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This paper studies the statistical features of the wind at Oran (Algeria). The data used are the 
wind speed and wind direction measurements collected every 3 h at the meteorological station 
of Es Senia (Oran), during the 1982/92 period. The eight directions of the compass card have 
been considered to build the frequency distribution of the wind speed for each month of the year 
and each direction. The three-hourly wind data have been modelled by means of Markov 
chains. First-order nine-state Markov chains are found to fit well the wind direction data, 
whereas the related wind speed data are well fitted by first-order three-state Markov chains. The 
Weibull probability distribution function has also been considered and found to fit the monthly 
frequency distributions of wind speed measurements. Two methods of wind data retrieval are 
thus made available. In fact, two models of chronological bi-series are obtained describing wind 
speed and wind direction.
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1. Introduction

Wind contributes significantly to the thermal exchange processes between earth

surface and atmosphere. It favours water evaporation at ground surface and carries

various particles in suspension in the air. It also represents an appreciable source of

energy. To account for the effect of wind erosion at the ground, knowledge of wind

speed and direction is important. The wind can be considered as a short-time scale,

random, non-stationary process. It is thus of great interest to assess its climato-stat-

istical features. These characteristics can be studied in space and time by using the

wind speed and direction measurements collected near the ground in various

meteorological stations.

To describe the statistical features of the wind speed at a given location, the usual

method is to fit the experimental wind data with probability distributions [1–6]. In

previous studies [7,8], wind speed and direction data have been mapped for Algeria

on a yearly basis. For a given location, the Weibull probability distribution function

was shown to fit the annual frequency distribution of the three-hourly wind speed.

The Weibull distributions obtained for the various meteorological stations of Algeria

were classified by considering either the Ward method or the K-means algorithm

[9–11]. In more than 50% of the meteorological stations, mean wind speed was

found to be lower than 3 m/s. For about 30% of the stations, the corresponding wind

speed values ranged between 3 and 5 m/s. In the rest of the stations, wind speed

was higher than 5 m/s. Thanks to this classification, the wind energy potential in

Algeria can be estimated with a good accuracy.

Another way of estimating the wind statistical features consists in using autore-

gressive processes or Markov chains [12]. This kind of modelling has the advantage

of accounting for the time variations of wind speed and direction. Since the latter

can easily be expressed in term of discrete states, it can be described efficiently by

Markov chains or autoregressive models.

The goal of this paper is to present the results of the modelling, on a monthly

basis, of the three-hourly wind speed and direction data recorded at the site of Es

Senia (Oran) during the 1982/92 period using both Markov chains and Weibull prob-

ability distributions.

2. Data

The station of Es Senia is situated in Algeria at 0° 37’ W, 35° 38’ N and 90 m

of altitude. At this station, the wind is measured by an anemometer and weathercock

label, placed at 10 m above the ground. Wind direction angles are measured with

respect to the North with an accuracy of 0.1°.

Wind speed and direction were averaged over three-hour periods. These measure-

ments are available from 1982-1992. The resulting sequences of three-hourly wind

data consist of fast random fluctuations superimposed on trend variations. The ran-

dom fluctuations and trend variations are caused by atmospheric turbulence and geos-

trophical circulation respectively. Since the trend varies slowly, a month is a suf-
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ficiently short period to represent the three-hour wind variations by a stationary

random variable [13]. Hence, the obtained database has been divided into 12 subsets,

corresponding to the 12 months of the year. A given monthly subset brings together

all the 1982/92 three-hour wind data collected during the same months of the differ-

ent years.

In meteorological applications dealing with wind measurements, the circle

described by the weathercock in the horizontal plane is usually divided into eight

sectors having the same spread of 45°. Every wind direction is assigned to one of

the eight sectors by computing the sector corresponding to the observed direction.

3. Markov modelling

3.1. Physical aspects

The wind can blow in the same direction for a relatively long time. Then it sud-

denly changes from one direction to another, continues to blow in the new direction

and so on. The resulting sequence of wind direction data is thus made of time series

of stable states and abrupt changes between them. These states depend on the wind

strength and can take all the weathercock directions. Wind speed and direction are

both erratic and persistent. This means that wind variations in time can be described

by first–order Markov chains [14].

According to the division into eight sectors presented in section 2, wind direction

measurements, expressed in degree, were classified following nine different states.

These states were labelled by numbers 0–8 corresponding to no wind, north (N),

north-east (NE), east (E), south-east (SE), south (S), south-west (SW), west (W) and

north-west wind (NW) respectively. The nine states thus defined are those to be used

for modelling wind direction data by first-order, nine-state Markov chains.

