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Littlewood-Paley Theory and regularity issues in Boltzmann homogeneous equations II. Non cutoff case and non maxwellian molecules

We use Littlewood-Paley theory for the analysis of regularization properties of weak solutions of the homogeneous Boltzmann equation. For non cutoff and non Maxwellian molecules, we show that such solutions are smoother than the initial data. In particular, our method applies to any weak solution, though we assume that it belongs to a weighted L 2 space.

Introduction

This is the second and final part of a work devoted to regularization properties of weak solutions to Boltzmann homogeneous equation, by using technics from Harmonic Analysis.

We refer the reader to our first paper [START_REF] Elsafadi | M Littlewood-Paley decomposition and regularity issues in Boltzmann homogeneous equations.I. Non cutoff and Maxwell cases[END_REF], where a very special case of collision cross sections was analyzed, namely non cutoff Maxwellian molecules. In this part, we wish to consider a larger class of collision sections, namely those corresponding to so called hard potentials.

More precisely, we shall consider smoothed versions of this case, see assumptions below for precise definitions Since we have already given precise references on the framework considered herein in the first part [START_REF] Elsafadi | M Littlewood-Paley decomposition and regularity issues in Boltzmann homogeneous equations.I. Non cutoff and Maxwell cases[END_REF], we shall be rather concise in this Introduction, but we refer to [START_REF] Cercignani | C The Boltzmann equation and its applications[END_REF][START_REF] Desvillettes | L About the regularization properties of the non cut-off Kac equation[END_REF][START_REF] Desvillettes | L Regularization properties of the 2-dimensional non radially symmetric non cutoff spatially homogeneous Boltzmann equation for Maxwellian molecules[END_REF][START_REF] Desvillettes | C About L p estimates for the spatially homogeneous Boltzmann equation[END_REF].

We also mention the review [START_REF] Villani | A review of mathematical topics in collisional kinetic theory[END_REF] and also the recent one [START_REF]R Boltzmann equation and singular kernels[END_REF].

Let us just recall here that Boltzmann homogeneous equation reads as

∂ t f (t, v) = Q(f, f )(t, v) t ≥ 0, v ∈ R n , (1.1) 
where f is a positive function depending only (homogeneous framework) upon the two variables t ≥ 0 (time) and v ∈ R n (velocity) with f (0, v) = f 0 (v), where n ≥ 2.

The initial datum f 0 = 0 is supposed to satisfy the usual "entropic" hypothesis, that is

f 0 ≥ 0, R n f 0 (v){1+ |v| 2 + log(1 + f 0 (v)}dv < +∞. (1.2)
Boltzmann quadratic operator Q appearing on the right hand side of (1.1) depends on v as follows

Q(f, f ) = R n S n-1 dv * dσB(v -v * , σ)(f f * -f f * )dσdv * , where v * ∈ R n , σ ∈ S n-1 (unit sphere of R n ), f = f (v), f * = f (v * ), f = f (v ) and f * = f (v * ), and v ≡ v + v * 2 - |v -v * |σ 2 , v * ≡ v + v * 2 + |v -v * |σ 2 
are the so called post (or pre) collisional velocities.

As in [START_REF] Elsafadi | M Littlewood-Paley decomposition and regularity issues in Boltzmann homogeneous equations.I. Non cutoff and Maxwell cases[END_REF], we shall assume that the collision cross section B(v -v * , σ) > 0 is given under the following multiplicative form

B(v -v * , σ) = Φ(| v -v * |)b(cos θ), cos θ =< v -v * |v -v * | , σ >, 0 ≤ θ ≤ π 2 . (1.3)
and that it satisfies the following non cutoff assumption

π 2 0 sin n θ b(cos θ)dθ < +∞ and sin n-2 θ b(cos θ) ∼ κ θ 1+ν when θ -→ 0, (1.4) 
where κ > 0 and 0 < ν < 1 are fixed.

First part [START_REF] Elsafadi | M Littlewood-Paley decomposition and regularity issues in Boltzmann homogeneous equations.I. Non cutoff and Maxwell cases[END_REF] of our work was concerned with the so called maxwellian case, corresponding to Φ ≡ 1 (or constant) with the above notations.

