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Cyclic and ruled Lagrangian surfaces in
complex Euclidean space

Henri Anciaux and Pascal Romon

Abstract

We study those Lagrangian surfaces in complex Euclidean space
which are foliated by circles or by straight lines. The former, which we
call cyclic, come in three types, each one being described by means of,
respectively, a planar curve, a Legendrian curve of the 3-sphere or a
Legendrian curve of the anti de Sitter 3-space. We also describe ruled
Lagrangian surfaces. Finally we characterize those cyclic and ruled
Lagrangian surfaces which are solutions to the self-similar equation of
the Mean Curvature Flow.

Keywords: Lagrangian surfaces; circle foliation; Mean Curvature
Flow.
2000 MSC: 53D12 (Primary) 53C42 (Secondary)

Introduction

In this paper, we classify the Lagrangian surfaces of C? which are foliated
either by round circles (henceforth called cyclic surfaces) or by straight lines
(ruled surfaces). This completes a former paper of the authors together with
Tldefonso Castro [ACR] in which all Lagrangian submanifolds of R** ~ C",
with n > 3, which are foliated by round (n — 1)-spheres were characterized.
The reason for the lower bound on the dimension was the following: since
the submanifold is Lagrangian, any spherical leaf must be isotropic; when the
dimension of this leaf is at least two, it spans a linear space which is itself La-
grangian. This observation simplifies the structure of the problem, roughly
speaking by reducing the underlying group structure from SO(2n) to U(n).



However this reduction no longer holds in dimension two, see for instance the
Lagrangian cylinder {(e¢”,s) € C?, (s,t) € R/277Z x R}: this (Lagrangian)
surface is foliated by circles which are contained in non-Lagrangian (actually
complex) planes. Other examples are the Hopf tori studied by Pinkall in
[P]. As expected the situation is richer in dimension two, and actually cyclic
Lagrangian surfaces come in three families which are described in Theorem
1 and 2. In Section 1 we classify the cyclic Lagrangian surfaces when all
the centers of the circles coincide. We call those surfaces centered cyclic.
In Section 2 we treat the general case which amounts to adding a conve-
nient translation term. In Section 3 we apply this characterization to finding
self-similar cyclic surfaces, that is those surfaces which are solutions of the
following elliptic PDE:
H4+MX* =0,

where H denotes the mean curvature vector of the surface and X+ the normal
component of its position vector. The case of positive (resp. negative) A
corresponds to the case of a self-shrinking (resp. self-expanding) soliton of
the Mean Curvature Flow (see [A]). Finally we give in the last Section a
description of ruled Lagrangian surfaces (notably self-similar ones) using an
analogous method, recovering more simply a known result from Blair [B].

Acknowledgment: the Authors wish to thank Ildefonso Castro for point-
ing out a better approach to type I1I surfaces due to Chen and himself [CC].

1 Centered cyclic Lagrangian surfaces

Let ¥ a surface of R* foliated by circles with common center located at the
origin of R*. Locally, ¥ may be parametrized by the following immersion:

X: IxR/21Z — RY
(s,t) — 1(s)(e1(s) cost + ex(s)sint),

where r(s) is a positive function and (e;(s), ez(s)) is an orthonormal basis of
the plane containing our circle.

From now on we shall assume that > is Lagrangian with respect with some
complex structure J. We will often identify R* with C? in such a way that
J is the complex multiplication by i. Denote by K := (e, Jes) = —(eq, Jea)
the Kahler angle of the plane e; A es. Note that the vanishing of K means
that e; A ey is also Lagrangian. In this case the analysis done in [ACR] holds



and X takes the following form: X(s,t) = r(s)e’*®)(cost, sint) making use
of the above identification.

