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Abstract

We use Littlewood-Paley theory for the analysis of regularization properties of weak

solutions of the homogeneous Boltzmann equation. For non cutoff and non Maxwellian

molecules, we show that such solutions are smoother than the initial data. In particular,

our method applies to any weak solution, though we assume that it belongs to a weighted

L2 space.

1 Introduction

This is the second and final part of a work devoted to regularization properties of weak

solutions to Boltzmann homogeneous equation, by using technics from Harmonic Analysis.

We refer the reader to our first paper [4], where a very special case of collision cross sections

was analyzed, namely non cutoff Maxwellian molecules. In this part, we wish to consider

a larger class of collision sections, namely those corresponding to so called hard potentials.
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More precisely, we shall consider smoothed versions of this case, see assumptions below for

precise definitions

Since we have already given precise references on the framework considered herein in the

first part [4], we shall be rather concise in this Introduction, but we refer to [7, 9, 10, 11].

We also mention the review [17] and also the recent one [2].

Let us just recall here that Boltzmann homogeneous equation reads as

∂tf(t, v) = Q(f, f)(t, v) t ≥ 0, v ∈ Rn, (1.1)

where f is a positive function depending only (homogeneous framework) upon the two vari-

ables t ≥ 0 (time) and v ∈ Rn (velocity) with f(0, v) = f0(v), where n ≥ 2.

The initial datum f0 6= 0 is supposed to satisfy the usual ”entropic” hypothesis, that is

f0 ≥ 0,
∫

Rn

f0(v){1+ |v|2 + log(1 + f0(v)}dv < +∞. (1.2)

Boltzmann quadratic operator Q appearing on the right hand side of (1.1) depends on v as

follows

Q(f, f) =
∫

Rn

∫
Sn−1

dv∗dσB(v − v∗, σ)(f ′f ′∗ − ff∗)dσdv∗,

where v∗ ∈ Rn, σ ∈ Sn−1 (unit sphere of Rn), f = f(v), f∗ = f(v∗), f ′ = f(v′) and

f ′∗ = f(v′∗), and

v′ ≡ v + v∗
2

− |v − v∗|σ
2

, v′∗ ≡
v + v∗

2
+
|v − v∗|σ

2
are the so called post (or pre) collisional velocities.

As in [4], we shall assume that the collision cross section B(v − v∗, σ)>0 is given under the

following multiplicative form

B(v − v∗, σ) = Φ(| v − v∗ |)b(cos θ), cos θ =<
v − v∗
|v − v∗|

, σ>, 0 ≤ θ ≤ π

2
. (1.3)

and that it satisfies the following non cutoff assumption∫ π
2

0
sinn θ b(cos θ)dθ < +∞ and sinn−2 θ b(cos θ) ∼ κ

θ1+ν
when θ −→ 0, (1.4)

where κ > 0 and 0 < ν < 1 are fixed.

First part [4] of our work was concerned with the so called maxwellian case, corresponding

to Φ ≡ 1 (or constant) with the above notations.

Herein, the velocity part of the kernel, that is function Φ, shall be assumed to correspond to

a smoothed version of the so called hard potentials, that is
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Φ(|v|) = (1 + |v|2)
γ
2 , (1.5)

with the range of parameters 0 < γ ≤ 1; the real hard potentials case corresponds to the

case Φ(|v|) = |v|γ .

We assume that a weak solution to Boltzmann (1.1) has already been constructed and that

it satisfies the usual entropic estimate, for a fixed T > 0 (eventually T = +∞), together

with mass conservation, decrease of energy and entropy dissipation rate bounded, though we

shall not use this last condition. However, we refer to final part of the paper. Such a weak

solution shall be referred to as en entropic weak solution. It is then known that such a weak

solution has then all moments with respect to velocity, for strictly positive time. Again, we

refer for precise references to [4] and to the bibliography.

In this second part of our work, we are still interested in regularization properties of such

solutions.

In [4], we have provided a very simple proof of C∞ regularization property of weak solutions,

for maxwellian molecules, that is when Φ is taken to be constant, so a case which is now

excluded by our assumption (1.5).

As far as we have been able to check, it should be mentioned that the proof performed in

[4], though extremely simple, does not (at least for us) adapt for non maxwellian molecules,

and this is so from the first computations.

In this non maxwellian and non cutoff case, the up to date recent results about this regu-

larization property question are due to Desvillettes and Wennberg [12], showing S (in fact

through weighted Sobolev spaces) regularity. However, the point is that, actually, Desvil-

lettes and Wennberg show that, under suitable assumptions on the cross section, a solution

in S does exist, with f0 satisfying (1.2).

