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Abstract : In this work, we consider a semi-dilute solutioniadéntical star-polymers, made
of attached flexible long polymer chains of the sapolymerization degree N. We first
compute the effective pair-potential between staypers. Such a potential results from the
excluded volume forces between monomers. We shaihis potential is logarithmic, below
some known characteristic distance,depending on the number of attached chains per st
polymer, f, and volume fraction of polymeigg . Beyondo, the potential fails exponentially.

Second, we investigate the structure and thermadisaof these star-polymers. To this end,
we use thentegral equationrmethod with thénybridized-mean spherical approximatiorhe
numerical resolution of this equation gives theucure factor of the star-polymers, for
various particle densities. Finally, the standastationships between thermodynamics and
structure enable us to deduce three physical giemtnamely the isotherm compressibility,
pressure and internal energy, as functions of tensi

. INTRODUCTION

Colloidal systems are often made of stabilized brpatticles, because they
carry an electric charge. Their stabilization iertlitaused by the Coulomb force
[1-3]. However, when the ionic concentration isreased, by addition of a salt
or an electrolyte, the Coulomb force is then soedeand replaced by a long-
range Van der Waals attractive one. The latter gdligeoriginates from the fact
that the particles possess a dipolar moment.

To prevent the particles flocculation, one way astssin introducing an
adequately soluble polar head polymer chains oomolgmer with insoluble
sequences. This constitutes the grafting phenom@h®h. The result is that,
two adjacent colloids clothed each by end-graftexlilfle long polymer chains,
repel each other due to the excluded volume fdreeseen monomers.



Considerable simplifications occur when the pagchre small enough, to be
considered astar-polymersTherefore, star-polymers provide a good model for
studying statistical mechanics and thermodynamicen@ll colloidal particles,
which are surrounded each by end-grafted polymamsh From a topological
point of view, star-polymers are typical branchealcramolecules, possessing a
central core from which many end-attached longalinpolymer chains (or
branche$ emerge [10-12].

The stabilization of colloids with a grafted polyneelayer is the subject of
many studies. The fundamental problem to solveaskhowledge of the nature
of the effective force between particles. As wealsahove, such a force results
from the excluded volume effect. The first thearaltiwork was due to Witten
and Pincus (WP) [13]. The authors computed thelsefiforce between two
adjacent clothed particles, versus their centaretter distance. They find that
the force simply decays as the inverse of distamgty universal amplitude
depending only on the number of branches per ictiega star-polymer. To do
calculations, they first assimilated these clotpadicles to star-polymers [14],
and used the popular model introduced by Daoud @atton (DC) [10],
according to which, in dilute solution, each grdftehain or branch can be
viewed as a sequence of growing spherical blobs.

The pioneered WP work stimulated much theoretitadiss, dealt with good
solvent of small molecules [12,15-219,-solvent [22], high molecular-weight
solvent [23], polydispersity [24], confinement [2&%] chemical mismatch effect
[26,27]. The wused techniques ranged from scalingguraents to
Renormalization-Group.

For the studies in relation with good solvents tipalarly, the attention has
been paid to star-polymers in dilute solution. Trhesans that one has considered
the problem of two star-polymers, only. To our kiedge, no theoretical work
has been devoted to the effective force betweanpstgmers, in semi-dilute
solution, where the excluded volume forces areesm@. This is precisely the
aim of the present work.

Our results are as follows. We first derive theregpion of the pair-potential
between interacting star-polymers. Contrary to tdilisolutions, the latter
explicitly depends on the monomer concentratiorro8d, with the help of the
obtained effective potential, we investigate thhacttire and thermodynamics of
the clothed particles by end-grafted polymer chaBeside the pair-potential,
we need a crucial object for determining the mastspcal properties, which is
the pair-correlation function g(r) . The latter is solution to the Ornstein-Zernike

(OZ) integral equation [28]. But, this equationahxes another unknown, that is
the direct correlation function(r). Therefore, this necessitates a certain closure,



that is, a supplementary relationship between tiesecorrelation functions.
Integral equation has been intensively used in motlquid theory [28], and
solved using some techniques, which are based emrhlytical or numerical
computation. In this context, various closures hlagen proposed, namely, the
Percus-Yevick approximation [29], the hypernetteaaic [30], the mean
spherical approximation and its modification, that the hybridized-mean
spherical approximationfHMSA) [31]. Using this method, we compute the
structure factor, which is the Fourier transform tbé total pair-correlation
function h(r) =g(r)-1, for different values of particle density. Theati@ns

between the isotherm compressibility, the pressum@ energy, and the pair-
correlation function enable us to compute theseetimhysical quantities, for the
chosen particle densities.