Denoting by subscripts the partial derivatives (the prime corresponding
also to the derivative in s for functions of just one variable), the Lagrangian
assumption is equivalent to (X, JX;) = 0. Since

X =1'(e;cost + egsint) + (e cost + e, sint)

X; =r(egcost — egsint),

we see that

(X,,JX,) = rr'(Kcos’t+ Ksin®t)
+1? (cos® t(e}, Jea) — sin® t{e}, Jeq))
+r? costsint ({ey, Jes) — (€}, Jer))

2
= 'K+ S (e, Jea) — (e, Jer))

r? cos 2t

2
r2sin 2t
2 (e Jez) — (e}, Jer)
'K + 12K’ r?cos2t

= 5 + 5 (€}, Jea) + (eh, Jer))

72 sin 2t ,
22 (e Tea) — fel, Jen)

(€}, Jea) + (€3, Jer))

which holds for all t. The vanishing of the constant term implies that r?K =

C for some real constant C. If this constant vanishes, we recover the case

K = 0 mentioned above and treated in [ACR] (cf also [A]), so we may assume

that C # 0. Thus 7 is completely determined by K, and both are non zero.
The two remaining conditions are

<€/1,J€2> = —<€/2,J€1> ) (6/1>J€1> = <€/2,J€2>- (1)

In order to make sense of these, we will identify R* with H, in such a way that
the complex structure is given by the left multiplication by the quaternion
i. Then any element in SO(4) can be written as z — pxq~! where p, ¢ are
two unit quaternions. Notice that right multiplication by ¢! corresponds
exactly to the elements of SU(2). Since SO(4) acts transitively on pairs of
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orthonormal vectors, we may write e; and e, as the respective images of 1
and 7, so that e; = pg~! and e, = pig~!. Note that (p,q) is not uniquely
determined; rather we have a gauge freedom by right multiplication by e
on (p,q). Finally, we may assume if needed that ¢(0) takes any prescribed
value, since we consider surfaces up to U(2) congruence.

Then the conditions in (1) read as

1 1

— piqg'q'qipgt) =

{ (g~ —pg'q'q Y ipig™t) + (pliq™ 0
— piqg'q'qipig™t) =0

Pa ™ —pg'dq " ipg™") — (plig™!
so, multiplying on the left by p~! and the right by ¢, and further by i on the
left in the second bracket,

{ (' —q g p~tipi) — (p~'p +iq i, p~hipi) = 0
(' —q7 ¢ p7lip) — (p7 ' +ig7 i, pip) = 0
that is
{ (g7Yq' +iq~'qi, pLipi) = 0
(¢'q +iq 'qi,p~tip) = 0.
Splitting and multiplying left and right by ¢ in the second bracket yields
{ (¢ 'q ,p~tipiy — (¢ "¢ ip~tip) =0
(g7, p~hip) + (¢7'¢ ip~ipi) = 0
(g7q, p~tipi —ip~lip) =0
(g7, p~tip +ip~tipi) = 0
Writing p = po + 1p1 + jpo2 + kps we have
w = plipi — ip~lip = 4(pop2 + p1ps)j — 4(pipa — pops)k
and

v i=p lip+ip lipi = —ui = 4(p1ps — pop3)j + 4(popa + p1p3)k.

The two right-hand vectors u, v lie in Span(j, k) and are either linearly inde-
pendent (over R) or both zero. So we have two cases:

o u=10v=0,i.e.
0 = (pop2 + p1p3)® + (P1p2 — pops)® = (pg + p1)(p3 + p3)
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hence p lies in Span(1, i) or Span(j, k) and conditions in (1) hold. Gaug-
ing p we may assume that p = 1 or p = j, and the Kéahler angle is then
K = —1 or K = +1 respectively, so that the radius r remains constant
(and we may as well assume r = 1). This case corresponds to Hopf sur-
faces [P], i.e. inverse images of a curve by the Hopf fibration S* — S2.
After a possible change of variable in ¢ (replacing t by ¢ + ¢(s) for some
function ¢), we may assume that the curve s +— e;(s) is Legendrian.

e u,v are independent vectors and span j, k, thus forcing ¢~ ¢’ to lie in
Span(1,7)NImH; using gauge action, we may assume that ¢ is constant,
and up to congruence write ¢ = 1. Reverting to complex coordinates,
er=p="m4+77) >~ (11,7) €S* C C? and ey = pi ~ (i, —i7s), while
K = |%* — |mJ* # 0. We may normalize, assuming that K > 0 (if
K < 0 pick the opposite orientation on the surface) and set (aq, ag) :=

#(717 72)7 so that

4o %<%<s>eiaw<s>e—“> — VClaue", aze™)

with |a;]? — |aa|? = —1, i.e. (o, ay) lies in H?, the unit anti-De Sitter
space. Again, up to a change in variable, we have a Legendrian curve
for the undefinite metric in Ch!, i.e. (o], i) — (b, iag) = 0 (see [CLU]

or [CC)).
Summing up, we have proved the following

Theorem 1 A centered cyclic Lagrangian surface may be locally parameter-
ized, up to U(2) congruence, by one the following immersions:

