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Abstract: This work deals with the evaluation of the flow curve of colloidal systems 

that develop fluid phases with different mechanical properties, namely shear-banding 

fluids. The problem involved is that, as different fluid phases coexist in the flow domain 

of the rheometric cell, measured data cannot be directly converted into rheometric 

functions. In order to handle this problem, a shear stress vs. shear rate constitutive 

relation is introduced to interpret the steady state flow curves. The relation derives from 

a phenomenological description of structural changes, and involves the possibility of 

multivalued shear rates under a given shear stress. Numerical predictions satisfactorily 

match up to experimental data of wormlike micellar solutions. A crucial aspect is the 

adequate computation of the shear rate function from raw data measured in the 

rheometric cell. 
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1. Introduction 

During the last decade, rheometric measurements in combination with optical 

techniques provided detailed information on the flow characteristics of systems that 

develop fluid phases with different mechanical properties, namely shear bands (Butler, 

1999; Lerouge et al., 2000; Berret, 2005; Callahan, 2006). In these studies, the shear 

rate γ&  can be regarded as a field variable, since it is used to induce either the formation 

or disruption of microstructures, thus transforming fluid phases. In particular, the cell of 

concentric cylinders (Couette flow) is widely used for these measurements, where 

rheometric data are angular velocity Ω and torque M. Typical results found in the 
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analysis of wormlike micellar solutions (WMS) are represented in Figure 1 (Cappelaere 

et al., 1997; Salmon et al., 2003). Inset boxes schematically show the microstructural 

changes driven by shear flow, as determined by optical techniques. The transition from 

isotropic towards non-isotropic structures leads to the observation of bands in the flow 

domain of the cell. In steady state flow, the bands coexist in a certain range of Ω, where 

the curve M(Ω) notably decreases the slope (Figure 1).  

In this context, the present work discusses some rheological aspects concerning the 

treatment of experimental data of shear banded flows in Couette cells. It is worth to 

observe that, in this rheometry, the functions of interest are related to measured 

quantities through implicit equations. More precisely, the shear rate function γ&  appears 

in the kernel of an integral equation, which yields an inverse problem. In situations 

where two o more phases coexist in the flow domain of the cell, sharp variations of the 

fluid velocity occur, and hence appropriate numerical procedures are required to process 

data M vs. Ω, taking into account that an accurate determination of γ&  is desired. In fact, 

the knowledge of the true shear rate attained in the cell is crucial to investigate the 

relation between mechanical and structural phenomena in complex fluids. In order to 

handle this problem, here we suggest the use of a shear stress vs. shear rate constitutive 

relation for inelastic fluids, which involves the possibility of multivalued shear rates 

under defined conditions of shear stress. The relation derives from a phenomenological 

description of structural changes driven by shear flow (Quemada, 1982; 1998), and 

properly describes the flow curves of fluids presenting shear-induced phase transitions. 

The paper is organized as follows: In Section 2, the problem related to the 

determination of the shear rate function in Couette rheometry is briefly reviewed and 

the model proposed for shear-banded flows is described. Then both the calculation 

suggested (Section 3) and its application to experimental data of WMS (Section 4) are 

discussed.  

 

2. Theoretical concepts 

2.1 Equations of Couette rheometry for monophasic flows. 

Determining the flow curve )(γσ &  of non-Newtonian fluids requires the knowledge 

of both the shear stress σ and the shear rate γ&  at one place in the flow domain of the 

cell. In Couette rheometry, σ and γ&  are functions of the radial coordinate r, and they are 
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related to measured data Ω vs. M through the following equations (Walters, 1975; 

Macosko, 1994), 
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where R and κR are the radii of outer and inner cylinder, respectively, and L is the 

cylinders height. It is readily seen that  σ(r) is obtained straightforwardly from Eq. (1). 

In contrast, extracting )(rγ&  requires inverting the integral of Eq. (2), the solution of 

which is not unique due to the scattering present in experimental data. This inverse 

problem is also designated ill-posed in the literature (Friedrich et al., 1996; Berli and 

Deiber, 2001). Indeed, direct estimations of γ&  can be achieved only when the gap 

between inner and outer cylinders is very small, say 1 > κ > 0.99. Under these 

circumstances, )(rγ&  is considered nearly uniform throughout the flow domain, and thus 

Eq. (2) gives )1( κκΩγ −≈ng& , which is known as the narrow-gap solution for Couette 

viscometry (Walters, 1975; Macosko, 1994).  