When analysing the experimental data, three states of wind speed can be dis-

tinguished, namely weak, mean or strong. The numbers 0, 1 and 2 labels these states

respectively. They can be defined by considering the relative frequency distributions

of wind speed obtained in a given site, for each month of the year and each of the

eight sectors. Three typical states can be identified from the histograms of three-

hourly wind speed, which respectively correspond to: 0 � V (i) � 3 m/s (weak

wind), 3 m/s � V (i) � 8 m/s (mean wind) and V (i) � 8 m/s (strong wind). Once

these states are known, wind speed data can be modelled by first-order, three-state

Markov chains.

3.2. First-order Markov model

A series of wind data collected every three hours, is considered, the number of

intervals of 3 h being k at time t. Xk is a random variable that may take one of the

values 0, 1,…, n,…, N-1 at time t [15,16]. These values related to the N possible

states of the phenomenon under study, are respectively denoted �0,…, �n, …,
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�N – 1. Since the probability of observing �n state after 3 k h, is P (Xk = n), a

probability vector can be defined. It is written as:

Q � [P(Xk � 0). …P(Xk � n).…P(Xk � N�1)], (1)

with

�
n

P(Xk � n) � 1. (2)

For the first-order Markov process, the probability of having a transition between

the states occurring for two successive observations, is:

Pij � P(Xk+1 � j /Xk � i), (3)

with i or j = 0, …, n, .... , N-1.

Considering all the possible transitions between the �n states, the Markov tran-

sition matrix:

M � [Pij], (4)

is obtained with

�
j

Pij � 1. (5)

If nij is the number of transitions from �i to � j observed in the sequence of wind

data, the maximum likelihood estimate of the transition probabilities is:

p̂ij �
nij

�
j

nij

. (6)

If Qk and Qk + 1, are the probability vectors observed after 3 k and 3 (k + 1) h

respectively, the transition from Qk to Qk + 1 is expressed as:

Qk+1 � QkM. (7)

According to the ergodic properties of Markov chains, the probability vector Q,

obtained after a long period of time, becomes independent from the initial state, and

relation (7) can be written:

QM � Q. (8)

The solutions to this equation are the long-term Markov probabilities P (Xk =
n) which form the probability vector (3). These probabilities can also be estimated

by calculating the corresponding a priori probabilities Pn = nn / NM, where nn is

the number of �n states observed over a month, and NM the whole number of obser-

vations in the month. To appraise the persistence of the phenomenon under study,

the correlation between two three-hourly observations has to be calculated.

Thus, the autocorrelation coefficient corresponding to a lag of 3 q h, is given by:
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Cq �

�
N�1

i � 0

�
N�1

j � 0

i j pq
ij P(Xj � i) � ��

N�1

i � 0

i P(Xj � i)�2

�
N�1

i � 0

i2P(Xj � i) � ��
N�1

i � 0

i P(Xj � i)�2
(9)

where Pq
ij is the element (ij) of the matrix Mq.

The discrete model described above, is equivalent to a coding system which pro-

duces messages by combining N different symbols. The relative entropy of this sys-

tem is, by definition:

H �
1

log2(1 /N)
�

N � 1

i � 0

Pi log2Pi (10)

The loss of information caused by the classification of wind data into N stable

states, is then given by:

L � 1�H. (11)

3.3. Wind direction modelling

The wind direction data collected at Oran during the 1982/92 period, have been

modelled by first-order, nine-state Markov chains, following two different

approaches. The first one is based on the use of homogeneous Markov chains to

describe the three-hourly wind direction fluctuations for each month of the year. This

means that all the Markov parameters defined above are constant with time over

the month.

To illustrate the resulting model, the Markov transition probabilities of wind direc-

tion data obtained in January, April, July and October are plotted against the various

directions in Fig. 1. As shown in Fig. 2, the long-term Markov probability of having

one of the nine states of the wind direction, calculated for each of the 12 months,

is found to be almost equal to the corresponding a priori probability. More generally,

homogeneous Markov models are seen to yield a good representation of the sea-

sonal variations.

The second approach consists in setting up Markov models with time-varying

parameters. The use of inhomogeneous Markov processes leads to improved models,

which account for the daily variations. To obtain this kind of model, each of the 12

monthly subsets of three-hourly wind direction data has been divided into four

samples, rather than considering only one subset per month. For each month of the

year, these samples denoted S1, S2, S3 and S4, are made of all the measurements of

the 1982/92 period performed in the intervals running from 0–6 h, 6–12 h, 12–18

h, and 18–24 h respectively. Then, each of the four samples has been modelled by

first-order, nine-state Markov chains. The corresponding transition matrices are

denoted M1, M2, M3 and M4.

Fig. 3 gives, as an example, the results of the calculation of the Markov transition

probabilities characterising the four January samples of wind direction data. The
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Fig. 1. Transition probability Pii for the 3 h wind direction data collected at Oran and modelled by

homogeneous first-order nine-state Markov chains.