Type I (complex extensors):
X: IxR/2rZ — C?
(s,1) — 1(s)e"®)(cost,sint)
Type II (Hopf type):

X: IxR/2rZ — C?
(s,8) = ce(n(s),72(s))

where y = (v1,72) s any Legendrian curve of S* and c is a real constant,
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Type III (De Sitter type)

X: IxR/2nZ — C?
(51 o clonls)e agls)e )

where a = (o, ag) is any Legendrian curve in the unit anti-De Sitter
space H and c is a real constant.

Remark 1 This analysis applies as well if we do not assume that X is an
immersion but only has an isotropic image fibered by circles (we did not use
the immersion hypothesis). So the same conclusion holds and will be used in
the next Section.

Remark 2 Type I surfaces are a particular case of a class of Lagrangian
immersions which has been first described in [C1] where they were called
complex extensors.

Remark 3 In the type III case, it may happen that K is identically +1.
Then we fall back on type II with a Legendrian curve that actually reduces
to a single point. The image of X is therefore a circle (lying in a complex
plane).

2 The general case

We now consider a surface ¥ of R* which is foliated by circles. Locally, ¥
may be parametrized by the following immersion (identifying as usual R*
with C?):
Y: I xR/21Z — C?
(s,t) = X(s,t)+ V(s),

where V (s) is a C%-valued function, and X (s,t) = r(s)(e1(s) cost+ey(s) sint)
is a centered surface as in the previous section. Note that we do not assume
a priori that X is Lagrangian nor that it is always an immersion.

As we have YV; = X, and Y, = X, + V’, the assumption that Y is La-
grangian leads to:

0 = <}/st JE) - <XS7 JXt) + <V,7 JXt>
= (X, JXy) +rcost(V', Jey) —rsint(V' Jey)
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Recall from the previous section that (X, JX;) contains only terms in cos 2t
and sin 2t and a term independent from t. Thus the immersion Y is La-
grangian if and only if: (i) X is cyclic isotropic (cf Remark 1), and (ii) V’
belongs to the symplectic orthogonal of Span(eq,es). Using Theorem 1 we
infer:

e for type I surfaces, Span(ey, es) = Span(e'(1,0), (0, 1)) is Lagrangian,
so its symplectic orthogonal is itself; hence V'(s) = () (W, (s), Wy(s))
for some real-valued functions Wy, Wo;

e for type II surfaces, Span(ej,es) is a complex line, so its symplec-
tic orthogonal is the same as its Riemannian orthogonal, which is
Span((y2, —1), (192, —i71)); V' is determined analogously;

o for type III surfaces, one can check than a basis of the symplectic
orthogonal is (fi, f2), where f; = (|as|?, aras), fo = (i|as|?, —iaas).

So we conclude this section by the

Theorem 2 A cyclic Lagrangian surface may be locally parameterized, up
to U(2) congruence, by one the following immersions:

Type 1

Y: IxR/21Z — C?
(s,t) —  7(s)e’®)(cost,sint) + fsso P (W (u), Wa(u))du

where Wy, Wy are real valued; in particular when ¢ is constant, Y stays
within the Lagrangian plane Span(e*(1,0),€(0,1));

Type 11

Y: IxR/21Z — C?
(1) = cnls)e mnls)e”) + [§ W(u)(Fa(u), =7 (u))du

where vy = (v1,72) s any Legendrian curve of S®, ¢ is a real constant
and W a complex valued function; in particular if v is constant, then up
to congruence, we may assume vy = (1,0) and the immersion becomes
Y(s,t) = (ce™,Va(s)). Thus the immersed surface is a Cartesian prod-
uct of a circle with a planar curve;



Type 111

Y: I xR/21Z — C? -
(s,1) = clan(s)e”, ag(s)e™) + [7 (Wlasl*, Wayas)du

where a = (o, a) is any Legendrian curve in the unit anti-De Sitter
space Hi’, ¢ is a real constant and W a complex valued function.