Here, exactly as in [4], we wish to show the stronger result that any entropic weak solution

is smooth. Up to an assumption of weighted L2 bounds, we shall show that this is indeed

the case. Thus, our result is strictly not comparable to [12]. A similar result was established

in the context of Landau homogeneous equation by the second author [13].

Our arguments are still based on Littlewood-Paley theory. However, we need here commu-

tators estimates, to take into account the fact that Φ is now really a non constant function.

In particular, we shall need some results extracted from the first author’s paper [1].

The bad point is that we need further integrability assumption with respect to variable v.

This point is in fact easy to understand, see the remarks at the end of the paper.
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Thus, according to [11], we shall furthermore assume that for some t0 > 0,

f ∈ L∞([t0,+∞);L2
α(Rn)), for all α ∈ R. (1.6)

Above L2
α(Rn) denotes weighted Lebesgue space, see the Appendix for the precise notations.

It is still an open problem to show that any entropic weak solution (thus satisfying only the

usual entropic bounds) enjoys automatically this L2 integrability (1.6), even if we do take

t0 = 0 and an initial datum in the same class. This is in particuliar due to the lack of a good

uniqueness result, and also to the fact that power of f , for an exponent less that 1 belongs

to a worse Besov type space, see [15] for instance, and in view of the (quite optimal with

respect to the index of regularity) functional properties of Boltzmann operator [1].

Our main result is given by

Theorem 1.1 Let be given an initial datum f0 and a collision cross section B such that

(1.2), (1.3), (1.4) and (1.5) hold true. Let f be any entropic weak non negative solution

of Boltzmann homogeneous equation (1.1). Furthermore, we assume that (1.6) holds true

for some t0 > 0. Then, for any t > t0, for all s, α ∈ R+, f(t, .) belongs to the weighted

Besov-Sobolev space Bs
2,2,α(Rn).

2

In particular, it follows that for t > t0, f(t) belongs immediately to Schwartz space S(Rn).

Plan of the paper: Section 2 is devoted to the proof of our main result. Then we make

some final comments in Section 3. For convenience of the reader, we have again devoted

a small Appendix to basic facts from Harmonic Analysis, and notations used herein, in

particular weighted spaces.

2 Proof of the theorem

For any j ∈ N, k ∈ N, one has, using notations from [1] and the Appendix, < .; . > denoting

the usual duality bracket,

< ψjpkQ(g, f);ψjpkf >=
∫

Rn

dv∗ g∗

∫
Rn

dv fτ−v∗ ◦ TΦ ◦ [pkψ
2
j pkf ]. (2.7)

Above, we have introduced g = f in order to show clearly on which functions we are going

to perform fractional differentiation.

Furthermore, for any suitable test function, see [1] for more precisions,

TΦφ(v) =
∫

Sn−1

[φ(v+)− φ(v)]b(
v

|v|
.σ)dσ Φ(v),
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τv∗ denoting the usual translation.

In particuliar, when Φ ≡ 1, corresponding to the Maxwellian case, let us recall that, see [3]

for instance, that

v 7→ T 1φ(v)

is adjoint to

f 7→ QMax(δv∗=0, f),

where QMax denotes Boltzmann operator in the case of Maxwellian molecules.

We can then write (where [., .] denotes the usual commutator of two operators)

< ψjpkQ(g, f);ψjpkf >= A+ B + C,

where

A =
∫

Rn

dv∗g∗

∫
Rn

dvfτ−v∗ ◦ TΦ
∆ ◦ τv∗{pkψ

2
j pkf}, (2.8)

B =
∫

Rn

dv∗g∗

∫
Rn

dvfτ−v∗ ◦ T 1 ◦ {[Φ, pk]τv∗ψ
2
j pkf}, (2.9)

and

C =
∫

Rn

dv∗g∗

∫
Rn

dvfτ−v∗ ◦ T 1(pkΦτv∗ψ
2
j pkf). (2.10)

Above, TΦ
∆ is defined as in [1] by

TΦ
∆φ(v) =

∫
Sn−1

φ(v+)[Φ(v+)− Φ(v)]b(
v

|v|
.σ)dσ

Using the fact that

C =
∫

Rn

dv∗g∗

∫
Rn

dvfτ−v∗ ◦ T 1 ◦ (pkΦτv∗ψ
2
j pkf)