The remaining of presentation proceeds as folldw&ec. I, we compute the
pair-potential. We investigate, in Sec. lll, theusture and thermodynamics of
the considered solution. We draw some concludingarks in the last section.

1. EFFECTIVE PAIR-POTENTIAL

Before the computation of the effective pair-pot@ntt will be instructive to
recall some useful backgrounds concerning the covdbon study of star-
polymers in dilute and semi-dilute solutions.

I1.1. Star-polymersin semi-dilute solution

A star-polymer is characterized by two kinds of gmaeters N and f. The
former is the polymerization degree of the attactie@ins, and the second, their
number. Of course, the conformation of star-polysrdgpends on the value of
the monomer concentration.

To fix ideas, we start by considering a single -pi@ymer of f branches,
immersed in a good solvent. Thus, we are concewitida very dilute solution.
According to the DC model [10], an attached chaam de regarded as a
sequence of growing spherical blobs. At a distarftem the centre of the star-
polymer, the blobs cover a sphere of radius E.(ﬂ) denotes the blob size at the

considered distance, then, we can write
f.82 =4mr? | (1)

Therefore, the blob size scales as [10]



r
&(r)O N (2)

This formula is valid only when one is above thesemdius [10] :R; O a+/f .
Here, a means the monomer size. Below the leRgththe blob size becomes
of the order of a. This means that the f attachHens arestretchednear the

core.
On the other hand, at any distance from the cefrtreR,), the attached

chains behave as in semi-dilute regime. TheretbeeJocal volume fraction of
monomers(r), is given by [32,33]

9lr) [@} - (3)

Explicitly,

or) 023 (r/a) 43, R <r<Rg, (4a)

¢(r)=1, r<Re, (4b)

whereRg represents the gyration radius of the isolatedmdlymer, which can
be measured in X-rays scattering experiment [32,B8¢ corona-sizdRg can
be obtained using the conservation law of the to&ds

R
N.f =a‘34anG drr?¢fr) | (5)
0

together with relation (4a). Her&y means the radius of the particle on which
the f chains are attached. Straightforward calmuriatyield

Rg Daf YN 35, (6)
We emphasize that the above formula makes sensg when the

polymerization degree N exceeds the typical vallie that is N >+/f . This
condition emerges from the fact that one must RRye> R.. Also, this same



formula remains valid as long as the volume fractbthe solutiongg is below
some threshol«h%, defined by

(p(m):a3f_NDf2/5N—4/5_ 7)
R3
G

For @g < (p% (dilute solution), the star-polymers behave assspd (swollen)
coils, which avoid each other completely. & = cp([, (overlapping threshold),

the coils begin to be densely packed. Ie'pér< @p << (sé&mi-dilute solution),
however, the star-polymers overlap and the exclud#dme is screened over

distances much greater than the screening lefgth af y2 (paw' [10]. Notice

that, at the threshold, this length becomes ofadtter of the gyration radius
Rg.

Now, assume that one is in semi-dilute regime, ihabove the thresholqj([).

The natural question to ask is about the impaetnoihcreasing of the monomer
concentration on the conformation of the star-p@agsn Since the excluded
volume is screened at high distances, and accorttinthe DC image, an
attached chain can be divided into two parts [TOf outer part behaves as in
semi-dilute solution, of volume fractiogg, and can be considered as a

sequence ofiniform blobsof size acp0_3/4. The inner one, however, behaves as

in dilute regime, for distances (from the centr&Jolw some characteristic
length, o, manifestly smaller thalRg . This length can be obtained equating

the size of the outer blob (at distane® &(c) to the blob size, that is
cr/\/f_=a(p0_3/4. This gives

oDaf ¥2¢; 34, 9 <o << .1 (8)

Thus, o depends on the number of branches per star-polyfmend the
monomer concentrationg = a_3(p0, and not on the polymerization degree N.