Herein, the velocity part of the kernel, that is function Φ, shall be assumed to correspond to a smoothed version of the so called hard potentials, that is

Φ(|v|) = (1 + |v| 2 ) γ 2 , (1.5)
with the range of parameters 0 < γ ≤ 1; the real hard potentials case corresponds to the case Φ(|v|) = |v| γ .

We assume that a weak solution to Boltzmann (1.1) has already been constructed and that it satisfies the usual entropic estimate, for a fixed T > 0 (eventually T = +∞), together with mass conservation, decrease of energy and entropy dissipation rate bounded, though we shall not use this last condition. However, we refer to final part of the paper. Such a weak solution shall be referred to as en entropic weak solution. It is then known that such a weak solution has then all moments with respect to velocity, for strictly positive time. Again, we refer for precise references to [START_REF] Elsafadi | M Littlewood-Paley decomposition and regularity issues in Boltzmann homogeneous equations.I. Non cutoff and Maxwell cases[END_REF] and to the bibliography.

In this second part of our work, we are still interested in regularization properties of such solutions.

In [START_REF] Elsafadi | M Littlewood-Paley decomposition and regularity issues in Boltzmann homogeneous equations.I. Non cutoff and Maxwell cases[END_REF], we have provided a very simple proof of C ∞ regularization property of weak solutions, for maxwellian molecules, that is when Φ is taken to be constant, so a case which is now excluded by our assumption (1.5).

As far as we have been able to check, it should be mentioned that the proof performed in [START_REF] Elsafadi | M Littlewood-Paley decomposition and regularity issues in Boltzmann homogeneous equations.I. Non cutoff and Maxwell cases[END_REF], though extremely simple, does not (at least for us) adapt for non maxwellian molecules, and this is so from the first computations.

In this non maxwellian and non cutoff case, the up to date recent results about this regularization property question are due to Desvillettes and Wennberg [START_REF] Desvillettes | B Smoothness of the solution of the spatially homogeneous Boltzmann equation without cutoff[END_REF], showing S (in fact through weighted Sobolev spaces) regularity. However, the point is that, actually, Desvillettes and Wennberg show that, under suitable assumptions on the cross section, a solution in S does exist, with f 0 satisfying (1.2).

Here, exactly as in [START_REF] Elsafadi | M Littlewood-Paley decomposition and regularity issues in Boltzmann homogeneous equations.I. Non cutoff and Maxwell cases[END_REF], we wish to show the stronger result that any entropic weak solution is smooth. Up to an assumption of weighted L 2 bounds, we shall show that this is indeed the case. Thus, our result is strictly not comparable to [START_REF] Desvillettes | B Smoothness of the solution of the spatially homogeneous Boltzmann equation without cutoff[END_REF]. A similar result was established in the context of Landau homogeneous equation by the second author [START_REF] Safadi | M Smoothness of weak solutions of the spatially homogeneous Landau equation[END_REF].

Our arguments are still based on Littlewood-Paley theory. However, we need here commutators estimates, to take into account the fact that Φ is now really a non constant function.

In particular, we shall need some results extracted from the first author's paper [START_REF] Safadi | R Integral kernel estimates for a linear singular operator linked with Boltzmann equation[END_REF].

The bad point is that we need further integrability assumption with respect to variable v.

This point is in fact easy to understand, see the remarks at the end of the paper.

Thus, according to [START_REF] Desvillettes | C About L p estimates for the spatially homogeneous Boltzmann equation[END_REF], we shall furthermore assume that for some t 0 > 0,

f ∈ L ∞ ([t 0 , +∞); L 2 α (R n )), for all α ∈ R. (1.6)
Above L 2 α (R n ) denotes weighted Lebesgue space, see the Appendix for the precise notations. It is still an open problem to show that any entropic weak solution (thus satisfying only the usual entropic bounds) enjoys automatically this L 2 integrability (1.6), even if we do take t 0 = 0 and an initial datum in the same class. This is in particuliar due to the lack of a good uniqueness result, and also to the fact that power of f , for an exponent less that 1 belongs to a worse Besov type space, see [START_REF] Runst | W Sobolev spaces of fractional order, Nemytskij operators and Non linear PdE[END_REF] for instance, and in view of the (quite optimal with respect to the index of regularity) functional properties of Boltzmann operator [START_REF] Safadi | R Integral kernel estimates for a linear singular operator linked with Boltzmann equation[END_REF].