=
∫

Rn

dv∗g∗

∫
Rn

dv(τv∗f)T 1(pkΦτv∗ψ
2
j pkf)

=
∫

Rn

dv∗g∗QMax(δw=0, τv∗f)pkΦτv∗ψ
2
j pkf

=
∫

Rn

dv∗g∗

∫
Rn

dξ ̂{QMax(δw=0, τv∗f)}ψk(ξ) ̂{Φτv∗ψ2
j pkf}

=
∫

Rn

dv∗g∗

∫
Rn

dξ

∫
Sn−1

dσb(
ξ

|ξ|
.σ)

{
e−iv∗.ξ+

ĝ(ξ+)− e−iv∗.ξ f̂(ξ)
}
ψk(ξ)

̂{
Φτv∗ψ2

j pkf
}
,

it follows that

C = D + E , (2.11)
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where

D =
∫

Rn

dv∗g∗

∫
Rn

dξ

∫
Sn−1

dσb(
ξ

|ξ|
.σ)

{
ψk(ξ)− ψk(ξ+)

}
e−iv∗.ξ+

f̂(ξ+)
̂{

Φτv∗ψ2
j pkf

}
, (2.12)

E =
∫

Rn

dv∗g∗

∫
Rn

dv pkfτ−v∗ ◦ T 1 ◦ (Φτv∗ψ
2
j pkf), (2.13)

by performing back the above computations.

We then write

E = F + G, (2.14)

where

F = −
∫

Rn

dv∗g∗

∫
Rn

dvpkfτ−v∗ ◦ TΦ
∆τv∗ψ

2
j pkf, (2.15)

and

G =
∫

Rn

dv∗g∗

∫
Rn

dvpkfτ−v∗ ◦ TΦ ◦ τv∗ψ2
j pkf,

that is also

G =
∫

Rn

dv∗

∫
Rn

dv

∫
Sn−1

dσg∗pkfΦ(v − v∗)b(
v − v∗
|v − v∗|

.σ)[(ψ2
j pkf)′ − (ψ2

j pkf)]. (2.16)

For this last term, one has

G = H+ I, (2.17)

where

H =
∫

Rn

dv∗g∗

∫
Rn

dv

∫
Sn−1

dσb(
v − v∗
|v − v∗|

.σ)pkfΦ(v − v∗)(ψ′j − ψj)(ψjpkf)′, (2.18)

and

I =
∫

Rn

dv∗g∗

∫
Rn

dv

∫
Sn−1

dσb(
v − v∗
|v − v∗|

.σ)ψjpkfΦ(v − v∗)[(ψjpkf)′ − (ψjpkf)]. (2.19)

By using the simple identity a(b− a) = −1
2(b− a)2 + 1

2(b2 − a2), it follows that

I = J −K, (2.20)

where

J =
1
2

∫
Rn

dv∗g∗

∫
Rn

dv

∫
Sn−1

dσb(
v − v∗
|v − v∗|

.σ)Φ(v − v∗)[((ψjpkf)′)2 − (ψjpkf)2], (2.21)

and

K =
1
2

∫
Rn

dv∗g∗

∫
Rn

dv

∫
Sn−1

dσb(
v − v∗
|v − v∗|

.σ)Φ(v − v∗)[(ψjpkf)′ − (ψjpkf)]2. (2.22)
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All in all, we have obtained, by applying operator ψjpk on Boltzmann equation and integrat-

ing against ψjpkf , operations which are perfectly allowed even for entropic weak solutions,

that is even without assumption (1.6), the following differential equality

d

dt
‖ψjpkf‖2

L2 +K = A+ B +D + F +H+ J . (2.23)

In the following, our task will be to found upper bounds on each term on the right hand

side, while we shall look for a lower bound on K.

• Upper bound on J

Since

J =
1
2

∫
Rn

dv∗

∫
Rn

dv

∫
Sn−1

dσb(
v − v∗
|v − v∗|

.σ)(ψjpkf)2Φ(v − v∗)
{
g′∗ − g∗

}
,

it follows that, using the results from [3], one may write, for a suitable kernel S

J = C

∫
Rn

dv(ψjpkf)2S ∗ g(v).

Since we have assumed all moments on f (and thus on g) bounded, we find

|J | . 2j‖ψjpkf‖2
L2 . (2.24)

• Upper bound on H

Firstly, we note immediately that

|H| . 1
2j

∫
Rn

dv∗

∫
Rn

dv

∫
Sn−1

dσb(
v − v∗
|v − v∗|

.σ)g∗|pkf |Φ(v − v∗)|v − v∗|b̃|ψjpkf |′

and thus similarly to [14] (see also [1]), we find

|H| . 1
2j
‖g‖L1

γ+1
‖pkf‖L2‖ψjpkf‖L2

−γ−1
.

