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ON THE FLOW CURVE OF COLLOIDSPRESENTING SHEAR-INDUCED
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Abstract: This work deals with the evaluation of the flow weirof colloidal systems
that develop fluid phases with different mechanjgadperties, namely shear-banding
fluids. The problem involved is that, as differéioid phases coexist in the flow domain
of the rheometric cell, measured data cannot bectlyr converted into rheometric
functions. In order to handle this problem, a sh&aess vs. shear rate constitutive
relation is introduced to interpret the steadyestliw curves. The relation derives from
a phenomenological description of structural changed involves the possibility of
multivalued shear rates under a given shear sthagserical predictions satisfactorily
match up to experimental data of wormlike micelatutions. A crucial aspect is the
adequate computation of the shear rate functiom fraw data measured in the

rheometric cell.
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1. Introduction

During the last decade, rheometric measurementsombination with optical
techniques provided detailed information on thewfloharacteristics of systems that
develop fluid phases with different mechanical rbes, namely shear bands (Butler,
1999; Lerougeet al, 2000; Berret, 2005; Callahan, 2006). In thesdisty the shear
rate y can be regarded as a field variable, since isexuo induce either the formation
or disruption of microstructures, thus transformilugd phases. In particular, the cell of
concentric cylinders (Couette flow) is widely ustm these measurements, where

rheometric data are angular veloci®y and torqueM. Typical results found in the
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analysis of wormlike micellar solutions (WMS) aepresented in Figure 1 (Cappelaere
et al, 1997; Salmoret al, 2003). Inset boxes schematically show the mionosaral
changes driven by shear flow, as determined bycalptechniques. The transition from
isotropic towards non-isotropic structures leadthoobservation dbandsin the flow
domain of the cell. In steady state flow, the barmsxist in a certain range 6f, where
the curveM () notably decreases the slope (Figure 1).

In this context, the present work discusses soraelolical aspects concerning the
treatment of experimental data of shear bandedsflmwmCouette cells. It is worth to
observe that, in this rheometry, the functions wmileiest are related to measured

quantities through implicit equations. More prebjséhe shear rate functiop appears

in the kernel of an integral equation, which yieks inverse problem. In situations
where two o0 more phases coexist in the flow doroditine cell, sharp variations of the
fluid velocity occur, and hence appropriate nunedrprocedures are required to process

dataM vs. Q, taking into account that an accurate determinatioy is desired. In fact,

the knowledge of the true shear rate attained end#ll is crucial to investigate the
relation between mechanical and structural phenanercomplex fluids. In order to
handle this problem, here we suggest the use béar stress vs. shear rate constitutive
relation for inelastic fluids, which involves thegsibility of multivaluedshear rates
under defined conditions of shear stress. Theioalaterives from a phenomenological
description of structural changes driven by shéaw f(Quemada, 1982; 1998), and
properly describes the flow curves of fluids présgnshear-induced phase transitions.

The paper is organized as follows: In Section Z problem related to the
determination of the shear rate function in Coudteometry is briefly reviewed and
the model proposed for shear-banded flows is destriThen both the calculation
suggested (Section 3) and its application to erpamial data of WMS (Section 4) are
discussed.

2. Theoretical concepts
2.1 Equations of Couette rheometry for monophaswes.

Determining the flow curves(y) of non-Newtonian fluids requires the knowledge
of both the shear stregsand the shear ratg at one place in the flow domain of the

cell. In Couette rheometryrand y are functions of the radial coordinateand they are



related to measured datd vs. M through the following equations (Walters, 1975;
Macosko, 1994),
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whereR and «R are the radii of outer and inner cylinder, respety, andL is the
cylinders height. It is readily seen thafr) is obtained straightforwardly from Eq. (1).
In contrast, extracting/(r Yequires inverting the integral of Eqg. (2), théuson of

which is not unique due to the scattering presenéxperimental data. This inverse
problem is also designated ill-posed in the literat(Friedrichet al, 1996; Berli and

Deiber, 2001). Indeed, direct estimations jofcan be achieved only when the gap
between inner and outer cylinders is very small $a> « > 0.99. Under these
circumstancesy(r Js considered nearly uniform throughout the floowdin, and thus
Eq. (2) givesy,q = Qk/@-k), which is known as thearrow-gapsolution for Couette
viscometry (Walters, 1975; Macosko, 1994).