Our main result is given by Theorem 1.1 Let be given an initial datum f 0 and a collision cross section B such that (1.2), (1.3), (1.4) and (1.5) hold true. Let f be any entropic weak non negative solution of Boltzmann homogeneous equation (1.1). Furthermore, we assume that (1.6) holds true for some t 0 > 0. Then, for any t > t 0 , for all s, α ∈ R + , f (t, .) belongs to the weighted

Besov-Sobolev space B s 2,2,α (R n ). 2 
In particular, it follows that for t > t 0 , f (t) belongs immediately to Schwartz space S(R n ).

Plan of the paper: Section 2 is devoted to the proof of our main result. Then we make some final comments in Section 3. For convenience of the reader, we have again devoted a small Appendix to basic facts from Harmonic Analysis, and notations used herein, in particular weighted spaces.

Proof of the theorem

For any j ∈ N, k ∈ N, one has, using notations from [START_REF] Safadi | R Integral kernel estimates for a linear singular operator linked with Boltzmann equation[END_REF] and the Appendix, < .; . > denoting the usual duality bracket,

< ψ j p k Q(g, f ); ψ j p k f >= R n dv * g * R n dv f τ -v * • T Φ • [p k ψ 2 j p k f ]. (2.7)
Above, we have introduced g = f in order to show clearly on which functions we are going to perform fractional differentiation.

Furthermore, for any suitable test function, see [START_REF] Safadi | R Integral kernel estimates for a linear singular operator linked with Boltzmann equation[END_REF] for more precisions,

T Φ φ(v) = S n-1 [φ(v + ) -φ(v)]b( v |v| .σ)dσ Φ(v), τ v * denoting the usual translation.
In particuliar, when Φ ≡ 1, corresponding to the Maxwellian case, let us recall that, see [START_REF] Desvillettes | B Entropy dissipation and long range interactions[END_REF] for instance, that

v → T 1 φ(v) is adjoint to f → Q M ax (δ v * =0 , f ),
where Q M ax denotes Boltzmann operator in the case of Maxwellian molecules.

We can then write (where [., .] denotes the usual commutator of two operators)

< ψ j p k Q(g, f ); ψ j p k f >= A + B + C,
where

A = R n dv * g * R n dvf τ -v * • T Φ ∆ • τ v * {p k ψ 2 j p k f }, (2.8) 
B = R n dv * g * R n dvf τ -v * • T 1 • {[Φ, p k ]τ v * ψ 2 j p k f }, (2.9) 
and

C = R n dv * g * R n dvf τ -v * • T 1 (p k Φτ v * ψ 2 j p k f ). (2.10) 
Above, T Φ ∆ is defined as in [START_REF] Safadi | R Integral kernel estimates for a linear singular operator linked with Boltzmann equation[END_REF] by

T Φ ∆ φ(v) = S n-1 φ(v + )[Φ(v + ) -Φ(v)]b( v |v| .σ)dσ
Using the fact that

C = R n dv * g * R n dvf τ -v * • T 1 • (p k Φτ v * ψ 2 j p k f ) = R n dv * g * R n dv(τ v * f )T 1 (p k Φτ v * ψ 2 j p k f ) = R n dv * g * Q M ax (δ w=0 , τ v * f )p k Φτ v * ψ 2 j p k f = R n dv * g * R n dξ {Q M ax (δ w=0 , τ v * f )}ψ k (ξ) {Φτ v * ψ 2 j p k f } = R n dv * g * R n dξ S n-1 dσb( ξ |ξ| .σ) e -iv * .ξ + ĝ(ξ + ) -e -iv * .ξ f (ξ) ψ k (ξ) Φτ v * ψ 2 j p k f , it follows that C = D + E, (2.11) 
where

D = R n dv * g * R n dξ S n-1 dσb( ξ |ξ| .σ) ψ k (ξ) -ψ k (ξ + ) e -iv * .ξ + f (ξ + ) Φτ v * ψ 2 j p k f , (2.
12)

E = R n dv * g * R n dv p k f τ -v * • T 1 • (Φτ v * ψ 2 j p k f ), (2.13) 
by performing back the above computations.

