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Corona emission from raindrops in strong electric fields

as a possible discharge initiation: Comparison between

horizontal and vertical field configurations

Sylvain Coquillat, Bruno Combal, and Serge Chauzy
Laboratoire d’Aérologie, UMR CNRS/UPS 5560, Observatoire Midi-Pyrénées, Toulouse, France

[1] The purpose of this work is to determine which electric field configuration (vertical or horizontal) produces 
corona emission from raindrops for the lowest ambient electric field. For that, a numerical modeling of the 
distortion of uncharged raindrops falling at terminal velocity in quiescent air in a horizontal electric field is 
performed. The results are compared with previous numerical study involving a vertical electric field. It is 
shown that the fall velocity is quite unaffected by ambient field intensities lower than 200 kV/m. The 
disruption and the corona onset fields are lower than those corresponding to the vertical field configuration 
and the larger the drop the larger the difference. For a given altitude the difference between the corona onset 
fields in both configurations can reach about 100 kV/m; meanwhile for a given ambient field intensity, the 
difference in altitude of corona emission can rise to about 1 km. These onset field intensities are, though, too 
high for allowing drop breakup and corona emission from an uncharged drop in permanent field conditions 
below 12 km height. An estimation of the critical onset field (disruption and/or corona emission) is carried out 
for charged drops in the horizontal field configuration. For a drop 2 mm in spherical equivalent radius carrying 
the quarter of its Rayleigh maximum net charge, the critical onset field is approximately equal to 290 kV/m 
below 7.4 km height and decreases down to 110 kV/m at 10 km. Given that present modeling does not take 
into account the effect of turbulence that could induce drop oscillations, the critical field intensities calculated 
here may be considered as upper limits.

1. Introduction

[2] In order to account for the electrostatic processes in
meteorological models of cloud convection, the various
interactions between cloud microphysics and thunderstorm
electrification should be investigated. The final aim is to
find relevant parameterizations for phenomena such as
lightning initiation, collision and collection efficiencies,
riming effect, raindrop distortion and disruption, and fall-
ing velocity changes. Each of them must therefore be
analyzed and quantified. As regards to the lightning
initiation, many parameters still remain unknown: cloud
volume of intense electric field, onset ambient electric
field, and microphysics involved. Several mechanisms
likely to produce corona, which is the first step to a
propagative discharge, have been studied experimentally
[Dawson, 1969; Richards and Dawson, 1971; Griffiths and

Latham, 1972, 1974; Griffiths et al., 1976]. They involve
various types of hydrometeors like water drops, ice par-
ticles, or melting hailstones. The corresponding electric
fields required to trigger corona, whatever the altitude
level is, range above about 400 kV/m which is the
strongest electric field that could have been measured in
a thundercloud [see MacGorman and Rust, 1998]. How-
ever, Crabb and Latham [1974], Blyth et al. [1992], and
Blyth et al. [1998] showed that glancing collisions involv-
ing at least one raindrop can produce long liquid filaments
at the tips of which corona is easily emitted in electric
fields down to 150 kV/m [Blyth et al., 1998]. Even if the
probability of occurrence of such interactions needs to be
evaluated, this type of mechanism provides the lowest
thresholds of corona emission from hydrometeors ever
measured experimentally.
[3] Models by Coquillat and Chauzy [1994] and Georgis

et al. [1995] indicate that corona can also be triggered at
realistic altitudes from stable raindrops in vertical electric
fields of the same intensities, provided either their electric
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charge is high, or pairs of drops interact. On the other hand,
if most of the cloud-to-ground lightning flashes are sup-
posed to be initiated in a vertical ambient field, the horizon-
tal structure of intracloud discharges is often predominant
[MacGorman et al., 1981], especially in storms with large
stratified regions [Krehbiel et al., 2000]. Several experi-
ments [Nolan, 1926; Macky, 1931; Ausman and Brook,
1967; Kamra and Ahire, 1989; Kamra et al., 1993; Georgis
et al., 1997] were performed to study the influence of a
horizontal electric field on the behavior of raindrops. They
show that the disruption field at sea level pressure is clearly
lowered in such a field configuration for uncharged drops
since both aerodynamical and electrical effects act in the
same direction when disturbing the drop stability. In this
way, we wonder whether pure corona at higher altitudes
would also be easier to trigger in the horizontal field
configuration, especially for charged drops. It can be pointed
out from the experimental work by Dawson [1969] that
corona emission from water drop surfaces is favored by an
intense surface electric field and by a large radius of
curvature. Previous modeling of raindrop behavior in a
vertical ambient field downward directed [Coquillat and
Chauzy, 1993, 1994] shows that corona is emitted from the
bottom of positively charged drops and from the top of
negatively charged drops where the surface field is rather
low and the radius of curvature large. In a horizontal ambient
field, the combination of electric and aerodynamic distor-
tions leads to a corona emission in the ambient field
direction from the equator of the drop where the surface
field is rather high but the radius of curvature small (see
pictures in Kamra et al., 1993). However, we still do not
know which field configuration is the most favorable to
corona triggering.
[4] The goal of present study is to compare the influ-

ence of the field direction (vertical or horizontal) on the
triggering of corona from raindrops. We carried out this
work in a numerical way in order to overcome the
practical constraints of a laboratory experiment almost
impossible to conduct at variable pressure and with
charged raindrops. In order to achieve this comparison,
we performed a modeling of the behavior of uncharged
raindrops falling at terminal velocity in quiescent air in a
horizontal electric field - not modeled, the case of charged
raindrops will however be discussed. The results are
directly comparable to those of Coquillat and Chauzy
[1993, 1994] since their model is based on the same
assumptions. The equilibrium shape is computed in a
step-by-step method by distorting an initially spherical
drop in order to make the internal overpressure uniform.
As noted by Kamra et al. [1993], not only the terminal
velocity and the direction of the disruption field but also
the drop oscillations are key parameters of the breakup
characteristics of the drops. Therefore, a raindrop model-
ing that neglects the oscillations provides the average
shape of raindrops. The altitude of corona occurrence
computed subsequently must be regarded as an average
altitude as it is in Coquillat and Chauzy [1994] and in the
present work.
[5] The main problems arising from this modeling are

first, the computation of the surface electric field and
second, the determination of the aerodynamic pressure
necessary to calculate the terminal velocity. The former is

solved by an integral method and the latter is realized by
adapting the semiempirical method by Beard and Chuang
[1987] to the shape of horizontally stretched drops.