For wider gap widths, an approach commonly usedpiiactice consists in
introducing some prior information on the fluid,maly a constitutive relationship

o(y) . For example, the Power Law (PL) model=my" (nis the flow index andnis

consistency parameter) allows one to solve Eqsaiitl) (2) analytically to obtain the

angular velocity of the inner cylinder,

1/n
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where g,; = M/(27%*R?L ) is the shear stress applied at this cylinder. TheFegiven
asingle-phasdluid that obeys PL model, the parametei@dm can be determined by

fitting Eq. (3) to experimental dat@ vs. o0,z, and then the shear rate can be calculated

at any place in the flow domain, for instance a& thner wall asy,; = (JKR/m)l’”.

Further, one may also integrag€r to)obtain the fluid velocity(r) in the cell.

2.2. Equations of Couette rheometry for shear-bagdliows.
Shear-banding flows involve an additional complexiabrupt changes in the

function y(r ) arise when two or more phases coexist in the fimwain of the cell.



Different theoretical models aimed to predict titcewrence of shear-banding have been
discussed in the literature (Spenley al, 1993; Porteet al, 1997; Dhont, 1999;
Radulescu and Olmsted, 2000; Fielding, 2005). Altjioa complete description of the
phenomenon is not available yet, there is conseinstine literature that the underlying
constitutive curve of shear-banding fluids has fdren shown in Figure 2. In Couette

cells, the shear stress is maximum at the innenast (o,5z), and decreases smoothly

as o(r) = o,s(kR/r)?, to give the minimum value at the outer cylinder, = x%0).
The simple scenario considered here is that, whesttlesso,; reaches the value *,

a new phase with lower flow resistance developsnfrthe inner cylinder, and
consequentlyy, jumps fromy; to y, (Figure 2). Further increase oy results in the
growth of this new phase, with a thickness enharegrof the associated band, up to
complete development of the same phase in the vgageaso,, reacheso* k2.

For the purpose of describing the rheometric problthe following assumptions
are needed) shear-bands are stable and can coexist in stgatly conditionsii) the
bands present a localized interface at a certaim * , where the shear stressds= o *;

iii) both shear stresg(r and fluid velocityu(r) are continuous at the interface. In
principle, these assumptions agree with hypothasds experimental data reported by
several authors (Catex al, 1993; Cappelaeret al, 1997; Radulescu and Olmsted,
2000; Salmoret al, 2003). However, in relation with the interfade),(very recent
theoretical (Fielding, 2005) and experimental (lLeyeet al, 2006) works suggest the
existence of a region of instability between thadsain the vorticity direction. As a first
approximation, here we assume a sufficiently nareowd flat interface between the
bands.

Under these conditions, and considering a funclipnas(y) as that plotted in

Figure 2, the rheometric problem can be formul@gdollows (see also Radulescu and
Olmsted, 2000),

OR
Or<0*, j y(a)da (4a)
o* < ORr 1,
ORr20*20R, Q=—E{ J/(U)d0'+ Rmdo*}; (4b)
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In these equationsy< and y~ indicate shear rate valueg<y, and y>y,,
respectively. These values must be obtained framitable constitutive equatiom(y , )

as it is explained below.

2.3. Fluid model proposed for shear-banding flows.

Firstly it should be mentioned that analytical $ioins to Egs. (4a)-(4c) are simply
attained by introducing’(c @ccording the PL model. In this sense, each bamst be
regarded as a different PL fluid. This also implieat Eq. (3) could represent the low
and high shear rate zones, with different pararaeteaindn for each zone. Instead, in
order to interpret the whole flow curve with a wnégset of rheological parameters, here
we use the following constitutive relationship fieelastic fluids,

- 1+ty ).
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This phenomenological equation derives from a kinggscription of structural changes

induced by shear (Quemada, 1982; 1998). It is asduhmt, when a given shear stress
is applied, a sort of order-disorder equilibriumeistablished, in which the forward

(Brownian motion) and backward (shear-induced onggrprocesses balance. Thus in
Eq. (5),70 and 7., are the limiting viscosities foy - 0 and y — o, respectively, antk

is a characteristic relaxation time. In particulgiven an appropriate set of parameters,

Eq. (5) predicts multiple values ¢f for a given shear stress, as shown in Figureig. It
interesting to observe however that the viscogity) = o(y)/y related to Eq. (5) is a

purely monotonic function.