We then write

E = F + G, (2.14) 
where

F = - R n dv * g * R n dvp k f τ -v * • T Φ ∆ τ v * ψ 2 j p k f, (2.15) 
and

G = R n dv * g * R n dvp k f τ -v * • T Φ • τ v * ψ 2 j p k f,
that is also

G = R n dv * R n dv S n-1 dσg * p k f Φ(v -v * )b( v -v * |v -v * | .σ)[(ψ 2 j p k f ) -(ψ 2 j p k f )]. (2.16) 
For this last term, one has

G = H + I, (2.17) 
where

H = R n dv * g * R n dv S n-1 dσb( v -v * |v -v * | .σ)p k f Φ(v -v * )(ψ j -ψ j )(ψ j p k f ) , (2.18) 
and

I = R n dv * g * R n dv S n-1 dσb( v -v * |v -v * | .σ)ψ j p k f Φ(v -v * )[(ψ j p k f ) -(ψ j p k f )]. (2.19) By using the simple identity a(b -a) = -1 2 (b -a) 2 + 1 2 (b 2 -a 2 ), it follows that I = J -K, (2.20) 
where

J = 1 2 R n dv * g * R n dv S n-1 dσb( v -v * |v -v * | .σ)Φ(v -v * )[((ψ j p k f ) ) 2 -(ψ j p k f ) 2 ], (2.21) 
and

K = 1 2 R n dv * g * R n dv S n-1 dσb( v -v * |v -v * | .σ)Φ(v -v * )[(ψ j p k f ) -(ψ j p k f )] 2 . (2.22)
All in all, we have obtained, by applying operator ψ j p k on Boltzmann equation and integrating against ψ j p k f , operations which are perfectly allowed even for entropic weak solutions, that is even without assumption (1.6), the following differential equality

d dt ψ j p k f 2 L 2 + K = A + B + D + F + H + J . (2.23)
In the following, our task will be to found upper bounds on each term on the right hand side, while we shall look for a lower bound on K.

• Upper bound on J

Since J = 1 2 R n dv * R n dv S n-1 dσb( v -v * |v -v * | .σ)(ψ j p k f ) 2 Φ(v -v * ) g * -g * ,
it follows that, using the results from [START_REF] Desvillettes | B Entropy dissipation and long range interactions[END_REF], one may write, for a suitable kernel S

J = C R n dv(ψ j p k f ) 2 S * g(v).
Since we have assumed all moments on f (and thus on g) bounded, we find

|J | 2 j ψ j p k f 2 L 2 .
(2.24)

• Upper bound on H Firstly, we note immediately that

|H| 1 2 j R n dv * R n dv S n-1 dσb( v -v * |v -v * | .σ)g * |p k f |Φ(v -v * )|v -v * | b|ψ j p k f |
and thus similarly to [START_REF] Mouhot | C Regularity theory for the homogeneous Boltzmann equation with angular cuttof[END_REF] (see also [START_REF] Safadi | R Integral kernel estimates for a linear singular operator linked with Boltzmann equation[END_REF]), we find

|H| 1 2 j g L 1 γ+1 p k f L 2 ψ j p k f L 2 -γ-1 .
It follows that

|H| 1 2 j(γ+2) g L 1 γ+1 p k f L 2 ψ j p k f L 2 .
(2.25)

• Upper bound on F Using notations from [START_REF] Safadi | R Integral kernel estimates for a linear singular operator linked with Boltzmann equation[END_REF], one has

F = -< Q ∆ (g, p k f ); ψ 2 j p k f >, so that |F| Q ∆ (g, p k f ) L 2 ψ 2 j p k f L 2 . Thus |F| g L 1 γ p k f L 2 γ ψ j p k f L 2 .
(2.26)