2. Distortion Modeling

[6] As observed and analyzed by Kamra et al. [1993] in a
wind tunnel experiment, raindrops undergo oscillations and
even rotation around their vertical minor axis when falling
at terminal velocity. However, the turbulence to which the
drops are submitted inside thunderclouds may not exhibit
the same characteristics than that produced in a wind tunnel.
Therefore, the shape of the drops could oscillate around the
equilibrium shape in a way that seems difficult to accurately
model. This is one reason for which we do not take into
account the oscillations in the present modeling. The other
reason arises from the comparison between the present
work, the numerical study by Coquillat and Chauzy
[1993, 1994] as indicated in section 1, and the experimental
work by Georgis et al. [1997]. As a matter of fact, the
disruption electric field deduced from the present modeling
will be compared and scaled with the results of this
laboratory experiment in which uncharged raindrops fell
at terminal velocity in quiescent air in a horizontal electric
field. Georgis et al. [1997] have shown that the oscillations
undergone by the drops are largely damped by their fall
through the still air in a 17 meters height column so that
their shape can be compared to that in an equilibrium state.
Therefore, we focus this modeling on the equilibrium shape
of the drops in order to allow a correct comparison with this
experiment and the numerical study in the vertical field
configuration by Coquillat and Chauzy [1993, 1994].
[7] In a horizontal electric field, the drops are stretched

along the field direction due to induction. Consequently,
their equilibrium shape can be described as two half-
ellipsoids having two common horizontal axes, the longer
being aligned with the field direction, as shown in Figure 1.
Ea features the ambient electric field, a and b the perpen-

Figure 1. Geometry of the pseudo-ellipsoidal shape of a
raindrop elongated by the horizontal ambient field Ea in the
x direction. vf features the airflow direction.
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dicular horizontal semiaxes, ct the vertical semiaxis of the
top half of the drop, cb the vertical semiaxis of the bottom
half, and vf the direction of the airflow velocity. Also
displayed in Figure 1 are the spherical coordinates (r, q, j)
of a surface point M used for the calculation of the surface
electric field and of the aerodynamic pressure introduced in
section 3.
[8] The basic procedure of the present modeling consists

in adjusting, in a quasi-static way, the length of each
semiaxis in order to make the internal overpressure �P
uniform at several test points labeled from 1 to 4 in Figure
1. This procedure is performed for increasing ambient
electric fields as far as the convergence of the �P values
is possible. The maximum electric field compatible with an
equilibrium shape is considered as the disruption field. On
the basis of the local processing of Laplace’s equation by
Taylor [1964], developed by Abbas and Latham [1969] and
Coquillat and Chauzy [1993], the computation of the
internal overpressure arises from the local pressure balance.
This balance involves the hydrostatic pressure Ph, the
aerodynamic pressure Pa, the electrostatic pressure Pe, and
the pressure due to surface tension Ps:

�Pþ Ph þ Pa þ Pe ¼ Ps; ð1Þ

where:

Ph ¼ rwgh; ð2Þ

rw being the water density, g the gravitational acceleration,
and h the height of water above the considered point;

Pa ¼
rav

2

2
Pd; ð3Þ

ra being the air density, v the terminal velocity of the drop
(see section 4), and Pd the dimensionless aerodynamic
pressure (see section 3) at the considered point;

Pe ¼
e0E

2

2
; ð4Þ

e0 being the dielectric constant of the air, and E the electric
field near the surface at the considered point. This equation
is valid as long as the electric field is perpendicular to the
drop surface, that is, as long as it can be assumed that the
drop behaves as a conductor, which is stated in the present
paper. At last, the pressure due to surface tension is given
by:

Ps ¼
2Ts

Rc

; ð5Þ

Ts being the coefficient of surface tension, and Rc the
equivalent curvature radius at the considered point. Rc is
analytically calculated from both principal curvature radii
determined at each test point from the corresponding
ellipses. For the test points located at the equator (i.e.,
labeled 1 and 2), the principal curvature radius in the
vertical plane is averaged since the top and bottom ellipses
have different semiaxes in the vertical direction.

[9] As far as the surface electric field E is considered, an
integral method based on a sampling of the surface charge
density was performed. It is described in the following. The
uncharged raindrop is considered as a conductor having a
uniform electric potential equal to zero and the presence of
the ambient electric field Ea induces a surface charge
separation by electrostatic influence. The drop is divided
into n surface samples. An unknown value si of the surface
charge density is associated with each sample i. The electric
potential is then written at the center of the ith sample as
follows:

V ið Þ ¼
X

n

j¼1

sj

4pe0

Z Z

dSj

dij
� Eaxi ¼ 0; ð6Þ

where dij is the distance from a given point of the jth sample
to the center of the ith sample, dSj is the elementary surface
of the jth sample, Ea is the ambient electric field, and xi is
the abscissa of the center of the ith sample. If the electric
potential is expressed at each center of the n surface
samples, we obtain a system of n linear equations, which is
set in the following matricial form:
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where the coefficients aij are the multiplicands of sj in
equation (6). However, since the electric charge distribution
displays a plane of symmetry defined by y = 0 and a plane
of antisymmetry defined by x = 0, the values of sj are the
same (except for the sign) on each quarter of the drop. It is
therefore possible to factorize them so that the number of
equations required to solve the problem is reduced by a
factor 4. In this way, equation (6) is written only on one
quarter of the drop and the new coefficients aij take into
account the contribution of four samples. A specific process
is applied in the case where i = j corresponding to the
electric potential calculated on the considered sample itself.
The coefficient aii is numerically computed by a double
integral routine like all coefficients aij except on a small
element, located at the center of the sample. The potential
on this element, of sides 2A and 2B, is approximated by the
potential due to a plane quadrilateral of same sides 2A and
2B according to Durand [1964]:

Vii ¼
si

pe0
A ln

Bþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

A2 þ B2
p

A

 !

þ B ln
Aþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

A2 þ B2
p

B

 !" #

:

ð8Þ

At last, equation (7) corresponding to the quarter of the drop
is solved by the Gauss method and the surface electric field
E(i) near the surface of any point i is given by:

E ið Þ ¼
si

e0
: ð9Þ

3



It can be pointed out that the present method can easily be
made suitable to the case of a charged raindrop. The electric
potential of the drop being unknown, an additional equation
is required which is given by the equation of the charge
conservation:

X

n

i¼1

ZZ

si dSi ¼ Q: ð10Þ

3. Computation of the Aerodynamic Pressure
Distribution

[10] The main problem encountered in the modeling of
raindrop distortion concerns the determination of the aero-
dynamic pressure distribution at the drop surface, and
therefore the calculation of the flow with detached wake
about nonspherical bodies. For raindrops of spherical equiv-
alent radii ranging from 0.5 mm to 2.5 mm, the correspond-
ing Reynolds numbers NRe lie between about 200 and 3000
as indicated in Table 1 for three different atmospheric
conditions. We suppose that the flow regimes are similar
to that of a rigid sphere in a laminar steady free-stream
velocity as described by Beard [1976]. The flow should
therefore be characterized by the appearance of steady
vortex trails (NRe < 300) and the formation of vortex loops
by roll-up and partial detachment of wake vortex ring (300
< NRe < 450). At large Reynolds numbers (NRe > 450) a
wake detachment takes place and becomes turbulent. In the
following, we consider that the general feature of the flow
exhibits a detached and turbulent wake whatever the size is.
The induced error for small drops is negligible since for
radius lower than about 0.7 mm (NRe = 481), the contribu-
tion of the aerodynamic pressure never exceeds 7% of the
pressure due to surface tension in the pressure balance
(equation (1)).
[11] Given that the pressure distribution is to be intro-

duced in an iterative model of raindrop distortion, we
deliberately avoided carrying out any 3D computation of
the airflow with turbulent detached wake since it would
have been much more expensive in computation time. Thus,
we determine the pressure distribution in the semiempirical
way proposed by Beard and Chuang [1987] by adjusting
the pressure distribution measured around a sphere to the
shape of a nonaxisymmetrical body.