Of course, the two lengths and Rg coincide at the threshot;%. Combining
relations (6), (7) and (8) yields the equivalentiala

-3
CZRG((PO/(P(D)) A 90 <9 << 1 (9)



For dilute regime, however the length rigorously equals the gyration radius
Rg, and we write

0=Rg , % <9p - (10)

The schematic variation of the rat@Rg upon the dimensionless variable

(po/(pg Is depicted in Fig. 1. This curve traduces thauratdecreasing of the
length o with increasing monomer concentration.

Now, we have all ingredients to compute the eflecpair-potential. This is
precisely the aim of the following subsection.

|1.2. Effective pair-potential

Assume that one is in semi-dilute solution and @rstwo star-polymers,
which are at finite distance r apart. The existevicene excluded volume forces
induces an effective pair-potential we want to catap

The above discussions suggest that,rferg, the two star-polymers interact
through a pair-potential as in dilute regime. For> o, the excluded volume is
completely screened, and in principle, no mututdractions are present. In the
narrow region between the outer and inner partshef two adjacent star-

polymers, whose size is of the order2ud//f , we expect an exponential decay
for the pair-potential.

With these considerations, the effective pair-poéttakes the following form
[18]

—In(r/0')+(1+\/T/2)_l : for r<o,
U(r)_5 a2y (11)

(1+\/T/2)_1 (r/a)ex;{—ﬁ(r—a)/Za}, for r>0.

Here, T is the temperature ak@ the Boltzmann's constant.

Let us make some comments about the obtained ptenial.
. . . . -3/2 .
Firstly, we emphasize that the potential amphh@ﬁ/&S)f Is not affected

by an increasing of the monomer concentration. dddesuch an amplitude is
related to the small-distance behavior of the pakn this corresponds to the



inner region, where the solution is dilute. As floe constant terrw(&+ﬁ/2)_l
in the above expression, it is introduced to enflugecontinuity and derivability
properties of the potential at=0.

Secondly, contrary to dilute solutions, the intéicac potential for semi-dilute
ones depends on the monomer concentration, thrineglengtho, relation (8).
But, it is independent on the molecular-weight tihehed chains. This fact is
inherent to semi-dilute solutions.

Thirdly, it is easy to see that, at fixed centecémter distance, the pair-
potential is shifted towards its lowest valuesttes monomer concentration is
increased. This is not surprising, since an in@&dthe monomer concentration
implies a strong reduction of the excluded volumeés.

Finally, in Fig. 2, we report the reduced pair-poi@ U(r)/kgT versus the
renormalized distance/Rg, for 4 values of the reduced number density of

particlesn/n[ . For these curves, the number of branches k&lfto the value

f =18. Here, the characteristic value of the number density in" =]/R3é
[34]. The latter corresponds to the situation tewehanly one particle in the
volume R%. Notice the trivial relaton n=a 3 @o/MNf ;  thus,

nt :a_s((p([)/MNf)::l/Ré. Here, M is the number of star-polymers in the
solution, andM Nf the total number of monomers.

The effective pair-potential we obtained is thenpipal ingredient for the
study of the structure and thermodynamics of a sbBiuie solution of star-
polymers. This is the goal of the next section.

[11. STRUCTURE AND THERMODYNAMICS

To investigate the structure of the colloidal solaf made of clothed particles of

high densityn > n[, we start from the OZ integral equation, satisfisdthe
total correlation functiorh(r)=g(r)-1 [28]. This integral equation involving

the so-called direct correlation functiafr ) ,is given by

h(r)=c(r)+njdr'c(\r—r'\)h(r') , (12)



with n the number density. This equation, howew@mtains two unknown
quantitiesh(r) andc(r). To solve it, one need a closure relation betwbere
two quantities. In this work, we choose the welom HMSA method [31],
and write [35]

gHMSA (l‘) - exp{— BUO(r )} x{1+ eXF{f (r)[y](cr(?’; U(I’ )]} _l} ’ (13)

where the interaction potential is divided into ghrange part,UO(r), and long-
range onelJ(r ). The former is a hard-sphere potential, and ¢weisd one is the
repulsive potential derived in the last sectiomatren (11). There, the function
y(r) represents the difference between the total amttdiorrelation functions,
that isy(r) = h(r)-c(r). In equality (13), the quantitf(r ) represents the mixing
function [31]. For convenience, we adopt for thuiadtion that form proposed by
Bretonnet and Jakse [36]. The virtue of such a fagnthat, it ensures the
thermodynamic consistency in calculating the irakrrompressibility by two
different ways. The form proposed by the autho{8G$

fr)=fg+(1-fg)e ™" . (14)

Here, fo accounts for the interpolation constant, which as adjustable
parameter, such thab<fgy < . IThis constant that serves to eliminate the
incoherence thermodynamic, can be fixed equatiagsbtherm compressibility

deduced from virial pressure to that calculatednfrine zero-scattering angle
limit of the structure factor, that §0) = nkg Tk .

