(e
H(1)

M2 + ωb)) ≤ R′
n(λ) ≤ Rn(λ, 2eH(1)

M̂1M2),

where M̂1 :=
∑d−1

x=a+1 e−(V̂ (x)−V̂ (b)), M2 :=
∑d−1

x=b eV (x)−V (c) and Rn(λ, Z) is defined in

(6.1). Furthermore, since eH(1) ≥ n
1−ε

κ , M2 ≥ 1 and ωb ≤ 1 we obtain that, for any

ξ > 0 and n large enough, ωb ≤ (eξ − 1)eH(1)
M2. Therefore, we have for all large n,

Rn(eξλ, 2eH(1)

M̂1M2) ≤ R′
n(λ) ≤ Rn(λ, 2eH(1)

M̂1M2).(6.26)
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Now, assembling (6.25) and (6.26) concludes the proof of Proposition 2. �

7. Back to canonical meanders

Let us set S := max{V (k) ; k ≥ 0}, H := max{V (k) ; 0 ≤ k ≤ TR−} = H0,
and TS := inf{k ≥ 0 : V (k) = S}. Moreover, we define In := {H = S ≥ hn} ∩
{V (k) ≥ 0 , ∀ k ≤ 0}, and introduce the random variable Z := eSM+

1 M
+
2 , where

M+
1 :=

∑Thn/2

k=a− e−V (k) and M+
2 :=

∑d+

k=0 e
V (k)−S, with a− = sup{k ≤ 0 : V (k) ≥ Dn}

and d+ := inf{k ≥ e1 : V (k) − V (e1) ≤ −Dn}. Then, denoting

Rn(λ) := E

[
1

1 + n− 1
κ 2λZ

|In

]
,

we get the following result.

Proposition 3. For any ξ > 0, we have, for n large enough,

Rn(eξλ) + o(n−ε) ≤ Rn(λ, 2eH(1)

M̂1M2) ≤ Rn(e−ξλ) + o(n−ε).

Proof. Step 1: we replace M̂1 by M̂T
1 .

Recall that A‡(n) = {d−a ≤ C ′′ log n}∩A5(n) and that P{A‡(n)} ≥ 1−o(n−ε), for

all large n. Now, let us introduce T (hn

2
) := inf{k ≥ b : V (k)−V (b) ≥ hn/2} and M̂T

1 :=
∑T (hn

2
)

k=a+1 e
−(V̂ (k)−V̂ (b)). Recalling (6.21), we observe that M̂1 ≤ M̂T

1 +C ′′ log ne−
hn
2

+δ log n

on A‡(n). This implies that, for any ξ > 0, we have M̂1 − M̂T
1 ≤ (eξ − 1)M̂T

1 for all
large n, whenever δ < 1−ε

2κ
, which is possible since δ > ε/κ and 0 < ε < 1/3. Therefore,

we obtain, for n large enough,

Rn(eξλ, 2eH(1)

M̂T
1 M2) + o(n−ε) ≤ Rn(λ, 2eH(1)

M̂1M2) ≤ Rn(λ, 2eH(1)

M̂T
1 M2).

Step 2: we replace M̂T
1 by MT

1 .

Let us denote MT
1 :=

∑T (hn
2

)

k=a+1 e
−(V (k)−V (b)). Since T (hn

2
) ≤ c, (6.5) implies that

M̂T
1 ≤MT

1 . Observe that (6.3) with (6.4) imply that V̂ (y) − V̂ (b) − (V (y) − V (b)) is
less or equal than

log

(∑d−1
j=b eV (j)

∑d−1
j=y eV (j)

∑d−1
j=b+1 eV (j)

∑d−1
j=y+1 eV (j)

)
≤

∑y−1
j=b eV (j)

∑d−1
j=y eV (j)

+

∑y
j=b+1 eV (j)

∑d−1
j=y+1 eV (j)

,

for any b ≤ y ≤ d. Therefore, on A‡(n), we obtain V̂ (y) − V̂ (b) ≤ (V (y) − V (b)) +

C logne−
hn
2 for any b ≤ y ≤ T (hn

2
), which yields M̂T

1 ≥ exp{C logn e−
hn
2 }MT

1 . Then,

for any ξ > 0, we obtain that M̂T
1 ≥ e−ξMT

1 , on A‡(n) and for all large n. This implies

Rn(λ, 2eH(1)

MT
1 M2) ≤ Rn(λ, 2eH(1)

M̂T
1 M2) ≤ Rn(e−ξλ, 2eH(1)

MT
1 M2) + o(n−ε).