3.1. Description of the Method

[12] The choice of the pressure distribution around a
sphere was very restricted. No distribution corresponding
to Reynolds numbers lower than NRe = 60 � 103 like that

measured by Maxworthy [1969] has been found in the
literature because of experimental constraints that arise from
this type of measurement [see Beard and Chuang, 1987].
Therefore we base our calculations on the nondimensional
distribution of Maxworthy [1969] whose characteristics are
described hereafter. The angle at which the local pressure is
the same as that upstream is close to q = 135� (actually 45�
from the upstream direction), q being defined in Figure 2.
The minimum pressure before separation appears at
q = 109� (71� from the upstream direction) with a magnitude
of about �0.56. The detachment occurs close to the equator
with a maximum pressure after separation of about �0.38.
At last, the pressure keeps close to �0.4 for the whole
downstream half of the sphere. Maxworthy measured all
these parameters in function of Reynolds numbers ranging
between 60 � 10

3 and 200 � 103. The asymptotic behavior
of his measurements indicates that only the location of the
minimum pressure should change, though slightly from
109� to 110� (71� to 70� from the upstream direction,
respectively) for Reynolds numbers lower than 103. In this
way, the pressure distribution by Maxworthy [1969] is
expected to be a good reference for the flow around a
sphere in the range of Reynolds numbers corresponding to
that of raindrops.
[13] Since the minimum pressure location is not very

sensitive to the Reynolds number value in the case of a
sphere, we make the same hypothesis in the case of a
distorted raindrop. In further calculations about nonaxisym-
metrical bodies, we will thus consider that the minimum
pressure keeps close to the tangent angle c = 71�, which
implicitly corresponds yet to different zenithal angles q in
each j-direction. The tangent angle c, which is defined in
Figure 2, allows normalizing the pressure distribution for
spheroids [Beard and Chuang, 1987]. The actual location of
the detachment is governed by the flow in the boundary
layer about which we make no hypothesis. Hence, the
detachment is supposed to appear at the equator even
though a turbulent airflow (like updrafts in thunderclouds)
could induce turbulence in the boundary layer and conse-
quently a backward motion of the detachment. Therefore,
no correction is made on the location of these two particular
points. According to Beard and Chuang [1987], the cor-

Table 1. Reynolds Number of Precipitating Raindrops of

Spherical Equivalent Radius R for Three Atmospheric Conditionsa

Radius, mm 0.5 1.0 1.5 2.0 2.5

T = �10�C; P = 500 hPa 202 668 1277 1877 2446
T = 0�C; P = 700 hPa 234 802 1515 2249 2915
T = 20�C; P = 1013 hPa 267 862 1605 2345 3018

aCalculations were performed using the terminal velocity of raindrops
measured at see level pressure by Gunn and Kinzer [1949], and the method
by Beard [1976] to take into account the influence of pressure and
temperature.

Figure 2. Definition of the tangent angle c in a vertical
plane j.
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rected pressure for the drop Pd(c) in a plane j is computed
from:

Pd cð Þ ¼ 1� k cð Þ 1� Ps cð Þ½ 	 ð11Þ

by using the stagnation point as a reference, Ps(c) being the
pressure distribution for a sphere measured by Maxworthy
[1969], and k(c) a shape dependent factor. Assuming that
the fractional deviation of Pd(c) from Ps(c) would be the
same as the fractional deviation in potential flow of a
pseudo-ellipsoid from a sphere, k(c) is given in the unse-
parated flow region (0� < c < 71�) by:

k cð Þ ¼
1� Pd cð Þ

1� Ps cð Þ
¼

1� Ppotd cð Þ

1� Ppots cð Þ
; ð12Þ

where Ppots(c) = 1 � 9/4 sin2(c) is the analytical solution
for the potential flow around a sphere, and Ppotd(c) is the
pressure distribution for the potential flow around a pseudo-
ellipsoidal body presented in the following section 3.2. In
the downstream half of the drop (90� < c < 180�), the
comparison between the pressure distributions for a sphere
by Fage [1937], Maxworthy [1969], and Achenbach [1972]
at different Reynolds numbers shows that the nondimen-
sional pressure undergoes minor variations and remains
close to about �0.4 in the whole turbulent wake. Thus, the
pressure does not seem to be sensitive neither to the location
at drop surface nor to the Reynolds number. Therefore k(c)
is held at the uniform value kwake which is expected to be
close to unity since the pressure in the turbulent wake
should not be very dependent on the drop shape unlike in
the unseparated flow region. At last, the value of k(c)
between the minimum pressure and the equator is a linear
transition from k(c) at the minimum pressure to kwake.

3.2. Calculation of the Potential Flow

[14] Milne-Thomson [1938] found a solution for the
potential flow around ellipsoidal bodies by solving the Lap-
lace equation. He gave a specific expression for the potential
velocity using an ellipsoidal coordinate system. This kind of
solution has been used in particular topics like atmospheric
turbulence measurements [Oost, 1991] or aeronautical prob-
lems [Band and Payne, 1980]. For axisymmetrical shapes
like those of freely falling raindrops, Grover and Beard
[1974] determined a series solution for the potential flow.
Beard and Chuang [1987] used an analytical solution, based
on the stream function given by Happel and Brenner
[1965]. They calculated the potential velocity vp at the
surface of an oblate spheroidal shape (i.e., the revolution
shape around the small vertical axis of an ellipse) featuring
the lower half of the drop. This velocity is given in oblate
spheroid coordinates (x, h) by:

vp ¼
v sin h

l2 þ 1
� �

� sin2 h
� �1=2

l2 þ 1
� �

cot�1 l� l
� �

; ð13Þ

where h is defined by tan h = a tan q, and l is the ratio of
the axis ratio a to the eccentricity.
[15] Nevertheless, none of these solutions is suitable to

the pseudo-ellipsoidal shape of the horizontally stretched
drops studied here. Therefore we performed a numerical
computation of the potential velocity vp (see Appendix A)

from which the dimensionless pressure is deduced accord-
ing to the Bernoulli theorem:

P ¼ 1�
v2P
v2

; ð14Þ

where v is the terminal velocity of the drop. This
computation led us to point out very convenient results.
As far as the potential flow is considered, the pressure
distribution versus the tangent angle c is independent of
the azimuth angle j. Furthermore, this pressure distribu-
tion around an ellipsoidal body of vertical semiaxis c and
of horizontal semiaxes a and b is exactly the same than
that around a spheroidal body of same vertical semiaxis c
and of horizontal semiaxis equal to (a + b)/2. In this way
it is possible to apply the analytical solution of the
potential velocity vp for spheroids (equation (13)) used by
Beard and Chuang [1987] to the top and bottom
ellipsoids of the drops studied here. The pressure
distribution of the potential flow around a pseudo-
ellipsoidal body is thus a combination of both analytical
solutions Pt(c) and Pb(c) deduced from equations (13)
and (14) for the top and bottom spheroids of horizontal
and vertical semiaxes [(a + b)/2, ct] and [(a + b)/2, cb],
respectively. Actually it is built up as a weight average in
which each analytical distribution is associated to a
weight function depending on the tangent angle. The
weight function wb(c) of the bottom spheroid distribution
decreases linearly from 10 to 1 between c = 0� and c =
90� and from 1 to 0 until c = 180�. The weight function
wt(c) of the top spheroid distribution increases linearly
from 0 to 1 between c = 0� and c = 90� and from 1 to
40 until c = 180�. At each tangent angle c the pressure
distribution of the potential flow is given by:

Ppotd cð Þ ¼
wb cð ÞPb cð Þ þ wt cð ÞPt cð Þ

wb cð Þ þ wt cð Þ
: ð15Þ

Figure 3 displays the comparison between Ppotd(c) and the
numerical solution calculated by spherical harmonics (see
Appendix A) in three different j-planes for one given shape.
Also displayed are portions of the analytical pressure
distributions Pt(c) and Pb(c) corresponding to the associated
top and bottom spheroids from which Ppotd(c) is deduced.
The maximum weights 10 and 40 were chosen to ensure a
good enough fitting of the numerical solution whatever the
shape is. This figure confirms that the pressure distribution is
the same regardless of the j-direction and one can see the
fairly good agreement between the fast calculation of
Ppotd(c) presented above and the numerical computation.

3.3. Determination of kwake

[16] The determination of kwake arises from the balance
between the pressure drag Dp of the drop, computed by
integration of the pressure distribution Pd to the whole
surface:

Dp ¼ �
1

2
rav

2

Z

drop

Pd nz dS; ð16Þ

where ra is the air density and nz is the vertical component
of the local normal to the surface, and the theoretical
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pressure drag which is given by the following equation if
the buoyancy force is neglected:

Dp ¼ D
CDp

CD

¼ Md g
CDp

CD

; ð17Þ

where D is the total drag on the drop (i.e., the aerodynamic
drag force), CDp and CD are the pressure drag and the total
drag coefficients respectively, Md is the drop mass, and g is
the gravitational acceleration (9.8 m/s2). According to the
assumption of Beard and Chuang [1987] and Chuang and
Beard [1990], the ratio CDp/CD is considered to be the same
for a raindrop as for a sphere. It is calculated from the
following empirical formula based on the measurements of
Achenbach [1972]:

CDp

CD

¼ 1� n N�m
Re ; ð18Þ

where the equivalent radius is used to define the Reynolds
number NRe. The relation between CDp/CD and NRe is
displayed in Figure 4 with n = 13.4 and m = 0.58
corresponding to the interpolation performed by Beard and
Chuang [1987] of Achenbach’s [1972] data with the
numerical result of LeClair et al. [1970] for NRe = 400.
[17] In order to test the determination of kwake we per-

formed a calculation for a raindrop of radius R = 2 mm
falling at its terminal velocity v = 8.83 m/s in still air [Gunn
and Kinzer, 1949]. Its shape is defined by the geometrical
parameters a = 1, b = 1, ct = 0.96, and cb = 0.62 [Coquillat
and Chauzy, 1993] corresponding to the actual semiaxes of

the drop normalized by the semiaxis in the x direction. We
found kwake with a relative accuracy of 0.3% corresponding
to an accuracy of 1% on the pressure drag balance. It can be
pointed out that this balance is rather sensitive to the value
of kwake but as expected, kwake is close to unity (0.977).
Consequently the corrected pressure is close to the meas-
ured distribution by Maxworthy [1969] in the turbulent
wake as it is shown in Figure 5. The pressure distribution
exhibits an artificial break due to the change in the coef-
ficient k(c) at the equator but this region plays a negligible
part in the pressure drag since the local normal to the
surface is horizontally directed.

4. Computation of the Terminal Fall Speed

[18] Knowing the aerodynamic pressure distribution for a
given shape, it is possible to evaluate the change in terminal
fall speed due to the change in raindrop shape. In the
following, the subscript 0 corresponds to the raindrop in a
zero field; meanwhile no subscript corresponds to the
distorted drop in the horizontal electric field. If we neglect
the buoyancy effects, we can say that the drop is in a
vertical equilibrium state under the influence of its weight
and of the aerodynamic drag force when it reaches its
terminal velocity (see Gay et al. [1974] in the case of a
vertical electric field). The presence of an electrical field
does not add a new force in this balance since its acts in the
horizontal direction and above all, the drop is uncharged.
Therefore, the sole influence of the electric field is to
change the shape, the velocity, and the drag coefficient of
the drop in such a way that the aerodynamic drag force

Figure 3. Comparison between the dimensionless pressure computed with the spherical harmonics
method and the analytical solutions for spheroids of horizontal semiaxis equal to the average of both
semiaxes of the drop: a = 1.00, b = 0.90, ct = 0.85, cb = 0.65.
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Figure 5. Corrected dimensionless pressure for the real flow over a raindrop (a = 1.00, b = 1.00, ct =
0.96, cb = 0.62) falling at terminal velocity in a zero electric field.