It follows that

|H| . 1
2j(γ+2)

‖g‖L1
γ+1
‖pkf‖L2‖ψjpkf‖L2 . (2.25)

• Upper bound on F

Using notations from [1], one has

F = − < Q∆(g, pkf);ψ2
j pkf >,

so that

|F| . ‖Q∆(g, pkf)‖L2‖ψ2
j pkf‖L2 .

7



Thus

|F| . ‖g‖L1
γ
‖pkf‖L2

γ
‖ψjpkf‖L2 . (2.26)

• Upper bound on A

In the same way,

|A| = | < Q∆(g, f); pkψ
2
j pkf > | . ‖Q∆(g, f)‖L2‖pkψ

2
j pkf‖L2 ,

and thus

|A| . ‖g‖L1
γ
‖f‖L2

γ
‖ψjpkf‖L2 . (2.27)

• Upper bound on B

Similarly, again with notations from [1]

|B| = | < Bk;ψ2
j pkf > |,

and thus

|B| . ‖g‖L1‖f‖L2‖ψjpkf‖L2 . (2.28)

• Estimate on D

Taking into account the fact that |ξ+| is bounded above and below by a constant times |ξ|
on the support of ψk, we can introduce another Littlewood-Paley partition p̃k to get

D =
∫

Rn

dv∗

∫
Rn

dξ

∫
Sn−1

dσb(
ξ

|ξ|
.σ)g∗ ̂{τv∗ p̃kf}(ξ+)Aξ

k
̂{Φτv∗ψ2

j pkf}

where Aξ
k ≡ ψk(ξ+)− ψk(ξ). Since |Aξ

k| . sin θ
2 , it follows that

|D| .
∫

Rn

dv∗

∫
Rn

dξ

∫
Sn−1

dσb̃(
ξ

|ξ|
.σ)g∗| ̂{τv∗ p̃kf}(ξ+)|| ̂{Φτv∗ψ2

j pkf}|

.
∫

Rn

dv∗g∗

{∫
Rn

dξ

∫
Sn−1

dσ|
̂

{τv∗ p̃kf
}

(ξ+)|2b̃(.)|}
1
2 .

{∫
Rn

dξ

∫
Sn−1

dσ| ̂{Φτv∗ψ2
j pkf}|2b̃(.)

} 1
2
,

where b̃(.) = sin θ
2 .b(.).

Thus making the change of variables ξ+ 7→ ξ, we get

|D| . ‖g‖L1
γ
‖p̃kf‖L22jγ‖ψjpkf‖L2 . (2.29)

• Lower bound on K
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From Peetre’s inequality, it follows that

K &
∫

Rn

dv∗

∫
Rn

dv

∫
Sn−1

dσb(
v − v∗
|v − v∗|

.σ)g∗ < v∗ >
−γ< v >γ

{
(ψjpkf)′ − (ψjpkf)

}2

&
∫

Rn

dv∗

∫
Rn

dv

∫
Sn−1

dσb(
v − v∗
|v − v∗|

.σ)g∗ < v∗ >
−γ 2jγψ̃2

j (v)
{

(ψjpkf)′ − (ψjpkf)
}2

&
∫

Rn

dv∗

∫
Rn

dv

∫
Sn−1

dσb(.)g∗ < v∗ >
−γ 2jγ

{
(ψjpkf)′ − (ψjpkf) + [ψ̃j − ψ̃′j ](ψjpkf)′

}2

&
∫

Rn

dv∗

∫
Rn

dv

∫
Sn−1

dσb(.)g∗ < v∗ >
−γ

{
(ψjpkf)′−(ψjpkf)

}2
−c2jγg∗ < v∗ >

−γ |ψ̃j−ψ̃′j |2[(ψjpkf)′]2

& 2jγ‖ψjpkf‖2

H
ν
2
− C2j(γ−2)

∫
Rn

dv∗

∫
Rn

dv

∫
Sn−1

dσb(.)g∗ < v∗ >
−γ |v − v∗|2 sin2(

θ

2
)|(ψjpkf)′|2,

using similar computations as those from [3]. Therefore, using one commutator, we find

K & 2jγ2kν‖ψjpkf‖2
L2 − C2j(γ−2)2k(ν−2)‖pkf‖2

L2
α
, (2.30)

for all α ≥ 0.