Remark 4 In the type II case, if the curve (y1,72) is in addition regular,
another basis of the orthogonal space to Span(ey,es) is (71, 75), (171, 175))
so that the immersion may take the alternative form:

Y(s.0) = (n(9)e ()6 + [ W)} ()50

This is a particular case of Lagrangian immersions which have been recently
described in [C2]. This alternative formula will also be useful in the next
section.

3 Application to the self-similar equation

In this section we study the self-similar equation in the case of cyclic La-
grangian surfaces and prove the following:

Theorem 3 A Lagrangian cyclic surface of C* which is a soliton of the mean
curvature flow, i.e. a solution to the self-similar equation

H4+)\X* =0,

for some non-vanishing number X\ is locally congruent to an equivariant ex-
ample described in [A] (in the terminology of the present article, a centered
surface of type 1) or to the Cartesian product C xI" of a circle C with a planar
self-shrinking curve I'. Such curves have been studied in detail in [AL].

Proof. The proof deals with the three cyclic cases separately: we first prove
that a self-similar surface of type I must be centered, thus one of the examples
of [A]; then we show that there no self-similar surfaces of type II except the
Clifford torus S* x S' (which is also a type I surface) and the products of
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curves. Finally we see that there are no self-similar surfaces of type III at
all.

Case 1: type I surfaces.

A type I surface is parametrized by an immersion of the form:

X: IxR/21Z — C?
(s,t) = r(s)e’(cost,sint) + [ (W (u), Wa(u))du,

where r(s) > 0. We shall use the following notations: v(s) = r(s)e*®), and,
aisa(zx)fe assume that 7 is parametrized by arclength, we also denote /(s) =
) We start computing the first derivatives of the immersion:

X, =7/(cost,sint) + e (W, Ws), X; = y(—sint, cost),
from which we deduce the expression of the induced metric:

E=|X,J?=1+|W]*+2cos(f — ¢)(W; cost + Wysint),

F = (X, Xy) =rcos(d — @) (Wycost — Wysint), G=|X|* =r%

and a basis of the normal space to the surface:
N; = iy(—sint, cost), N, = iv/(cost,sint) + ie"® (W, Wy).

We now compute the second derivatives of the immersion, in order to
calculate the mean curvature vector:

X, =7"(cost,sint) +i¢'e" (W, W),

Xo =7/(—sint, cost), Xy = y(—cost, —sint).

This implies in particular that:
(Xss, Ny) = (Wycost — Wy sint) sin(f — ¢),

<Xtt7 Nt> = 0, <Xst7 Nt> = TSil’l(e — ¢)
On the other hand, we have:

(X, N;) = acost+ bsint,
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where a = (iv, [ Wi (u)e'®™du) and b := (iv, N Wa(u)e'®™ du).

We now assume that the immersion X is self-similar, so there exists a
non-vanishing real number A such that:

<H7 Nt> + )\<X7 Nt) = 07
which is equivalent to
<X537 Nt>G + <Xtt7 Nt>E - 2<Xst7 Nt>F - —2>\(EG - F2)<X, Nt>

In the latter expression, the left hand side term is linear in cost and sin ¢ and
the right hand side term is a polynomial of order 3. Linearizing the latter,
we easily see that the coefficient of cos 2t is alWs + bW, and the one of sin 2¢
is aW; — bWs. So either W, and W5 vanish, or a and b vanish. We are going
to show that actually if a and b vanish, then so do W and W.

We first write

a = <z’7,/ Wl(u)e“f’(u)) — r<i6i¢’/ Wl(u)eiqb(u)du)
S0 50

—r (—sin¢ ( / Wi (u) cos¢(u)du> + cos ¢ ( / W (u) sinqﬁ(u)du)) ~0.

Thus the derivative of a/r with respect to s must vanish, which yields:

& (— cos ¢ ( / Wi (u) cosgb(u)du) — sing ( / Wi (u) singb(u)du))

+Wi(s)(—sin ¢ cos ¢ + cos ¢sin¢) = 0.