Figure 4. Ratio of the pressure drag coefficient to the total drag coefficient in function of the Reynolds
number.
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remains equal to the weight of the drop. The total drag being
unchanged, one can write:

CD0

1

2
ra v

2
0 p a0 b0 ¼ CD

1

2
ra v

2 p a b; ð19Þ

where the total drag coefficients can be expressed in
function of the pressure drag coefficients and the Reynolds
numbers according to equations:

CD0 ¼
CDp0

1� nN�m
Re0

CD ¼
CDp

1� nN�m
Re

8

>

>

<

>

>

:

: ð20Þ

At last, the pressure drag coefficients are calculated from the
dimensionless pressures:

CDp0 ¼
1

p a0 b0

Z

drop0

Pd0 nz0 dS0

CDp ¼
1

p a b

Z

drop

Pd nz dS

8

>

>

>

>

>

<

>

>

>

>

>

:

: ð21Þ

The combination of equations (19), (20), and (21) leads to
the following expression for the terminal fall speed of the
distorted raindrop:

v ¼ v0
1� nN�m

Re

1� nN�m
Re0

Z

drop0

Pd 0 nz 0 dS0

Z

drop

Pd nz dS

0

B

B

B

B

B

@

1

C

C

C

C

C

A

1

2

: ð22Þ

[19] Since the Reynolds number NRe is calculated in
function of the actual fall speed and horizontal section, v
is computed in an iterative way. In the first iteration the
unknown NRe is replaced by NRe0 to evaluate the fall speed.
In the following iterations, NRe is calculated in function of v
previously evaluated. This procedure converges very
quickly to the solution since the change in NRe is very
weak and v is computed with an accuracy of about 0.01% in
3 iterations. It can be pointed out that the decrease in fall
speed from v0 to v is of the same order as the increase in
horizontal section. However, several computations with
various arbitrary distorted shapes showed us that there is
no linear relation between both variations.

5. Results

[20] In order to compare the present modeling with the
previous one in vertical field configuration [Coquillat and
Chauzy, 1993, 1994], we performed the calculations with
the same pressure P = 700 hPa and temperature T = 0�C.
These atmospheric parameters can be considered as average
pressure and temperature corresponding to the range of
altitudes where large liquid water drops reside inside
thunderclouds. This low cost procedure does not introduce
a significant error in the results since the distortion is only
slightly affected by the couple of parameters P and T. As a
matter of fact, the decrease in P at higher altitudes tends to
distort the drops via the increase in fall velocity, while the
combined decrease in T counteracts this process via the
increase in the surface tension.

5.1. Raindrop Distortion

[21] As expected, the shape of raindrops distorted by a
horizontal electric field is characterized by a horizontal
stretching in the field direction. Figure 6 displays the axis
ratio in the field direction a = (ct + cb)/2a as a function of

Figure 6. Axis ratio in the ambient field direction versus spherical equivalent radius for various ambient
field intensities. For measurements of Best, see Lane and Green [1956].
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drop size. As expected, the higher the ambient field, the
higher the horizontal stretching, and the lower the axis ratio.
If we compare the relative decrease of a, in a horizontal
electric field, to the relative increase of the axis ratio, in a
vertical field [see Coquillat and Chauzy, 1993], they are of
the same order of magnitude for sizes equal to 0.5 and 1
mm. But the distortion becomes markedly more pronounced
for larger drops for which the aerodynamic pressure
becomes high. For example, a drop of radius R = 1.5 mm
falling in a horizontal field of 800 kV/m is characterized by
a decrease in its axis ratio of about �22% meanwhile in a
vertical field of the same intensity, its axis ratio increases
only of about 11%. This illustrates the combination of both
aerodynamic and electric distortions, which act together in a
horizontal field whereas they counteract in a vertical field.
Nevertheless, the distortion is rather weak for ambient fields
lower than 200 kV/m since the relative decreasing of a does
not exceed about �2.5% for the largest drop studied here
(R = 2 mm) in such an ambient field. Furthermore, the
raindrops keep the same silhouette in the vertical plane
perpendicular to the field direction since the axis ratio in the
plane perpendicular to the field direction defined by a? =
(ct + cb)/2b is almost unaffected whatever the field intensity
and the drop size are.
[22] The present modeling is however not fully satisfac-

tory for large drops. As a matter of fact, no equilibrium
shape was found in the case where R = 2.5 mm, even in a
zero field. This problem could originate from the simplified
geometry that would not be suitable for the larger drops or,
more probably, from the neglecting of the internal circu-
lation. As analyzed by Brazier-Smith [1992], this phenom-
enon tends to limit the distortion, and therefore to reinforce
the stability of the drop. In order to understand the behavior
of the present modeling, we compared it with that in a
vertical field configuration performed by Coquillat and
Chauzy [1993]. Both of them are based on a local pressure

balance of the internal overpressure, use the same geometry,
and neglect the internal circulation. Therefore they should
give comparable results in a zero field when Coquillat and
Chauzy [1993] found an equilibrium shape for R = 2.5 mm.
In fact, in this previous study the terminal velocity was
computed according to the method by Gay et al. [1974]
adjusted to the distortion under the influence of a vertical
electric field. This procedure led to underestimate the
velocity at the ground in a zero field as compared with
Gunn and Kinzer [1949] experimental data. In the present
modeling, the terminal velocity at the ground in a zero field
fits the data by Gunn and Kinzer so that the neglecting of
the internal circulation seems not to be balanced by a
reduction of the velocity.
[23] Given the above analysis, we reduced the terminal

velocity for the larger drops. In doing so, we assume that
this change in the velocity (from 7% in a zero field to 20%
in the disruption field for R = 2.5 mm) represents, via the
aerodynamic pressure, the contribution of the internal cir-
culation. As a matter of fact, this correction solves the
problem since the internal overpressure �P at the bottom of
large drops was systematically higher than all other over-
pressures (equator and top of the drop), and the contribution
of the aerodynamic pressure to the internal overpressure is
positive at this sole test point.

5.2. Velocity Change

[24] To evaluate the change in terminal fall speed due to
the change in raindrop shape, we used the method pre-
sented in section 4. The results are displayed in Figure 7
in relative units, dividing the terminal velocity by the
velocity in a zero field. Both horizontal and vertical field
configurations are displayed. Whatever the configuration
is, the velocity variation versus the increasing electric field
exhibits an increase for small drops and a decrease for
large drops. This variation is shifted toward faster relative

Figure 7. Influence of the ambient field intensity on the terminal velocity: comparison between vertical
and horizontal field configurations in relative units.
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velocities in the vertical electric field configuration since,
in this case, the vertical stretching due to electric effects
counteracts the horizontal flattening due to the aerody-
namic distortion, leading to better shaped drops. The
unexpected velocity behavior for large drops is tightly
connected to the evolution of their horizontal section. In
increasing horizontal fields, this one markedly increases
leading to a velocity reduction. This behavior is also
undergone by large drops in a vertical field. In this case,
the higher the field, the higher the vertical stretching. This
leads to a higher velocity and a higher aerodynamic
distortion, which induces, in turn, a velocity reduction
because of a strong flattening of the drop base. Never-
theless, the relative velocity just barely diverges for typical
electric field values observed in thunderclouds. As far as
charged raindrops are concerned, they undoubtedly should
be accelerated in the field direction so that their shape
should be asymmetrically distorted by the horizontal
induced airflow. But the change in the vertical component
of their velocity should not be as large as it is in a vertical
field for which the Coulomb force acts in the same
direction as the weight [see Coquillat and Chauzy, 1993].