In Fig. 3, we report the computed structure fac¥ay) , which is the Fourier
transform of the total correlation functiorh(r)=g(r)-1, versus the
dimensionless wavenumbeyo, for 4 values of the reduced number density

n/n[ . Here, o denotes the hard-sphere diameter. These curvagyckhow

that, the height of the principal peak decreasdl increasing number density.
As a matter of fact, within more concentrated sohg, the effective

interactions between the clothed particles are iderasbly reduced. In other
word, the system tends to its ideal nature. Albe, position of this peak is
shifted towards its higher values (small wavelesgtlas the number density
increases. Finally, remark that the value of tihecstire factor at zero-scattering-
angleS(0) becomes more important with increasing numbesitien

Having described the structure of the considerddtisa, it remains us to
extract the corresponding thermodynamical propgrtethin the framework of



the HMSA. We are interested in three physical gtiast which are the
isotherm compressibilityk, pressure P, and energy E. The first quantity can

be directly obtained from the value of the struetfactor at vanishing wave-
vector, that ixt = S(0)/nkgT. The two last can be extracted from the standard

integral relations, which involve the pair-corré@at function and the interaction
potential [28]. These quantities are shown in Tdpfer 4 values of the reduced

number densityn/n[ . Here, we have considered the dimensionless ijeant
kr/k®, P/Py and the difference AE =(E-Eg)/MkgT. Here,

K?— =YMKkgT, Py=nkgT, and Ejg =3MkgT/2 are their homologous for

an ideal gas of M particles. The table | indicatest, as the number density is
augmented, the isotherm compressibility increasesthe pressure and energy
decrease. Probably, this is due to the fact thatdiffusion of the clothed
particles idessimportant for high densities, where each coreapged inside a

volume of the order 06>, whereg is the size of the inner region around the
core, relation (8).

V. CONCLUSIONS

We recall that the present paper was concerned sethi-dilute solutions of

identical star-polymers (clothed particles). Thstfpurpose is the computation
of the effective pair-potential experienced by skar-polymers, which originates
from the existence of the excluded volume forcésséen monomers. We found
that the pair-potential is essentiallljogarithmic below some known

characteristic distance, and decayponentiallyat high distances. Contrary to
dilute solutions, the potential explicitly deperasthe monomer concentration.
Second, with the help of this effective potentiadathe use of the HMSA

integral equation method, we studied the structum@ thermodynamics of the
considered solution.

We emphasize that the HMSA method used here, i€ m@iable than the
variational one. To apply the latter, one needs a refererstersy For fluids and
colloids, for instance, one often chooses the lspftere system as reference,
where the colloids are considered as impenetrgiilerss repelling each other
through a hard-core potential. For this case, #r&tional parameter may be the
hard-sphere diameter. In spite of its simplicitye tveakness of the variational
method is its mean-field character.



We point out that the choice of the characterigadicle densityn[ =]/R3é
solves the ambiguities concerning the structuréofador higher values of the
reduced densityn/n[ :

Finally, the results presented in this paper canrdmgarded as a natural
extension of those relative to dilute solutionspdssible extension to ternary
polymer solutions, made of two chemically incomplatipolymers in a good
solvent, would be an interesting problem to undkerta
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TABLE CAPTIONS

TAB | : Typical values of isotherm compressibility, preagsand energy, for 4
reduced particle densities.



FIGURE CAPTIONS

FIG. 1: Ratio 0/Rg versus the dimensionless variahi@/(pg :

FIG. 2 : Reduced pair-potential(r)/kgT versus the renormalized distance
r/Rg , for 4 values of the reduced number density.

FIG. 3 : Structure factor §(q) from HMSA versus the dimensionless
wavenumbeigag, for 4 values of the reduced number density.



n/n kt/kY | PIPg (E-Eq)/ MkgT
1.2 0.018 20.077 12,912
2 0.037 9.277 5.130
2.5 0.037 9.668 541
4 0.09 4.12 1.12

Tablel
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