For wider gap widths, an approach commonly used in practice consists in 

introducing some prior information on the fluid, namely a constitutive relationship 

)(γσ & . For example, the Power Law (PL) model, nmγσ &=  (n is the flow index and m is 

consistency parameter) allows one to solve Eqs. (1) and (2) analytically to obtain the 

angular velocity of the inner cylinder,  
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where )2(/ 22 LRMR πκσκ =  is the shear stress applied at this cylinder. Therefore, given 

a single-phase fluid that obeys PL model, the parameters n and m can be determined by 

fitting Eq. (3) to experimental data Ω vs. Rκσ , and then the shear rate can be calculated 

at any place in the flow domain, for instance at the inner wall as n
RR m /1)/( κκ σγ =& . 

Further, one may also integrate )(rγ&  to obtain the fluid velocity u(r) in the cell.  

 

2.2. Equations of Couette rheometry for shear-banding flows. 

Shear-banding flows involve an additional complexity: abrupt changes in the 

function )(rγ&  arise when two or more phases coexist in the flow domain of the cell. 
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Different theoretical models aimed to predict the occurrence of shear-banding have been 

discussed in the literature (Spenley et al., 1993; Porte et al., 1997; Dhont, 1999; 

Radulescu and Olmsted, 2000; Fielding, 2005). Although a complete description of the 

phenomenon is not available yet, there is consensus in the literature that the underlying 

constitutive curve of shear-banding fluids has the form shown in Figure 2. In Couette 

cells, the shear stress is maximum at the inner cylinder ( Rκσ ), and decreases smoothly 

as 2)/()( rRr R κσσ κ= , to give the minimum value at the outer cylinder ( RR κσκσ 2= ). 

The simple scenario considered here is that, when the stress Rκσ  reaches the value *σ , 

a new phase with lower flow resistance develops from the inner cylinder, and 

consequently Rκγ&  jumps from 1γ&  to 2γ&  (Figure 2). Further increase in Rκσ  results in the 

growth of this new phase, with a thickness enhancement of the associated band, up to 

complete development of the same phase in the whole gap, as Rκσ  reaches 2/* κσ .  

For the purpose of describing the rheometric problem, the following assumptions 

are needed: i) shear-bands are stable and can coexist in steady state conditions; ii ) the 

bands present a localized interface at a certain *rr = , where the shear stress is *σσ = ; 

iii ) both shear stress )(rσ  and fluid velocity u(r) are continuous at the interface. In 

principle, these assumptions agree with hypothesis and experimental data reported by 

several authors (Cates et al., 1993; Cappelaere et al., 1997; Radulescu and Olmsted, 

2000; Salmon et al., 2003). However, in relation with the interface (ii ), very recent 

theoretical (Fielding, 2005) and experimental (Lerouge et al., 2006) works suggest the 

existence of a region of instability between the bands in the vorticity direction. As a first 

approximation, here we assume a sufficiently narrow and flat interface between the 

bands.  

Under these conditions, and considering a functionality )(γσ &  as that plotted in 

Figure 2, the rheometric problem can be formulated as follows (see also Radulescu and 

Olmsted, 2000),  
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In these equations, <γ&  and >γ&  indicate shear rate values 1γγ && <  and 2γγ && > , 

respectively. These values must be obtained from a suitable constitutive equation )(γσ & , 

as it is explained below. 

 

2.3. Fluid model proposed for shear-banding flows. 

Firstly it should be mentioned that analytical solutions to Eqs. (4a)-(4c) are simply 

attained by introducing )(σγ&  according the PL model. In this sense, each band must be 

regarded as a different PL fluid. This also implies that Eq. (3) could represent the low 

and high shear rate zones, with different parameters m and n for each zone. Instead, in 

order to interpret the whole flow curve with a unique set of rheological parameters, here 

we use the following constitutive relationship for inelastic fluids,  
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This phenomenological equation derives from a kinetic description of structural changes 

induced by shear (Quemada, 1982; 1998). It is assumed that, when a given shear stress 

is applied, a sort of order-disorder equilibrium is established, in which the forward 

(Brownian motion) and backward (shear-induced ordering) processes balance. Thus in 

Eq. (5), η0 and η∞ are the limiting viscosities for γ& →0 and γ& →∞, respectively, and tc 

is a characteristic relaxation time. In particular, given an appropriate set of parameters, 

Eq. (5) predicts multiple values of γ&  for a given shear stress, as shown in Figure 2. It is 

interesting to observe however that the viscosity γγσγη &&& )()( =  related to Eq. (5) is a 

purely monotonic function. 