As seen in Figure 2, there is a rangesdbr which, in principle,y could jump from

the low-shear branch to the high-shear one. Neskth, a unique and reproducible
value g * is observed in experiments (Cappelagtral, 1997; Luet al, 2000, Salmon
et al, 2003). The selection of the shear stress at thich the new band develops is a
crucial aspect in modeling shear-banding flowsebd] the determination of a criterion
selection is still an open problem, and severaha@nst discuss the mechanism to be
applied in different constitutive models (for inste, Luet al, 2000, and references
therein). In the present work, a hocvalue o * will be introduced in calculations to

satisfy the experimental data.



3. Calculation procedure

The valuesy™(o )and y” (o ) entering Eqgs. (4a)-(4c) are obtained from Eq. 45),
numerical rootsy(o )for a given set of known parameterg,(/», tc). This task is
carried out through a Newton-Raphson subroutinen@weanet al, 1969), for around
10* discrete values of in the rangegy < 0 < 0,;. Then the integrals in Egs. (4a)-(4c)
are solved numerically by using the trapezoida¢ i@arnaharet al, 1969), also with
10" discrete intervals. This is carried out for artiéj tentative values * normally
inferred from the experimental curve, which is thadjusted to provide the best
representation of data.

One should underline that the present calculatéeg into account the variations of
y=(o) and y” (o) in each band. Hence, it differs noticely from emtr asumptions
made in number of studies (for example, Georgiall \dassopoulos, 1998; Salmen
al., 2003; Drappier, 2004). In these studig§, and y~ are taken as the limitg, and
y, of the plateauo(y) =0 } hence are constants entering the "lever rule"
ey = ey +e,),, wheree; ande; are the band thicknesses= R- 4R is the gap width,
and y is the “measured” shear rate. Such constant vatesot observed in measured
velocity profiles (see, for example, Figure 2 idrgan et al, 2003). Moreover, one may
expect that the larger the gap thicknesthe higher the differences with these constant
values.

Finally, if the parametersnf, 7., tc) of a given fluid are known, Egs. (4a)-(5)
predict the values? vs. g (or M) to be obtained in an experiment in which the
requirements to accomplish a viscometric flow atsfied (steady state, no-slip at the
walls, end effects negligible, isothermal flow), &sll as the assumptionsi(i) made
above. This calculation may be designaledct calculation and it will be illustrated in
detail below. Previously, it is relevant to mentibat a more challenging problem is the
inverse calculationdetermining the values of the parametexs {.., t;) from the curve
of raw data@ vs.o (or M), and then using them to plot the flow curg€y in)the
appropriate range of shear rates. The implementafiohis task requires further efforts,
as the minimization problem involved cannot be edlwith standard mathematical

software (see, for instance, Berli and Deiber, 2001

4. Results and discussion



This section illustrates the applicability of thedel to interpret rheometric data of
shear-banding systems. In particular, experimedth of WMS published in the

literature are considered. These data, which wepsrted aso,z vs. y,, for two

surfactant systems, CTAB (Cappelaeteal, 1997) and CPCI-NaSal (Salmen al,
2003), are presented here@g vs. Q2 in Figure 3.

The first step consists in confronting Eq. (5) adado vs. y, for which one firstly
needs accurate values pf For this purpose, we select experimental dafégire 3 in
the intervals where the fluid imonophasiconly. Thus the low and high shear zones
were analyzed independently one another, undesigbemption that each zone obeys to
PL model. The parametersandm for each zone were obtained by fitting Eq. (3) to
datao,x(2), and they are reported in Table 1. Then the staary,; was calculated,
such as it was described in the previous secti@suls are presented in Figure 4
(symbols). Also in this figure, full lines represethe prediction of Eq. (5), with the
values of o, 7., andt. that fit this data, also reported in Table 1slobserved that the
model describes satisfactorily the flow curve ire tfull range of shear rates, by
predicting an intermediataultivaluedzone.