Now either ¢ is (locally) constant, the curve 7 is a straight line passing
through the origin and the image of the immersion X is a piece of a plane
(cf Example 2, page 5 of [ACR]), or one can find find points around which ¢’
does not vanish (locally again). In the latter case we get the following linear
system:

—sing (f:) Wi (u) cos gb(u)du) +coso ([ Wi(u)sing(u)du) = 0
— cos ¢ (fs‘z W1 (u) cos qb(u)du) —sing ([ Wi(u)sing(u)du) = 0

It follows that f; Wi (u) cos ¢(u)du and f; Wi (u) sin ¢(u)du must vanish ex-
cept on an isolated set of points of I, which in turn implies the vanishing of
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Wi. Analogously it can be shown that Wj vanishes as well, so finally the
surface must be centered. Lagrangian, self-similar, centered surfaces have
been described in detail in [A]. We only recall here that such surfaces are
obtained from planar curves v which are solutions of the following equation:

k=(v,N) (#—A),

where k is the curvature of v and N its unit normal vector. This equation
admits a countable family of closed solutions which is parametrised by two
relatively prime numbers p and ¢ subject to the condition p/q € (1/4,1/2);
p is the winding number of the curve and ¢ is the number of maxima of its
curvature. Except for the circles, none of these curves is embedded.

Case 2: type II surfaces.

As our discussion is local, we consider the two following cases: either the
Legendrian curve 7 is regular, or it reduces to a single point, and then the
surface is a product of a circle with some plane curve. In the first case, the
surface may parametrized by an immersion of the form (cf Remark 4):

X: IxR/21Z — C? | |
(s,1) = e(ls)e, va(s)e’) + [ W(u) (v, 75)du

where (71(s),72(s)) is some unit speed Legendrian curve of S*. Without loss
of generality we fix ¢ = 1. We start computing the first derivatives of the
immersion:

X = (me 75e™) + W (71, %), X, = (ime", ine”),
from which we deduce the expression of the induced metric:
E=|X,P=1+|WP+2(W,e"), F=(X,X))=0, G=|X|"=1,
and a basis of the normal space to the surface:
N, = (i7;e", inpe™) + Wiy, i), N = (—me", —y2e").

We now compute the second derivatives of the immersion, in order to
calculate the mean curvature vector:
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X = (Ve 5e™) + W, 75) + W (71, 7),
! it

Xot = (Wieitvi%e ), X = (—’Yﬁit, —726“’).
We first notice that

(X,Ny) = —1+acost+bsint,

where a and b depend only on the variable s.
On the other hand,

<X887Nt> + <Xtt7Nt> o <Xst7Ns> + <Xtt7Nt>

2(H, No) = —F G = E G
B 1+ (W, e') 24 WP+ 3(We)
L |WR2Welt) T 1 W2 4 2(W eit)

Thus the equation (H, N;) + A(X,N;) = 0 holds for some non-vanishing
constant A if and only if @ and b vanish and |[W| = 1 or W = 0. In particular,
(X, Nyy = —1.

We leave to the reader the easy task to check that if W vanishes, the
immersion is self-similar if and only if (7", .J4') vanishes, that is the curve
~ has vanishing curvature and thus is a great circle. The corresponding
Lagrangian surface is the Clifford torus %Sl X %Sl. So we assume in

the remainder that |WW| = 1. In particular, we may write W = ¢'® and
W' =i¢'e’, where ¢ is some real function of the variable s.

We want to look at the other scalar equation (H, Ny) + A(X, N,) = 0, so
we compute

(Xoo, No) = (", JYYA 4+ W) + GW, WY 4 2(W, e (5", Jv) + (W', e,

<Xtt7 NS> - 0
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Hence we get

<Xssts> + <Xtt7Ns> _ <X537Ns> +0
E G L+ W2+ 2(W, eit) '
(0, IV (L4 W) + (W, W) + 200, e (", ) + (W )

2(H,N;) =

L+ W2 +2(Weit)
2", Jy) + ¢+ 2cos(p + t) (", JY) — ¢ sin(¢p — t)
2+ 2cos(¢p—t)
2(y", ) + &' + (2(y", J) cos ¢ — ¢/ sin §) cost
2(1+ cospcost + sin¢sint)
(=2(7", Jv')sin¢g + ¢' cos ¢) sint
2(1 + cos ¢ cost + sin ¢ sint)

On the other hand, it is easy to see that (X, N) takes the form acost +
bsint + ¢, where a b and ¢ depend on the variable s. This forces (H, Ny) to
take a simpler form and implies that

20", ) +¢" 20", JY)cosp — ¢'sing  —2(y", Jy)sinp + ¢’ cos ¢
2 N 2cos ¢ N 2sin ¢

In particular we have ¢/ = —¢’ tan ¢, which implies that ¢ is constant. It
follows that W is constant as well, so (7", Jv) vanishes and the curve v has
vanishing curvature, so it is a great circle of the unit sphere. There is no loss
of generality to assume that v(s) = %(e“, e~"*). Now the immersion takes

the following, explicit form:

1 ) )

oi(0+s) pi(d—s)
—(—te ,ie :
\/5( )
But in this case it is easy to check (X,N;) = —1 does not hold, so we
conclude that there is no self-similar type II surface with a regular curve ~
and non-vanishing W.