5.3. Disruption Field and Critical Field Profile

[25] The computed disruption field is displayed in
Figure 8 and compared with previous experimental studies
for raindrops whose equivalent spherical radius ranges
between 0.5 and 3 mm. For R = 0.5 mm, the disruption
field roughly agrees with the theoretical criterion of Taylor
[1964] since neither the hydrostatic pressure nor the aero-
dynamic pressure are key parameters for the distortion of
small raindrops. For increasing sizes until 1.5 mm, the
disruption field tends to the lower bound of all data that
stem from experiments in quiescent air. It is logically lower

than the experimental results by Macky [1931] and Ausman
and Brook [1967] since the drops were not allowed to fall at
terminal velocity in these experiments. Furthermore, the
curve seems to be in such a good agreement with exper-
imental results by Georgis et al. [1997] that we based the
modeling correction of the terminal velocity (see section
5.1) in such a way that the disruption field matches these
experimental data for the largest drops. It can be pointed out
that the disruption field measured by Kamra et al. [1993]
are markedly lower than the whole set of data since on one
hand, the drops fall at terminal velocity, and on the other
hand they undergo oscillations and vibrations due to the
continuous turbulence induced in the wind tunnel. The
comparison between the data by Kamra et al. [1993] and
Georgis et al. [1997] clearly shows that the turbulence is a
key parameter in determining the disruption field. There-
fore, the actual disruption field in thundercloud conditions
should be closer to the results by Kamra et al. [1993].
However, one must keep in mind that the turbulence of
intracloud conditions does probably not display the same
features as those of a wind tunnel experiment.
[26] The critical horizontal field, that is the horizontal

ambient field that causes either disruption at lower altitudes
or pure corona emission at higher altitudes, has subse-
quently been calculated. The procedure is the same as that
used by Coquillat and Chauzy [1994]. For a given ambient
field, the local electric field and the corresponding radii of
curvature of the drop surface are determined by the present
modeling. Thus the corona occurrence altitude is calculated
from the corona experimental results obtained by Dawson
[1969]. Let us remind that this altitude should be lower for
an oscillating and vibrating drop [Kamra et al., 1993] than
that presently calculated for a stationary drop, whatever the
field direction is. Here, the comparison between horizontal

Figure 8. Comparison of the disruption field computed by the present model with Taylor’s theoretical
criterion and three previous experimental results. The equivalent spherical radius ranges between 0.5 and
3 mm.
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and vertical field configuration remains valid since both
results derive from equilibrium shapes of raindrops. The
vertical profile of the critical horizontal field is displayed in
solid lines in Figure 9; the dashed lines correspond to the
vertical field configuration. As usual, each field profile
displays a vertical straight line up to the transition altitude.
This line corresponds to the drop disruption, which is
roughly altitude independent. Above this altitude, the critical
field decreases since it corresponds to pressure dependent
pure corona. The comparison between the vertical and the
horizontal field configurations shows that, for a given drop
size, the latter provides lower critical field intensities and
allows corona triggering at lower altitudes than the former.
Furthermore, the larger the drop, the more important the
lowering of the corona occurrence altitude. For example, the
difference between the altitude of corona occurrence from a
small drop (0.5 mm) at a given field tends to zero. On the
contrary, it may become larger than 1 km for a drop of 2 mm
in radius: it reaches 2.2 km for an ambient field of 400 kV/m.
In this way, we can state that corona emission is more easily
triggered from raindrops falling in a horizontal rather than in
a vertical ambient field. Obviously, the critical field profiles
in Figure 9 should be disregarded for altitudes above about
11–12 km that correspond to temperatures lower than �40
�C in which water drops cannot remain in a liquid state. This
limitation of the height of the �40 �C isotherm is in agree-
ment with most of the thundercloud observations [see
MacGorman and Rust, 1998], in which the �40�C isotherm
is most often located higher than 10 km in the convective
core of thunderclouds. For example, Weinheimer et al.
[1991] reported a temperature of �26�C at 9.8 km.

6. Case of Charged Raindrops

[27] The behavior of charged raindrops in a horizontal
electric field appears to be very difficult to observe in a

laboratory experiment since a charged particle submitted to
an electric field is instantaneously ejected from the obser-
vation volume because of the Coulomb force action. Even a
numerical study is difficult to perform because there is no
symmetry that could simplify the treatment, which is
already rather complex for uncharged raindrops as it can
be seen in the present paper. As a matter of fact, the shape of
the drop is: (1) flattened at the bottom because of the airflow
induced by its fall, (2) elongated in the field direction
because of the induced charge separation, and (3) flattened
at one tip in the field direction since the velocity gets a
horizontal component that disorganizes the whole shape.
However, as it has been shown by Coquillat and Chauzy
[1993, 1994] in the vertical field configuration, the presence
of electric charge on a drop leads to a pronounced reduction
of the disruption field and/or the corona occurrence altitude.
Given that the critical field is lower, first, for charged
raindrops than for uncharged in the vertical field config-
uration, and second in the horizontal than in the vertical
field configuration for uncharged raindrops, it should log-
ically reach the lowest values for charged raindrops in a
horizontal electric field. As far as the triggering of corona is
concerned, it has been shown by Dawson [1969] that both
the surface electric field and the curvature radius are the key
parameters. In a horizontal ambient field, the corona must
be triggered at the drop surface where the local field is
higher, that is, at the horizontal tips of a raindrop. If the
raindrop is charged, this local field is enhanced by the excess
of charge at one of these tips. Moreover, the horizontal
component of the fall velocity creates a flattening at the
same tip that increases the corresponding curvature radius,
which is known to favor the corona emission at equal local
field [Dawson, 1969]. Even if this flattening reduces in turn
the surface field, the combination of the large radius of
curvature and the somewhat lower surface field leads to
even better conditions for corona triggering because the

Figure 9. Critical field profiles established for 4 values of the equivalent spherical radius (0.5 to 2.0
mm) of the drop. Comparison of the vertical and the horizontal field configuration.
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volume of high field is large enough to ensure that a
minimum number of free electrons can trigger the ava-
lanche process. Therefore it seems sound to extrapolate the
results presented in the previous sections to charged drops
in order to better approach the real mechanisms and there-
fore enhance the quality of the lightning triggering param-
eterizations introduced into thundercloud models at this
time.
[28] According to Coquillat and Chauzy [1993], the

decrease of the vertical disruption field versus net charge
normalized to the Rayleigh’s limit QR is quite linear.
Furthermore, the slope of this decrease is a weak function
of the radius except for the larger size studied (2.5 mm). If
we omit this size because of the uncertainties arising from
the present modeling, the vertical ambient field Ea (V/m)
that causes disruption can be expressed in function of the
radius R (m) and the net charge Q by:

E ¼ E0 � k1 Rþ k2ð Þ
Q

QR

;

where Ea0 is the disruption field of the uncharged raindrop,
k1 = 289 � 106 V m�2, and k2 = 1.43 � 106 V m�1.
Assuming that this decrease is of the same order in the
horizontal field configuration, one can estimate the
horizontal disruption field for charged raindrops. As far as
pure corona is concerned, the lowering of the corona onset
field from Q/QR = 0 to Q/QR = 1/4 in the horizontal field
configuration - at each altitude above the transition altitude -
is assumed to be the same than that in the vertical field
configuration. Following these assumptions, we calculated
the critical field profile for a 2 mm in radius raindrop
carrying a net charged Q = 450 pC equal to the quarter of
the Rayleigh’s limit (QR = 1800 pC at 20�C), which allows
the comparison with previous results by Coquillat and

Chauzy [1993]. This electric charge appears high, indeed
unlikely to exist in thunderclouds. Actually, we cannot
definitely state about the charge carried by raindrops in
thunderclouds because there are very few simultaneous
measurements of charge, size, and nature of hydrometeors
in the literature. At the present time, only the kind of
observations performed by Weinheimer et al. [1991] and
Takahashi et al. [1999] can provide this information. The
former reported net charges of about �460 pC but they were
unable to associate the corresponding particle shape, and the
data of the later concern only winter storms. On the other
hand, several measurements of charge and size measure-
ments have been performed by soundings [Marshall and
Winn, 1982; Marsh and Marshall, 1993; Bateman et al.,
1995; Bateman et al., 1999] but nature of the observed
particles remains unknown. Among them, Marshall and
Winn [1982] reported net charges up to 400 pC with
diameters ranging between 1 and 3 mm. The same kind of
measurements have been carried out from aircraft and
benefit from the information of an observer [MacCready
and Proudfit, 1965; Latham and Stow, 1969; Gaskell et al.,
1978; Christian et al., 1980]. MacCready and Proudfit
[1965] reported several charges between 500 and 1000 pC
at altitudes ranging from 5000 to 5500 m in supercooled
clouds. They found charges up to �300 pC in melting
drops, between �150 and �300 pC in rain, of about +300
pC in a mixture of graupel and rain, more than �1000 pC at
an altitude of about 3500 m, and a maximum negative
charge of about �1500 pC on a liquid water drop the radius
of which was supposed to be around 3 mm. These measured
charges remain by far the highest available in the literature.
[29] The critical field profile is plotted in Figure 10. For a

drop 2 mm in spherical equivalent radius carrying the
quarter of its Rayleigh maximum net charge, this estimated
critical field reaches low values as compared to the dis-

Figure 10. Critical field profiles for a 2 mm radius drop in vertical and horizontal field configurations.
The profile for Q/Qr = 1/4 in the horizontal configuration is an estimation.
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ruption fields for uncharged raindrops. It is approximately
equal to 290 kV/m below the altitude of 7.5 km and
decreases down to 110 kV/m at 10 km. These field
intensities remain within the range of intense fields already
measured inside thunderclouds [see MacGorman and Rust,
1998]. Furthermore, it must be reminded that these results
relate to nonoscillating raindrops so that all the values
calculated here may be considered as upper limits.

7. Conclusion and Perspectives

[30] The present modeling of raindrop behavior in a
horizontal electric field is far from perfect because it does
not allow us to describe the hydrodynamic oscillations and
vibrations undergone in thundercloud conditions. Neverthe-
less, it is suitable to reach the objectives: determining if the
raindrops located in a horizontal electric field can be more
efficient for discharge triggering than the raindrops located in
a vertical electric field. For doing so, we made a comparison
with a previous numerical study by Coquillat and Chauzy
[1994] based on the same assumptions and in which the
conditions of corona emission from drop surface where
calculated for a vertical field configuration. Since both
studies determine the average shape of raindrops, the corona
occurrence altitude calculated is therefore an upper limit of
the actual corona occurrence altitude. In the case of
uncharged raindrops, the results clearly show that the hori-
zontal configuration is much more efficient for corona
triggering than the vertical one. For example, the altitude of
corona emission can be more than 2 km lower in a horizontal
field than in a vertical field, that is, for an uncharged raindrop
of radius R = 2.0 mm in a 400 kV/m field intensity.
[31] As far as charged raindrops are concerned, an esti-

mation of the corona and disruption onset fields shows that
the critical horizontal field can be reduced to intensities that
remain within the range of intense fields actually measured.
Thus, the present results sustain the conclusions by Kamra
et al. [1993] according to whom the corona triggering from
large raindrops in horizontal electric field may be respon-
sible for lightning discharge initiation. The transition alti-
tude from disruption to pure corona emission being rather
high (7.4 km for Q/QR = 1/4 in a horizontal field) this
process would be more efficient in deeply convective cells.
Furthermore, given that the oscillations and the vibrations of
the drops induced by the intracloud turbulence [Kamra et
al., 1993], or the interaction between drops with or without
collision [Blyth et al., 1992; Georgis et al., 1997], can
reduce these onset fields, the triggering of corona discharges
by raindrops located in an horizontal field region of a
thundercloud is a process that should be taken into account
in the parameterization of the electrical processes in the
atmospheric models.
[32] Further comparisons with in situ observations are

required in order to evaluate the probability of occurrence of
such a mechanism. These observations should gather
together nature, size, and charge of precipitation particles,
electric field soundings, and detection of lightning flash
origins, especially in tropical regions. Few studies have
been performed to localize the lightning sources and to
simultaneously observe the microphysics in the correspond-
ing cloud volumes. Proctor [1991] showed a bimodal
distribution of the median heights of the origins of 773

lightning flashes located between 4.4 and 5.7 km above
mean see level for a lower group, and between 6.7 and 9.7
km for an upper group. The corresponding temperatures
ranged from +1�C to �8.5�C and from �21.1�C to �33�C,
respectively. However, the microphysical data were reported
in term of radar reflectivity. The use of data available in
literature would give hypothetical conclusions since the
multiplicity of parameters required to state about this kind
of mechanism (net charge, size, nature of hydrometeors,
electric field, altitude, temperature, lightning flash origins)
are related to different storms, even to different phases of
storm evolution.
[33] The subsequent perspective that arises from such a

numerical study of raindrop behavior is the coupling with a
model of discharge propagation. As a matter of fact, the
computed conditions of corona emission can only state if
corona is triggered or not from a given raindrop in a given
ambient field. The further development of the corona
discharge still remains unknown. Does it propagate and
lead to a cloud or ground discharge, or does it participate in
a local dissipation of the ambient field? This question
remains open at this time. For ensuring a propagation at
large scale, the discharge channel should include a hot
thermalized part of high conductivity associated with a
current flow. Griffiths [1977] suggested that several streamer
systems could propagate in rapid succession. The whole
mechanism should probably involve more than one trigger-
ing particle. On the other hand, Baker [2001] proposed an
alternative mechanism based on the acceleration of high
energy electrons produced by cosmic rays that could lead to
propagative discharges. The coupling could help us either to
determine the most favorable conditions for natural trigger-
ing of lightning or to evaluate the amount of charge emitted
during an aborted discharge, which is of importance for a
good parameterization of the electrical processes in a
thundercloud model. This latter evaluation could also be
performed through a laboratory experiment provided we are
able to control the ambient pressure.