• Upper bound on A

In the same way,

|A| = | < Q ∆ (g, f ); p k ψ 2 j p k f > | Q ∆ (g, f ) L 2 p k ψ 2 j p k f L 2 ,
and thus

|A| g L 1 γ f L 2 γ ψ j p k f L 2 .
(2.27)

• Upper bound on B

Similarly, again with notations from [1]

|B| = | < B k ; ψ 2 j p k f > |,
and thus

|B| g L 1 f L 2 ψ j p k f L 2 .
(2.28) 

•
D = R n dv * R n dξ S n-1 dσb( ξ |ξ| .σ)g * {τ v * pk f }(ξ + )A ξ k {Φτ v * ψ 2 j p k f } where A ξ k ≡ ψ k (ξ + ) -ψ k (ξ). Since |A ξ k | sin θ 2 , it follows that |D| R n dv * R n dξ S n-1 dσ b( ξ |ξ| .σ)g * | {τ v * pk f }(ξ + )|| {Φτ v * ψ 2 j p k f }| R n dv * g * R n dξ S n-1 dσ| {τ v * pk f (ξ + )| 2 b(.)|} 1 2 . R n dξ S n-1 dσ| {Φτ v * ψ 2 j p k f }| 2 b(.) 1 2 
, where b(.) = sin θ 2 .b(.). Thus making the change of variables ξ + → ξ, we get

|D| g L 1 γ pk f L 2 2 jγ ψ j p k f L 2 .
(2.29)

• Lower bound on K From Peetre's inequality, it follows that

K R n dv * R n dv S n-1 dσb( v -v * |v -v * | .σ)g * < v * > -γ < v > γ (ψ j p k f ) -(ψ j p k f ) 2 R n dv * R n dv S n-1 dσb( v -v * |v -v * | .σ)g * < v * > -γ 2 jγ ψ2 j (v) (ψ j p k f ) -(ψ j p k f ) 2 R n dv * R n dv S n-1 dσb(.)g * < v * > -γ 2 jγ (ψ j p k f ) -(ψ j p k f ) + [ ψj -ψ j ](ψ j p k f ) 2 R n dv * R n dv S n-1 dσb(.)g * < v * > -γ (ψ j p k f ) -(ψ j p k f ) 2 -c2 jγ g * < v * > -γ | ψj -ψ j | 2 [(ψ j p k f ) ] 2 2 jγ ψ j p k f 2 H ν 2 -C2 j(γ-2) R n dv * R n dv S n-1 dσb(.)g * < v * > -γ |v -v * | 2 sin 2 ( θ 2 )|(ψ j p k f ) | 2 ,
using similar computations as those from [START_REF] Desvillettes | B Entropy dissipation and long range interactions[END_REF]. Therefore, using one commutator, we find

K 2 jγ 2 kν ψ j p k f 2 L 2 -C2 j(γ-2) 2 k(ν-2) p k f 2 L 2 α , (2.30) 
for all α ≥ 0.

• Differential inequality

Collecting all the above estimates, we have found that, setting

U j,k = ψ j p k f 2 L 2 , one has              ∂U j,k + C2 jγ 2 kν U j,k 2 j U j,k + 2 -j(γ+2) g| L 1 γ+1 p k f L 2 U 1 2 j,k + g L 1 γ p k f L 2 γ U 1 2 j,k + g L 1 γ f L 2 γ U 1 2 j,k + g L 1 f L 2 U 1 2 j,k + g L 1 γ pk f L 2 2 jγ U 1 2 j,k + 2 j(γ-2) 2 k(ν-2) p k f 2 L 2 α .
(2.31)

• Iteration-First step

By assumption, for all t ≥ t 0 , U j,k

1 2 jβ , for all β ≥ 0, p k f L 2 α C and g L 1 α
C. It follows that we found

∂ t U j,k + 2 jγ 2 kν U j,k 2 j(γ-2) .
Thus, it follows from (2.31) that for t ≥ t 1 > t 0 , U j,k 2 j(γ-3) 2 -kν .