1 . .
X(o1) = (e, 1)

It remains to treat the case of a Cartesian product C x I' of a circle C with
an arbitrary curve I'. It is straightforward that such a product is self-similar
if and only if both curves are solutions of the equation

k+ MX,N) =0

for the same \. A circle of radius 7 is trivially self-similar for A\ = r2. The
other self-similar curves with positive A (self-shrinking curves) have been
described in [AL]. Except for the circles, none of them is embedded.
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Case 3: type III surfaces.

A type III surface is parametrized by an immersion of the form:

X: IxR/21Z — R*
(s,t) = clar(s)e”, ag(s)e™) + [ (W]as|*, Waag)du,

where (a1, as) is a Legendrian curve of H?, in particular we may assume that
oh[* —Jaa* =1 {af,ia) — (o), iag) = 0.

Observe that this implies the following identity (cf [CC]): |ay| = |o4]. Again,
without loss of generality we fix ¢ = 1.

We start computing the first derivatives of the immersion:
X, = (e, abe™) + (Wlao)?, Waras), X; = (iare”, —iaze™™),
from which we deduce the expression of the induced metric:
E = 142|004+ |W P (14+|oa |*) (142]aq |*) +| a|* () ai, We™ )+ |ou |* (i, We™),
F = —2(1+ |ay|*)(Im (a;W) cost + Re (e, W) sin t),
G =1+ 2|l

and a basis of the normal space to the surface:

N, = (ice" iahe™™) + (iW]ag|?, iW aras),

N, = (—ae™, age™™).

We now compute the second derivatives of the immersion:

X, = (afe™, abe™) + £(W|a2|2, Waias),

Xy = (ice™, —iahe™™), Xy = (—age’, —age™™);
and some coefficients of the second fundamental form:
<Xtt7 Nt> == |Oél|2 - |042|2 = _17 <Xst7 Nt> = 2<Zall7a1>7

Moreover it is easy to see that the coefficient (X4, Ny) is an affine function
of cost and sint.
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On the other hand, we have
(X,N;) =14 acost + bsint,

where a and b depend only on the variable s.

We now assume that (H, N;) +A(X, V;) = 0 holds for some non-vanishing
constant A; this implies

G( X6, NY) + E{Xy, N}) — 2F (X, N;) = =A\(1 + acost + bsint)(EG — F?).

In the latter expression, the left hand side term is linear in cost and sint and
the right hand side is a polynomial of degree 3. Linearizing the latter and
introducing the notation F' = a cost+bsint, we easily see that the coefficient
of cos 3t is (up to a multiplicative constant) aa® — 2bab and the one of sin 3¢
is 2aab — bb?. Thus we get the following system:
a@? — 2bab = 0
{ 2aab — bb* = 0
This implies that either a and b vanish, or a and b vanish. However, in the
latter case, the coefficient of cos 2t is (up to a multiplicative constant) a2 + b2
and the one of sin 2t is 2ab thus again a and b must vanish. We conclude by

observing that . o
b+ia = —2(1 + |y |*)as W,

so either oy or W vanishes. In the first case, as the discussion is local we
may assume that o vanishes identically, and the immersion takes the form

Y(s,t) = (Vi(s), age™™),
so the immersed surface is a product of curves; this case was already treated

in the former section (type II surfaces).

To complete the proof it remains to show that a centered type III surface
cannot be self-similar. We shall use the following result which can be found
in [CC] (Proposition 2.1, page 3 and Corollary 3.5, page 9) and that we state
here in accordance to our own notations:

Proposition 1 ([CCJ) Lety = (71,72) be unit speed Legendrian curve in S®
and o = (o, ) a unit speed Legendrian curve in H?.
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Then the following immersion

X: IIxI, —» C?
(s,t) = (cu(s)n(t), az(s)12(t)),

1s conformal and Lagrangian; moreover, its mean curvature vector is given

by
H=e (ko X, + kyJ X)),

where e=2" is the conformal factor and k. and k., are the curvature functions

of a and y respectively.