As seen in Figure 2, there is a range of σ for which, in principle, γ&  could jump from 

the low-shear branch to the high-shear one. Nevertheless, a unique and reproducible 

value *σ  is observed in experiments (Cappelaere et al., 1997; Lu et al., 2000, Salmon 

et al., 2003). The selection of the shear stress *σ  at which the new band develops is a 

crucial aspect in modeling shear-banding flows. Indeed, the determination of a criterion 

selection is still an open problem, and several authors discuss the mechanism to be 

applied in different constitutive models (for instance, Lu et al., 2000, and references 

therein). In the present work, an ad hoc value *σ  will be introduced in calculations to 

satisfy the experimental data.  
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3. Calculation procedure 

The values )(σγ <
&  and )(σγ >

&  entering Eqs. (4a)-(4c) are obtained from Eq. (5), as 

numerical roots )(σγ&  for a given set of known parameters (η0, η∞, tc). This task is 

carried out through a Newton-Raphson subroutine (Carnahan et al., 1969), for around 

104 discrete values of σ  in the range RR κσσσ ≤≤ . Then the integrals in Eqs. (4a)-(4c) 

are solved numerically by using the trapezoidal rule (Carnahan et al., 1969), also with 

104 discrete intervals. This is carried out for an initial, tentative value *σ , normally 

inferred from the experimental curve, which is then adjusted to provide the best 

representation of data.  

One should underline that the present calculation takes into account the variations of 

)(σγ <
&  and )(σγ >

&  in each band. Hence, it differs noticely from current asumptions 

made in number of studies (for example, Georgiou and Vlassopoulos, 1998; Salmon et 

al., 2003; Drappier, 2004). In these studies, <γ&  and >γ&  are taken as the limits 1γ&  and 

2γ&  of the plateau *)( σγσ =& , hence are constants entering the "lever rule" 

2211 γγγ &&& eee += , where e1 and e2 are the band thicknesses, RRe κ−=  is the gap width, 

and γ&  is the “measured” shear rate. Such constant values are not observed in measured 

velocity profiles (see, for example, Figure 2 in Salmon et al., 2003). Moreover, one may 

expect that the larger the gap thickness e, the higher the differences with these constant 

values. 

Finally, if the parameters (η0, η∞, tc) of a given fluid are known, Eqs. (4a)-(5) 

predict the values Ω vs. σ (or M) to be obtained in an experiment in which the 

requirements to accomplish a viscometric flow are satisfied (steady state, no-slip at the 

walls, end effects negligible, isothermal flow), as well as the assumptions (i-iii ) made 

above. This calculation may be designated direct calculation, and it will be illustrated in 

detail below. Previously, it is relevant to mention that a more challenging problem is the 

inverse calculation: determining the values of the parameters (η0, η∞, tc) from the curve 

of raw data Ω vs. σ (or M), and then using them to plot the flow curve )(γσ &  in the 

appropriate range of shear rates. The implementation of this task requires further efforts, 

as the minimization problem involved cannot be solved with standard mathematical 

software (see, for instance, Berli and Deiber, 2001). 

 

4. Results and discussion 
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This section illustrates the applicability of the model to interpret rheometric data of 

shear-banding systems. In particular, experimental data of WMS published in the 

literature are considered. These data, which were reported as Rκσ  vs. ngγ&  for two 

surfactant systems, CTAB (Cappelaere et al., 1997) and CPCl-NaSal (Salmon et al., 

2003), are presented here as Rκσ  vs. Ω  in Figure 3.  

The first step consists in confronting Eq. (5) to data σ  vs. γ& , for which one firstly 

needs accurate values of γ& . For this purpose, we select experimental data of Figure 3 in 

the intervals where the fluid is monophasic only. Thus the low and high shear zones 

were analyzed independently one another, under the assumption that each zone obeys to 

PL model. The parameters n and m for each zone were obtained by fitting Eq. (3) to 

data )(ΩσκR , and they are reported in Table 1. Then the shear rate Rκγ&  was calculated, 

such as it was described in the previous section. Results are presented in Figure 4 

(symbols). Also in this figure, full lines represent the prediction of Eq. (5), with the 

values of  η0, η∞, and tc that fit this data, also reported in Table 1. It is observed that the 

model describes satisfactorily the flow curve in the full range of shear rates, by 

predicting an intermediate multivalued zone. 