• Differential inequality

Collecting all the above estimates, we have found that, setting Uj,k = ‖ψjpkf‖2
L2 , one has

∂Uj,k + C2jγ2kνUj,k .

2jUj,k + 2−j(γ+2)‖g|L1
γ+1
‖pkf‖L2U

1
2
j,k + ‖g‖L1

γ
‖pkf‖L2

γ
U

1
2
j,k

+‖g‖L1
γ
‖f‖L2

γ
U

1
2
j,k + ‖g‖L1‖f‖L2U

1
2
j,k

+‖g‖L1
γ
‖p̃kf‖L22jγU

1
2
j,k + 2j(γ−2)2k(ν−2)‖pkf‖2

L2
α
.

(2.31)

• Iteration- First step

By assumption, for all t ≥ t0, Uj,k . 1
2jβ , for all β ≥ 0, ‖pkf‖L2

α
. C and ‖g‖L1

α
. C. It

follows that we found

∂tUj,k + 2jγ2kνUj,k . 2j(γ−2).

Thus, it follows from (2.31) that for t ≥ t1 > t0,

Uj,k . 2j(γ−3)2−kν .

Since we have also

Uj,k . 2−jα,

it follows that, for any ε > 0 small, any α ≥ 0

Uj,k . 2−jα2−k(ν−ε).
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Thus, we have obtained that for any ε > 0, small, f ∈ B
ν
2
−ε

2,∞,α (α refering to the weight).

These bounds were obtained by using punctual (in j and k) estimates. But, if we take into

account that we have also summability, then we can relax the parameter ε, and we get in

fact that f ∈ B
ν
2
2,2,α, for all t ≥ t1 > t0.

• Iteration- Second step

We now want to improve the index of regularity. For this purpose, we need to work back on

the terms A and B, from which we deduce the two estimates appearing on the third line of

(2.31). In order to improve these two estimates, the simplest way is to use the results from

[1]. Then, in view of the regularity obtained in the first step, we obtain immediately that

|A| . ‖g‖
W

1, ν
2

α

‖f‖
B

ν
2
2,2,α

2−k ν
2 2−jα‖ψjpkf‖L2 . 2−k ν

2 2−jα‖ψjpkf‖L2 (2.32)

(for all big α). Similarly, taking into account the results on T 1 from [1] and the fact that

there is a commutator appearing in B, we get

|B| . 2−jα2−k(1−ν)‖ψjpkf‖L2 . (2.33)

Replacing the two estimates on the third line of (2.31) by the estimates obtained in (2.32)

and (2.33), we get this time from (2.31)

∂tUj,k + 2jγ2kνUj,k . 2j(γ−2)2−kν

and by iterating, we get

Uj,k . 2−jα2−k(2ν−ε)

and finally f ∈ Bν
2,2,α for all α ≥ 0, by the same type of arguments.

In conclusion, we have passed from the regularity index ν
2 to the regularity index ν.

We can now bootstrap this new index of regularity, by using it to again get improved esti-

mates on A and B. That is, we get estimates similar to (2.32) and (2.33) but with ν replaced

by 2ν. This concludes the proof.

3 Final comments

We wish to finish on some remarks connected in particular with assumption (1.6).

1) First of all, we assumed that ν ∈ (0, 1). This is only for convenience, since we have

used results from [1]. The range ν ∈ [1, 2) is in fact avalaible, see [5]. Thus, our main

result can be also extended to this case. We have also considered a smoothed version of the
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kinetic kernel. It should be certainly possible to consider truly the real case |v|γ , by using

in particular technics from [1] and [13].

2) Next, what about relaxing assumption (1.6)? Then, note that adding the assumption

of boundedness on entropy dissipation rate (which is in fact part of the definition of an

entropic weak solution), we can assume that∫ T

0
‖ < v >

γ
2

√
f(s)‖2

H
ν
2
ds < +∞. (3.34)

From the books quoted in the bibliography, in particular [15], we get∫ T

0
‖ < v >γ f(s)‖Hs

p1
ds < +∞, (3.35)

where p1 =
n

n− ν
2

> 1, but p1 < 2 .

To simplify the exposition, let’s forget about integrability w.r.t. time t. Then it follows from

Sobolev embedding that < v >γ f ∈ Lp2 , where p2 = n
n−ν . Of course p2 > 1, but we note

that p2 ≥ 2 iff ν ≥ n
2 . In particular, in dimension n = 2, this is the case iff ν ≥ 1, while in

dimension 3, this is the case iff ν ≥ 3
2 . In conclusion when ν is really very close to 2, then

this L2 bound is available.