Now, assembling Step 1 and Step 2, we get that, for any ξ > 0 and n large enough,

Rn(λ, 2eH(1)
M̂1M2) belongs to

[
Rn(eξλ, 2eH(1)

MT
1 M2) + o(n−ε) ; Rn(e−ξλ, 2eH(1)

MT
1 M2) + o(n−ε)

]
.(7.1)

Step 3: the “good ” conditioning.
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Let us first observe that ((V (k − b) − V (b))a≤k≤d, a, b, c, d) has the same law as
((V (k))a−≤k≤d+, a−, 0, TH , d

+) under P{·|I ′
n}, where I ′

n := {H ≥ hn ; V ↑(a−, 0) ≤
hn ; V (k) ≥ 0 , a− ≤ k ≤ 0}. Moreover, we easily obtain that P{{V (k) ≥ 0 , a− ≤
k ≤ 0} \ {V (k) ≥ 0 , k ≤ 0}} = O(n−(1+κ)) = o(n−ε), that P{{H ≥ hn} \ {H =
S}} = O(n−2(1−ε)) = o(n−ε) and that P{V ↓(a−, 0) > hn} ≤ P{V ↓(a−, 0) > δ log n} =
o(n−ε), with the same arguments as in the proof of Lemma 13. Therefore, we have
P{I ′

n△In} = o(n−ε). Since 0 ≤ Rn(λ, Y ) ≤ 1, for any λ > 0 and any positive random
variable Y, this yields

Rn(λ, 2eH(1)

MT
1 M2) = Rn(λ) + o(n−ε).(7.2)

Now, assembling (7.1) and (7.2) concludes the proof of Proposition 3. �

8. Proof of Theorem 2

Observe first that Rn(λ) can be written

Rn(λ) = 1 −E

[
1 − 1

1 + 2λnZ
|In

]
.

Then, we can use Corollary 9.1 and Remark 9.1 in [7], which implies

E

[
1 − 1

1 + 2λnZ

∣∣ In

]
∼ 2κ πκ

sin(πκ)

E[Mκ]2CI

nP{H ≥ hn}
λκ, n→ ∞.

Therefore, assembling Proposition 1, Proposition 2, Proposition 3 and recalling that
qn := P{H ≥ hn}, we get that, for any ξ > 0,

lim inf
n→∞

E[e−λn τ(en)] ≥ exp
{
−

(
2κ πκ

sin(πκ)
E[Mκ]2CI

)
(eξλ)κ

}
,

lim sup
n→∞

E[e−λn τ(en)] ≤ exp
{
−

(
2κ πκ

sin(πκ)
E[Mκ]2CI

)
(e−ξλ)κ

}
.

Since this result holds for any ξ > 0, we get,

lim
n→∞

E[e−λn τ(en)] = exp
{
−

(
2κ πκ

sin(πκ)
E[Mκ]2CI

)
λκ

}
.

Now, for the conclusion of the proof of Theorem 2 and for the proofs of Theorem 1
and Corollary 1, we refer to the detailed sketch of the proof, see Section 3. �

9. Toward the case κ = 1

We intend to treat soon the critical case κ = 1 between the transient ballistic and
sub-ballistic cases. This case turns out to be more delicate. Indeed, Lemma 7 gives a
weaker result than previously, which says that τ(en) reduces to the time spent by the
walker to climb excursions which are higher than (log n)1/6, instead of the previous
(1−ε)

κ
log n. Due to this reduced height, the new “high” excursions are much more

numerous and are not anymore well separated. The definition of the valleys should
then be adapted as well as the “linearization” argument, which is more difficult to
carry out. Moreover, a result of Goldie [9] gives an explicit formula for the Kesten’s
renewal constant, namely CK = 1

E[ρ0 log ρ0]
. As a result, we should obtain, in this case,

the following result, which takes a remarkably simple form: Xn/(
n

log n
) converges in

probability to E[ρ0 log ρ0]/2.
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