In order to cross-check these results, and having the parameters η0, η∞, and tc that 

characterize the fluid, we finally carried out the direct calculation. That is, Eqs. (4a)-(5) 

were solved numerically, and the resulting function )( RκσΩ  was matched to the 

respective experimental curve. This is actually done in Figure 3, where full lines are the 

numerical predictions with the values of *σ  indicated in the figure caption. A 

remarkable agreement is observed in the full range of the experimental data. 

Furthermore, it is worthy of note that the values of *σ  used here agree with those 

previously reported (Cappelaere et al., 1997; Salmon et al., 2003).  

The fact that σ* values are rather close to the respective minimum σmin of each flow 

curve )(γσ &  in both set of data (Figure 4) could be tentatively interpreted as follows. As 

σ increases from 0, one may expect that the flow in the gap should become unstable as 

soon as σκR reaches σmin: at this moment, the number of roots of the equation )( Rκσγ&  

then passes from 1 to 3, the intermediate one corresponding to an unstable state. 

Moreover, it seems plausible to relate the slight difference between σ* and σmin (with 

σ* > σmin) to some delay required to built the bands after σκR has reached σmin. 

Justifying such expectations will demand further research.  
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5. Concluding remarks and future directions 

The present paper basically discusses the prediction of rheometric data of shear-

banding flows by using a constitutive model for flow curve of the fluid. It may be 

remarked that the success of calculations suggested relies on both the introduction of a 

suitable model for the fluid, and the adequate computation of the shear rate function 

from raw data measured in the rheometric cell. Indeed, when fluids presenting flow 

indexes n as low as 0.2 are studied, an inappropriate estimation of the shear rate leads to 

considerable errors, notably when two phases coexist in the flow domain.  

Another crucial aspect in shear banding flows is the modeling of unsteady 

rheometric data; more precisely, shear stress vs. time curves obtained after the sudden 

inception of a given shear rate. Typical responses observed are stress overshoot, 

dumped oscillations and simple relaxation to the steady state (Lerouge et al., 2006). 

Theoretical descriptions of these experiments are rather demanding, as different time-

dependent phenomena are involved, mainly the transient of the apparatus, relaxation of 

the fluid microstructrure, and viscoelasticity of the fluid. The structural model, from 

which Eq. (5) derives, is also able to interpret unsteady curves on the base of kinetic 

processes (Quemada, 2006). Structural model predictions are aimed to be compared 

with those from Johnson-Segalman model, which is the most employed constitutive 

relation to describe shear-banding fluids (Radulescu and Olmsted, 2000; Wilson and 

Fielding, 2006). These topics are to be considered in a future work. 
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Table 1. Model parameters of constitutive fluid models 
concerning data in Figures 3 and 4. 

 

System  

Model 

 

Data/Zone 

 

Parameter 
CPCl/NaSal CTAB 

 m  (Pa sn) 35 6.7 )(Ωσ /Low 

 n 0.7 0.84 

 m  (Pa sn) 34.3 4.96 

Eq. (3) 

)(Ωσ /High 

 n 0.19 0.31 

 η0  (Pa s) 63.6 7.8 

 η∞  (Pa s) 0.64 0.024 

Eq. (5) )(γσ & /Full 

  tc   (ms) 32.3 2.77 
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Figure 1. Curve of rheometric data (arbitrary drawing) typically found in WMS studied 
by Couette flow. The insets are highly schematic representations of the solution 
structure in different shear rates zones. At a given shear stress, a new fluid phase (band) 
develops as micelles align in the flow direction. 
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Figure 2. Shear stress as a function of shear rate for shear-thinning, -banding fluids 
(schematic draw, arbitrary units).  
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Figure 3. Shear stress as a function of angular velocity for different WMS. Symbols 
represent two examples of experimental data reported in the literature: (,) Salmon et al., 
2003; (!) Cappelaere et al., 1997. Full lines are the predictions of Eqs. (4a)-(5), with the 
values of η0, η∞, and tc reported in Table 1. In addition, *σ  = 62 Pa for CPCl/NaSal, 
and *σ  = 32.5 Pa for CTAB. 
 
 

 

1 10 100 1000
0

10

20

30

40

50

60

70

80

 CPCl/NaSal
 CTAB
 Eq. (5)

γ.

κR
  (1/s)

σ κR
  (

P
a

)

 

Figure 4. Shear stress as a function of shear rate, corresponding to the systems 
presented in Figure 3. Symbols are the values obtained from experimental data )(ΩσκR  
in the shear zones where the fluid is monophasic (see text for details). Full lines are the 
predictions of Eq. (5), with the values of η0, η∞, and tc reported in Table 1. 
 