Since we have also

U j,k 2 -jα ,
it follows that, for any ε > 0 small, any α ≥ 0

U j,k 2 -jα 2 -k(ν-ε) .
Thus, we have obtained that for any ε > 0, small, f ∈ B ν 2 -ε 2,∞,α (α refering to the weight). These bounds were obtained by using punctual (in j and k) estimates. But, if we take into account that we have also summability, then we can relax the parameter ε, and we get in

fact that f ∈ B ν 2
2,2,α , for all t ≥ t 1 > t 0 .

• Iteration-Second step

We now want to improve the index of regularity. For this purpose, we need to work back on the terms A and B, from which we deduce the two estimates appearing on the third line of (2.31). In order to improve these two estimates, the simplest way is to use the results from [START_REF] Safadi | R Integral kernel estimates for a linear singular operator linked with Boltzmann equation[END_REF]. Then, in view of the regularity obtained in the first step, we obtain immediately that

|A| g W 1, ν 2 α f B ν 2 2,2,α 2 -k ν 2 2 -jα ψ j p k f L 2 2 -k ν 2 2 -jα ψ j p k f L 2 (2.32)
(for all big α). Similarly, taking into account the results on T 1 from [START_REF] Safadi | R Integral kernel estimates for a linear singular operator linked with Boltzmann equation[END_REF] and the fact that there is a commutator appearing in B, we get

|B| 2 -jα 2 -k(1-ν) ψ j p k f L 2 .
(2.33)

Replacing the two estimates on the third line of (2.31) by the estimates obtained in (2.32) and (2.33), we get this time from (2.31)

∂ t U j,k + 2 jγ 2 kν U j,k 2 j(γ-2) 2 -kν
and by iterating, we get

U j,k 2 -jα 2 -k(2ν-ε)
and finally f ∈ B ν 2,2,α for all α ≥ 0, by the same type of arguments. In conclusion, we have passed from the regularity index ν 2 to the regularity index ν. We can now bootstrap this new index of regularity, by using it to again get improved estimates on A and B. That is, we get estimates similar to (2.32) and (2.33) but with ν replaced by 2ν. This concludes the proof.

Final comments

We wish to finish on some remarks connected in particular with assumption (1.6).

1)

First of all, we assumed that ν ∈ (0, 1). This is only for convenience, since we have used results from [START_REF] Safadi | R Integral kernel estimates for a linear singular operator linked with Boltzmann equation[END_REF]. The range ν ∈ [1, 2) is in fact avalaible, see [START_REF] He | L Integral kernel estimates for a linear singular operator linked with Boltzmann equation[END_REF]. Thus, our main result can be also extended to this case. We have also considered a smoothed version of the

supp ψ k ⊂ {ξ ∈ R N , 2 k-1 ≤ | ξ | ≤ 2 k+1 } for all k ≥ 1, and +∞ k=0 ψ k (ξ) = 1 for all ξ ∈ R N .
To simplify some computations, all functions ψ k , for k ≥ 1, are constructed from a single one ψ ≥ 0, i.e. we are given ψ such that supp

ψ ⊂ {ξ ∈ R N , 1 2 ≤ | ξ | ≤ 2}, ψ > 0 if 1 √ 2 ≤ | ξ | ≤ √ 2 such that ψ k (ξ) ≡ ψ( ξ 2 k
), for all k ≥ 1 and ξ ∈ R N . Then, Littlewood-Paley projection operators p k , for k ≥ 0, are defined by For all f ∈ L 1 , one has Bernstein's inequality:

p k f (ξ) = ψ k (ξ) f (ξ), yielding f = +∞ k=0 p k f for all f ∈ S .
p k f L 2 ≤ C 2 N k 2 p k f L 1 , (4.38) 
where C is a constant depending on the function ψ.

We set for any v ∈ R n , < v >= (1 + |v| 2 ) 1 2 . Lebesgue weighted spaces L p α , α ∈ R, are defined as the spaces of those functions f = f (v) such that < v > f ∈ L p . We denote the corresponding nomr by . L p α . Thanks to this decomposition, weighted space L 1 α satisfies

∀α > 0, || f || L 1 α ∼ ∞ j=0 2 js || ψ j f || L 1 .
More generally, usual weighted Sobolev-Besov spaces can be described by the following important result, see for instance the results quoted in the books [START_REF] Triebel | H Theory of function spaces[END_REF][START_REF] Runst | W Sobolev spaces of fractional order, Nemytskij operators and Non linear PdE[END_REF], last index α referring to the weight

f q B s p,q,α +∞ k=0 2 jqs p k f q L p α +∞ k=0 +∞ j=0
2 kqs 2 jqα ψ j p k f q L p .