2
actly a centered type IIT immersion. In particular, v is a great circle of S

and has vanishing curvature. This implies that (H, JX;) vanishes. On the
other hand, we calculate

By taking v(t) = (Z=e®, %e_“) in the immersion above, we recover ex-

1 . . . . 1 1
(X, JXy) = §<(ale”,aze‘“), (—ane”, ane™™)) = 5(—\a1|2 + Jogl*) = 3

So we deduce that this immersion X cannot be solution of the self-similar
equation H + A X+ = 0.

4 Ruled Lagrangian surfaces

Let ¥ be a smooth, ruled, Lagrangian surface. If the rulings are parallel, it
is straightforward that ¥ is a Cartesian product £ x I' of some straight line
L, and some planar curve I'; such that £ C P, and I' C P, where P; and P,
are two orthogonal, complex planes. So from now on, our discussion being
local, we shall assume that the rulings are not parallel.

Locally, > may be parametrized by the following immersion:

X: IxR — C?
(5,8) = (s)t+V(s),

where (s) is a unit speed curve of S* and V(s) € C?, and we have

X =7t+ V', X =1.
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We now claim that, without loss of generality, we may assume that X
and X; are orthogonal: to see this, we reparametrize the surface by X (s,t) =
X(s,t) +v(s)T'(s), where T'(s) is some real function. We observe that the
images of X and X are the same. Then we compute

X, =X, +~'T+~T", X=X, =1.

Thus by choosing T" such that 7" = —(Xj, X;), we may reparametrize our
surface such that X, and X, are orthogonal.
The Lagrangian assumption amounts to

W(Xsa Xt) = <X5, JXt> = t<’}//, J7> + <V,> J7> = 0.

The vanishing of (7', Jy) means that the curve 7 is Legendrian. It follows
that (v, Jv,v',.J9') is an orthonormal basis of R* ~ C?. Thus the conditions
(V' Jv) = 0 and (X,, Xy) = (V',v) = 0 imply that there exists a planar
curve a(s) = z(s) + iy(s) such that V' = zv' + yJvy = av’. So we have
shown the first part of the following:

Theorem 4 A smooth, ruled, Lagrangian surface of C? is either the Carte-
sian product L X1 of a straight line L with a planar curve I' or may be locally
parametrized by an immersion of the form

X: IxR — C?
(s,t) = ()t + [5 au)(vi(u),v5(u))du,

where v = (Y1, 72) is some Legendrian curve of S* and o = (x,y) is some
planar curve. Moreover, the only self-similar ruled Lagrangian surfaces of
C? are Cartesian products £ x T, where L is a straight line and T is a planar
self-similar curve (cf [AL]).

Proof. We have already characterized ruled Lagrangian surfaces, so it remains
to study the self-similar equation.
We start computing the first derivatives of the immersion:

Xi(s,t) = 7(s), Xs(s,t) = (14 a(s))(71(s), 72(s))
from which we deduce the expression of the induced metric:

E=({t+2)*+y7 G =1, F =0,
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and a basis of the normal bundle:

Ny = iy(s), Ne = i(1 4 afs))(n(s),72(5))-

We now compute some second derivatives:

Xt = ’Y/(S)a Xy = 0.
We deduce that
<X887Nt> <Xtt7Nt> <Xst7Ns> 1 +
2({H. N,) = = = .
U, ) E G E (t + x)2 + 32

On another hand, we have:

(6N = (i965), [ a1 ) b)),

S0

which clearly does not depend on ¢t. So the equation

(H,N,) + MX,N,) = 0

can never hold for such an immersion, so the only self-similar ruled La-
grangian surfaces are products £ x I'. It is then straightforward to see that

the curve I' must be a solution of the self-similar equation.

Remark 5 We recover the Lagrangian helicoid of [B] by taking v(s) = (k +
il)(cos s,sin s), where k and | are two constants such that k> + 1> = 1. In the

notation of [B], we have x(s) = G/2 and y(s) = —A.
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