Appendix A: Computation of the Potential Flow
by Use of Spherical Harmonics

[34] As far as potential flows are considered, the absence
of viscosity implies that the velocity field remains irrota-
tional. Consequently, the condition:

~r� ~vp ¼~0 ðA1Þ

corresponds to a velocity field which derives from a
potential function yp:

~vp ¼ ~ryp: ðA2Þ

Given the continuity equation:

dr

dt
þ r ~r �~vp ¼ 0; ðA3Þ

the incompressible nature of the potential flow imposes that
the velocity field is nondivergent, therefore it yields:

~r �~vp ¼ ~r � ~ryp ¼ � yp ¼ 0 ðA4Þ
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where �yp = 0 is the Laplace’s equation. As for the limit
conditions, they bear on the normal component of the
velocity, with respect to the surface of the pseudo-ellipsoid,
which is zero since no fluid flux exists throughout that
surface. Therefore, the fluid velocity of a potential flow is
purely tangential to the surface:

~ryp �~n ¼ 0; ðA5Þ

and there is no condition on the tangential component of the
velocity because of the absence of viscosity.
[35] The present methodology consists in solving the

Laplace’s equation (A4) with condition (A5) on the whole
surface of the pseudo-ellipsoidal body corresponding to
the raindrop shape, the velocity field being deduced from
equation (A2) and the pressure distribution from equation
(14). The mathematical form of the velocity potential yp is
the sum of the velocity potential y of the uniform flow at
an infinite distance from the raindrop, with a product of
three functions of separated variables. These ones are used
to take into account the decrease in distance r of the flow
disturbance and its dependence on both angles q and j.
The latter is expressed as a linear combination of powers
of 1/r multiplied by spherical harmonics Y‘

m depending on
q and j. Consequently, the solution that we are looking for
is:

yp ¼ yþ
X

1

‘¼0

X

m¼‘

m¼0

Cm
‘

Ym
‘

r‘þ1
; ðA6Þ

where the coefficients C‘
m are scalar real values to

determine. Assuming that t = cosq, the spherical harmonics
Y‘
m are given by:

Ym
‘ ¼

1

2‘‘!

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2‘þ 1

4p

‘�mð Þ!

‘þmð Þ!

s

1� t2
� �

m
2
dmþ‘

dtmþ‘
t2 � 1
� �‘

eimj:

ðA7Þ

[36] Furthermore, the above general expression of the
velocity potential can be simplified according to the three
following items:
[37] (1) The velocity being a real value vector, the

potential yp should take only real values. Thus, only the
real part of eimj is considered in equation (A7).
[38] (2) The flow is symmetrical with respect to the

planes defined by x = 0 and y = 0, this implies m is even.
[39] (3) The fluid flux throughout a surrounding sphere of

given radius R large compared to the drop size is zero since
there is no fluid source [Guyon et al., 1991]. Therefore the
first term of the development (‘ = 0) is removed from
equation (A6).
[40] In order to finely account for the pseudo-ellipsoidal

shape, the mesh on the surface is built with about Nj = 30
longitudinal anglesj, andwith at least Nq=30 zenithal angles
q for weaker distortion areas to about Nq = 80 for higher
distortion areas. TheNq zenithal angles are determined so that
the surface points are equidistant in a given planej since in the
case of the most distorted bodies studied here, the accuracy is
sensitive to angle q discretization.
[41] Introducing the potential definition (A6) in the equa-

tion (A5) and taking into account the simplifications pre-

Figure A1. Dimensionless pressure distribution for the potential flow over oblate spheroids.
Comparison between the spherical harmonics method and the analytical solutions of Beard and Chuang
[1987].
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viously mentioned, the problem can be expressed for the
whole grid of points as a set of linear equations:

AX ¼ B; ðA8Þ

where A is a rectangular matrix with Nq � Nj lines
corresponding to the number of points on the mesh, and N‘m

columns corresponding to the number of terms in yp. The
A-matrix elements are:

~r
Ym

‘

r‘þ1

� �

�~n; ðA9Þ

while the column matrix B contains the gradient of the
potential y multiplied by the local normal. The unknown in
equation (A8) is the column matrix X whose N‘m elements
are the C‘

m values to determine. Given that the minimum
value for Nq � Nj is about 900 and the maximum value for
N‘m is 271 (see below), the set of linear equations (A8) is
strongly overdeterminated. Its resolution needs the least
squares method which consists in transforming the set of
equations in a square N‘m � N‘m set, multiplying (A8) by
the transpose of the rectangular matrix A:

At AX ¼ At B; ðA10Þ

where At denotes the transpose of matrix A. Equation (A10)
is solved with a classical Gauss’ pivot method.
[42] The higher the distortion, the higher the number N‘m

of terms necessary to reach a given accuracy on yp in
equation (A6). For example, in the case of a sphere, only
one term (C1

0 = 0.5) is required so that the potential
function is:

yp ¼ yþ
1

2r2
cos q; ðA11Þ

when, if more complex spheroidal shapes are considered,
one needs ‘ varying from 1 to 5 for a = 0.9, from 1 to 9 for
a = 0.8, and from 1 to 27 for a = 0.7 if an accuracy at least
equal to 1% is required. For higher distortions, the
summation on ‘ in equation (A6) is arbitrarily limited to a
maximum value ‘max = 31 because of computer capacity
constraints, so that the maximum value of N‘m is equal to
271 since m takes successive even values in the range [0, ‘].
Consequently, this method is here no more valid for
distorted ellipsoids characterized by an axis ratio lower than
0.6 as it can be seen in Figure A1. This figure displays the
dimensionless pressure distribution versus the tangent angle
c for the potential flow around various oblate spheroids
computed with the spherical harmonics method, and the
corresponding analytical solutions (see equations (13) and
(14)) by Beard and Chuang [1987] for comparison. One can
observe in Figure A1 that the agreement between the two
kinds of solution is fairly good for axis ratio ranging from
1.0 to 0.7. The error is about 2% for a = 0.6 at the equator
but it rises about 20% for a = 0.5 whose pressure
distribution curve also exhibits oscillations for tangent
angles close to c = 0� and c = 180�.
[43] In the case of ellipsoidal bodies, the results found

here are in very good agreement with Band and Payne
[1980] who found that the dimensionless pressure is con-
stant around the equator of an ellipsoid (of axes a 6¼ b 6¼ c).

For pseudo-ellipsoidal bodies we found a very fast solution
(see section 3.2) based on the analytical solutions by Beard
and Chuang [1987] by using the present computation as a
calibration available for axis ratio higher than 0.6.
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