Fig. 2. Representation of long-term and a priori probability for hourly wind direction data. P1 is the a

priori probability corresponding to the sector 0. P2 is the a priori probability corresponding to the sector

1. P(X = 1) is the long-term probability corresponding to the sector 0. P(X = 2) is the long-term probability

corresponding to the sector 1.

product of these matrices has been performed, and the resulting matrix (M1 M2 M3

M4) has been compared with the transition matrix (M) obtained from the approach

based on homogeneous Markov chains. For each of the 12 months, these matrices

have been tested for homogeneity using the c2 distribution with eight degrees of

freedom. The level of confidence has been fixed at 1%. In this case, all the Pij values
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Fig. 3. Transition probability Pii for 3 h wind direction data collected at Oran in January and modelled

by inhomogeneous first-order nine-state Markov chains.

of these matrices are found to be falling within a 0.99 confidence range. This proves

that the (M1 M2 M3 M4) and (M) matrices are identical.

The autocorrelation coefficient has been calculated using (9). The values of Cq

estimated for each month of the year and three different lags, namely 3, 6 and 9 h,

are plotted in Fig. 4. These plots show that the autocorrelation coefficient decreases

quickly when the lag (q) increases. When computing Cq for various lags, the autocor-

Fig. 4. Yearly variations of autocorrelation coefficients C1, C2 and C3 for the wind direction, C1, C2 and

C3 are the correlation coefficients when two data are separated by three, six or nine h, respectively.
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relation function has been found to be approximately equal to C1, where C1 is the

one-lag autocorrelation coefficient. This result means that the change in wind direc-

tion strongly depends on the immediate past. Hence, it justifies the limitation of the

Markov chains used in this study to the first order.

The relative entropy was also computed for each of the 12 months. The results

show that the loss of information due to the use of homogeneous first-order nine-

state Markov model, only represents a few percentage points. The yearly variations

of entropy for the inhomogeneous first-order nine-state Markov models are illustrated

in Fig. 5. The mean monthly value of information loss is found not to exceed 11%.

Hence, it may be concluded that such a model describes the wind direction variations

for Oran with a reasonably good accuracy.

3.4. Wind speed modelling

First-order three-state Markov chains have been used to model the wind speed

data collected every 3 h at Oran during the 1982/92 period. It has to be reminded

that the three states are “weak wind” (state �1), “mean wind” (state �2) and “strong

wind” (state �3).

To illustrate the calculation of the Markov transition probabilities for wind speed,

the plots of P11, P22, and P33 variations over the year are presented in Fig. 6. These

diagrams show that the wind is weak at Oran almost all the time, and that strong

winds are rare. This means that the wind energy potential is significant, but not very

important in this region.

For each month of the year, the long-term Markov probability of having one of

the three states of wind speed has been compared with the corresponding a priori

probability. The results are plotted in Fig. 7 where it can be seen that both types of

Fig. 5. Yearly variations of relative entropy for 3 h wind direction data.
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Fig. 6. P11, P22 and P33 transition probabilities for the 3 h monthly wind speed data collected in Oran

and modelled by first-order three-state Markov chains.

Fig. 7. A priori and Long-term probabilities for the 3 h monthly wind speed, noted Pi and P(X = i)

respectively with i = 1, 2 or 3. i represents the sector.

probability are identical for each of the three states. This result proves that the first-

order three-state Markov chains correctly fit the three-hourly wind speed variations.

The autocorrelation coefficient has been calculated for q = 1, 2 and 3 (i.e., lag

equalling 3, 6, and 9 h respectively). The diagrams representing the variations of
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C1, C2, and C3 over the year are given in Fig. 8. The mean value of C1 is close to

0.5, showing the strong correlation between two successive states. C2 varies from

0.17-0.33, and C3 is smaller than C1 and C2. However, it sometimes reaches 0.22.

More generally, the autocorrelation function is found to vary slowly. This means

that the wind state observed at hour (h) is mainly influenced by the wind speed

measured three hours before, i.e. h – 3, but the measurements performed at the

preceding hours, h – 6, h – 9,…, also bring non negligible information.

Such a result is confirmed by the values of relative entropy obtained over the year.

Fig. 9 indicates that the yearly variations of the relative entropy are weak. Entropy

is minimum in January, when it equals 75%, and maximum in May, when it reaches

89%. Hence, the resulting loss of information varies from 21-25%.

In spite of the equality of the a priori and long-term Markov probabilities men-

tioned above, the strong values of information loss imply that the first-order Markov

model cannot account accurately for the wind speed fluctuations. To improve this

kind of modelling, second and third-order transitions must be considered, since they

are as important as the first-order ones.