In conclusion, in dimension n = 2 or n = 3, it should be certainly possible (with some extra

work) to relax assumption (1.6) and get our result.

We also note, that having in mind [11], small power of f should have good regularity.

These small remarks explain also the fact that Landau equation, corresponding to a version

of Boltzmann equation with ν = 2 is much more easy to deal with, see for instance [13].

3) Finally, as regards the non homogeneous version of Boltzmann equation, let us note

our work in progress [6], where we show regularization properties, for solutions satisfying very

weak assumptions. This is has to be compared to the non homogeneous Landau equation

[8], where initial assumptions are quite strong.

4 Appendix: Littlewood Paley decomposition.

This Appendix is devoted to Littlewood-Paley decomposition and some links with Sobolev

type spaces, see the books of Runst, Sickel and Triebel [16, 15].

We fix once for all a collection {ψk = ψk(ξ)}k∈N of smooth functions such that

supp ψ0 ⊂ {ξ ∈ RN , | ξ | ≤ 2},
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supp ψk ⊂ {ξ ∈ RN , 2k−1 ≤ | ξ | ≤ 2k+1} for all k ≥ 1,

and
+∞∑
k=0

ψk(ξ) = 1 for all ξ ∈ RN .

To simplify some computations, all functions ψk, for k ≥ 1, are constructed from a single

one ψ ≥ 0, i.e. we are given ψ such that supp ψ ⊂ {ξ ∈ RN , 1
2 ≤ | ξ | ≤ 2}, ψ > 0 if

1√
2
≤ | ξ | ≤

√
2 such that ψk(ξ) ≡ ψ( ξ

2k ), for all k ≥ 1 and ξ ∈ RN .

Then, Littlewood-Paley projection operators pk, for k ≥ 0, are defined by

p̂kf(ξ) = ψk(ξ)f̂(ξ),

yielding

f =
+∞∑
k=0

pkf for all f ∈ S ′.

By construction, we can find a new collection {ψ̃k = ψ̃k(ξ)}k∈N of smooth functions such that

supp ψ̃0 ⊂ {ξ ∈ RN , | ξ | ≤ 4}, supp ψ̃k ⊂ {ξ ∈ RN , 2k−2 ≤ | ξ | ≤ 2k+2} for all k ≥ 1,

and such that ψkψ̃k = ψk, for all integer k.

As before, corresponding operator p̃k, for k ≥ 0, are defined as

̂̃pkf(ξ) = ψ̃k(ξ)f̂(ξ).

All these functions ψ̃k, for k ≥ 1, are constructed from a single one ψ̃ ≥ 0, i.e. we take ψ̃ such

that supp ψ̃ ⊂ {ξ ∈ RN , 1
22 ≤ | ξ | ≤ 22}, ψ̃ > 0 if 1

2 ≤ | ξ | ≤ 2, such that ψ̃k(ξ) ≡ ψ̃( ξ
2k ),

for all k ≥ 1 and ξ ∈ RN .

Note that, for any integer k

pkp̃k = pk. (4.36)

Moreover, using Plancherel formula, it follows that∫
v
f(v)pk (resp. p̃k )g(v)dv =

∫
v
pk (resp. p̃k )f(v)g(v)dv, for all f, g ∈ S ′. (4.37)

For all f ∈ L1, one has Bernstein’s inequality:

‖pkf‖L2 ≤ C 2
Nk
2 ‖pkf‖L1 , (4.38)

where C is a constant depending on the function ψ̃.

We set for any v ∈ Rn, < v >= (1 + |v|2)
1
2 . Lebesgue weighted spaces Lp

α, α ∈ R, are

12



defined as the spaces of those functions f = f(v) such that < v > f ∈ Lp. We denote the

corresponding nomr by ‖.‖Lp
α
.

Thanks to this decomposition, weighted space L1
α satisfies

∀α > 0, || f ||L1
α
∼

∞∑
j=0

2js || ψjf ||L1 .

More generally, usual weighted Sobolev-Besov spaces can be described by the following im-

portant result, see for instance the results quoted in the books [16, 15], last index α referring

to the weight

‖f‖q
Bs

p,q,α
'

+∞∑
k=0

2jqs‖pkf‖q
Lp

α
'

+∞∑
k=0

+∞∑
j=0

2kqs2jqα‖ψjpkf‖q
Lp .
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