In order to cross-check these results, and haviegoarametergy, /7., andt. that
characterize the fluid, we finally carried out tieect calculation. That is, Egs. (4a)-(5)
were solved numerically, and the resulting functia¥o,;) was matched to the
respective experimental curve. This is actuallyedonFigure 3, where full lines are the
numerical predictions with the values af ihdicated in the figure caption. A
remarkable agreement is observed in the full raomfethe experimental data.
Furthermore, it is worthy of note that the valudsa* used here agree with those
previously reported (Cappelaegeal, 1997; Salmoret al, 2003).

The fact thato* values are rather close to the respective mininsgmof each flow
curve g(y ) in both set of data (Figure 4) could be tentativetgrpreted as follows. As
oincreases from 0, one may expect that the flovhengap should become unstable as
soon asoyr reachesomn: at this moment, the number of roots of the equaf(o,z)
then passes from 1 to 3, the intermediate one oraling to an unstable state.
Moreover, it seems plausible to relate the sligffegence betweero* and gmin (with
O* > Omin) to some delay required to built the bands aftgt has reachedimin.

Justifying such expectations will demand furthese@rch.



5. Concluding remarks and futuredirections

The present paper basically discusses the prediciorheometric data of shear-
banding flows by using a constitutive model forwl@urve of the fluid. It may be
remarked that the success of calculations suggestied on both the introduction of a
suitable model for the fluid, and the adequate asatpon of the shear rate function
from raw data measured in the rheometric cell. énldevhen fluids presenting flow
indexesn as low as 0.2 are studied, an inappropriate estmaf the shear rate leads to
considerable errors, notably when two phases cbiexike flow domain.

Another crucial aspect in shear banding flows ig tmodeling of unsteady
rheometric data; more precisely, shear stressimg. turves obtained after the sudden
inception of a given shear rate. Typical responsbserved are stress overshoot,
dumped oscillations and simple relaxation to tready state (Lerouget al, 2006).
Theoretical descriptions of these experiments atieer demanding, as different time-
dependent phenomena are involved, mainly the gahsif the apparatus, relaxation of
the fluid microstructrure, and viscoelasticity d¢fetfluid. The structural model, from
which Eq. (5) derives, is also able to interpresteady curves on the base of kinetic
processes (Quemada, 2006). Structural model predsciare aimed to be compared
with those from Johnson-Segalman model, which & rtiost employed constitutive
relation to describe shear-banding fluids (Radulesod Olmsted, 2000; Wilson and
Fielding, 2006). These topics are to be consideredfuture work.
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Table 1. Model parameters of constitutive fluid models

concerning data in Figures 3 and 4.

System
Model Data/Zone Parameter

CPCl/NaSal CTAB

Eq.(8) o(2)/Low m (Pas) 35 6.7
n 0.7 0.84

o(Q)/Migh m (Pad  34.3 4.96

n 0.19 0.31

Eq.(5) o(p)/Full o (Pas) 63.6 7.8
- (Pas) 0.64 0.024

t. (Ms) 32.3 2.77
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Fluid velocity

p =
Velocity - -
gradient = == = = o

Low shear Shear banding,

) High shear
(coexistence) ,

: Q

Figure 1. Curve of rheometric data (arbitrary drawing) tyilg found in WMS studied
by Couette flow. The insets are highly schematipresentations of the solution

structure in different shear rates zones. At argsieear stress, a new fluid phaksan(d
develops as micelles align in the flow direction.

Figure 2. Shear stress as a function of shear rate for ghaaning, -banding fluids
(schematic draw, arbitrary units).

11



20r ® CPCl/Nasal
m CTAB
——Eqgs. (4a)-(5)

0 1 1

0.01 0.1 1
Q (1/s)

10 100

Figure 3. Shear stress as a function of angular velocitydifferent WMS. Symbols
represent two examples of experimental data regppant¢he literature:,J Salmonet al,
2003; () Cappelaeret al, 1997. Full lines are the predictions of Egs. {&g) with the
values ofro, /7., andt; reported in Table 1. In addition = 62 Pa for CPCI/NaSal,
ando * = 32.5 Pa for CTAB.

O CPCl/NaSal

10 O CTAB
—Eq. (5
0 ““1 . 10 . 100 “““ZI..OOO
y. (Us)

Figure 4. Shear stress as a function of shear rate, comdspp to the systems
presented in Figure 3. Symbols are the values médairom experimental data,,(2)

in the shear zones where the fluid is monophasie {ext for details). Full lines are the
predictions of Eq. (5), with the values &, 1., andt. reported in Table 1.
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