4. Weibull distribution-based model

The implementation of second or third-order Markov models requires tedious com-

putation.Then, instead of such approaches, we have considered the Weibull distri-

bution to model the 3 h wind speed measurements performed at Oran [17–21]. The

Weibull probability density function is given by:

f(v) �
k

A
�v

A
�k�1

exp���v

A
�k� (12)

Fig. 8. Yearly variations of autocorrelation coefficients for the 3 h monthly wind speed. C1, C2 and C3

are the correlation coefficients, when two data are separated by three, six or nine hours respectively.
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Fig. 9. Yearly variations of relative entropy for the 3 h monthly wind speed.

where, v is the wind speed in m s-1, k is a dimensionless shape factor, and A is a

scale factor with the dimension of speed. The Weibull cumulative distribution func-

tion is:

F(V) � �
V

0

f(v)dv � 1 � exp� � �V

A
�k� (13)

where F (V) is the probability for the wind speed to be equal or lower than V. This

function can be transformed into a linear relation of the form y = a x + b

by calculating:

y � Ln{�Ln[1 � F(V)]} � kLnV�kLnA. (14)

The double logarithmic transformation has been applied to each of the monthly

cumulative frequency distributions of the three-hourly wind speed data. The experi-

mental data thus transformed have been smoothed using a least square method. The

a and b parameters of the regression equation have been computed. Taking into

account that a = k and b = – k Ln A, the shape and scale factors of the corresponding

Weibull distribution are obtained.

The plots of Figs 10 and 11 give the k and A values obtained at Oran for each

of the eight directions and each of the 12 months. Fig. 10 shows that wind direction

from west, north and south-west are dominant, with peak values in February, July,

and June. For all sectors taken together, the peak is in April.

Fig. 11 also shows that the shape factor is always higher than 1. This means that

the shape of the distribution is not exponential. However, Fig. 10 shows that, for

the monthly curves, k is sometimes lower than 1.

For all the regression equations obtained in this study, the correlation coefficient

is higher than 0.9 (Figs 12 and 13). For the south, south-west and west directions,
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Fig. 10. Shape (k) and scale (A) factors of Weibull distribution estimated at Oran for each of the eight

directions and for months running from January to December.

the correlation coefficient is higher than 0.97. For all the sectors together, it is higher

than 0.96.

For a given month, each of the eight frequency distributions of three-hourly wind

speed measurements is smoothed by a Weibull probability distribution function. All

the results obtained with this kind of modelling, are in good agreement with those

arising from experimentation. The results of the implementation of the usual hypoth-

esis tests confirm that the Weibull probability distribution very well describes the

monthly frequency distributions of hourly wind speed data.
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Fig. 11. Shape (k) and scale (A) factors of monthly Weibull distribution estimated at Oran for all sectors

taken together.

5. Conclusion

This study confirms that wind is a Markov process, in which the main contribution

arises from the first-order transitions. Two bivariate models are obtained. The first

one is based on the first-order nine-state Markov chains for wind direction, and first-

order three-state Markov chains for wind speed. The second one is based on the

first-order nine-state Markov chains for wind direction, and Weibull distribution, for

wind speed.

The memory effect that characterises the Markov processes is well mirrored by

the autocorrelation obtained for the two used variables.

The bivariate model consisting in the combination of only two Markov chains,

correctly describes the three-hourly wind data. It generates two time series corre-

sponding to two independent variables. However, this model leads to non negligible

loss of information.

The three-hourly wind data are better described with the Weibull probability distri-

butions associated to Markov chains. The tight link observed between experimental

and retrieved series (95%) confirms this result. Moreover, this kind of bivariate model

improves the usual Weibull-based wind modelling.

Using the Markov model of wind direction obtained in section 3.3, the Weibull

model of wind speed generates joint times series. The addition of the wind direction

model is useful since it enables to retrieve bivariate time series of the wind. This

can be used for the reconstruction, simulation, and prediction of the wind.

As mentioned in section 3.4, the wind energy potential in the region of Oran is

moderate, but sufficient to be used as an alternative energy source. However, the

results of section 4 show that for some periods of the year and for some directions,

the wind energy can be important.

Recently, both bivariate models have also been applied to hourly wind measure-

ments collected in the meteorological station of Chasseral (Switzerland) from 1990-

2000. This station is situated in the Jura mountains at 1600 m of altitude. The

measurements were performed at 40 m above ground level. The obtained results are
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Fig. 12. Correlation coefficient between the experimental wind speed distribution and the corresponding

values obtained from fitting the Weibull distribution for each sector.

in good agreement with present ones. They confirm that the combination of Weibull

distributions and Markov chains yields the best representation of wind data.

The wind data generated by the improved bivariate model could be useful to size

the wind power generators to be installed in any location. These data are also usable

for the evaluation of the performance of such generators.
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Fig. 13. Correlation coefficient between the experimental wind speed distribution and the corresponding

values obtained from fitting the Weibull distribution for all sectors together.
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