  Estimate on D Taking into account the fact that |ξ + | is bounded above and below by a constant times |ξ| on the support of ψ k , we can introduce another Littlewood-Paley partition pk to get

  By construction, we can find a new collection { ψk = ψk (ξ)} k∈N of smooth functions such thatsupp ψ0 ⊂ {ξ ∈ R N , | ξ | ≤ 4}, supp ψk ⊂ {ξ ∈ R N , 2 k-2 ≤ | ξ | ≤ 2 k+2 } for all k ≥ 1,and such that ψ k ψk = ψ k , for all integer k.As before, corresponding operator pk , for k ≥ 0, are defined as pk f (ξ) = ψk (ξ) f (ξ).All these functions ψk , for k ≥ 1, are constructed from a single one ψ ≥ 0, i.e. we take ψ suchthat supp ψ ⊂ {ξ ∈ R N , 1 2 2 ≤ | ξ | ≤ 2 2 }, ψ > 0 if 1 2 ≤ | ξ | ≤ 2, such that ψk (ξ) ≡ ψ( ξ 2 k ), for all k ≥ 1 and ξ ∈ R N .Note that, for any integer k p k pk = p k .(4.36)Moreover, using Plancherel formula, it follows that v f (v)p k (resp. pk )g(v)dv = v p k (resp. pk )f (v)g(v)dv, for all f, g ∈ S .(4.37)

kinetic kernel. It should be certainly possible to consider truly the real case |v| γ , by using in particular technics from [START_REF] Safadi | R Integral kernel estimates for a linear singular operator linked with Boltzmann equation[END_REF] and [START_REF] Safadi | M Smoothness of weak solutions of the spatially homogeneous Landau equation[END_REF].

2)

Next, what about relaxing assumption (1.6)? Then, note that adding the assumption of boundedness on entropy dissipation rate (which is in fact part of the definition of an entropic weak solution), we can assume that

(3.34)

From the books quoted in the bibliography, in particular [START_REF] Runst | W Sobolev spaces of fractional order, Nemytskij operators and Non linear PdE[END_REF], we get

where

To simplify the exposition, let's forget about integrability w.r.t. time t. Then it follows from

In particular, in dimension n = 2, this is the case iff ν ≥ 1, while in dimension 3, this is the case iff ν ≥ 3 2 . In conclusion when ν is really very close to 2, then this L 2 bound is available.

In conclusion, in dimension n = 2 or n = 3, it should be certainly possible (with some extra work) to relax assumption (1.6) and get our result.

We also note, that having in mind [START_REF] Desvillettes | C About L p estimates for the spatially homogeneous Boltzmann equation[END_REF], small power of f should have good regularity.

These small remarks explain also the fact that Landau equation, corresponding to a version of Boltzmann equation with ν = 2 is much more easy to deal with, see for instance [START_REF] Safadi | M Smoothness of weak solutions of the spatially homogeneous Landau equation[END_REF].

3) Finally, as regards the non homogeneous version of Boltzmann equation, let us note our work in progress [START_REF] Morimoto | T Regularization properties of non homogeneous kinetic equations and applications[END_REF], where we show regularization properties, for solutions satisfying very weak assumptions. This is has to be compared to the non homogeneous Landau equation [START_REF] Desvillettes | L Smoothing effects for classical solutions of the full Landau equation[END_REF], where initial assumptions are quite strong. This Appendix is devoted to Littlewood-Paley decomposition and some links with Sobolev type spaces, see the books of Runst, Sickel and Triebel [START_REF] Triebel | H Theory of function spaces[END_REF][START_REF] Runst | W Sobolev spaces of fractional order, Nemytskij operators and Non linear PdE[END_REF].

We fix once for all a collection {ψ k = ψ k (ξ)} k∈N of smooth functions such that