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ESTIMATING THE NUMBER OF REGIMES IN A SWITCHING
AUTOREGRESSIVE MODEL

M.OLTEANU AND J. RYNKIEWICZ
SAMOS-MATISSE CES UNIVERSITE PARIS 1

ABSTRACT. In this paper we are interested in estimating the number of regimes
in a switching autoregressive model. The penalized marginal-likelihood crite-
rion for mixture models and hidden Markov models introduced by Keribin
(2000) and, respectively, Gassiat (2002) is extended to autoregressive mod-
els with independent regime changes for which a penalized-likelihood criterion
is proposed. We prove the consistency of the estimate under some hypothe-
sis which involve essentially the bracketing entropy of the generalized score-
functions class and we verify these hypothesis in the Gaussian case by repa-
rameterizing the model to avoid non-identifiability problems. Some numerical
examples illustrate the result and its convergence properties. Finally, we prove
that a direct generalization of the “marginal likelihood” criterion to switching
Markov models is not possible.

1. INTRODUCTION

This paper addresses the problem of estimating the true number of regimes in a
switching autoregressive model. We suppose that a n-sample (Y7, ...,Y;,) of a time
series is observed, with Y; depending on the past Y;_; and on some hidden discrete
valued process X; which can be an iid sequence or a Markov chain. If the number
of states of X; is not known or fixed in advance, this model is a typical example
in non-identifiability problems. In these cases, the Fisher information matrix is
degenerate, the usual regularity conditions do not hold and the classical theory for
convergence of the maximum-likelihood estimate does not apply.

However, several ideas and methods were proposed to estimate the dimension of
the state-space of X; in the particular case of mixture models : various non-
parametric techniques as in Henna (1985), Roeder (1994) or Izenman and Sommer
(1998), moment techniques in Lindsay (1983) or Dacunha-Castelle and Gassiat
(1997) and penalized maximum-likelihood in Leroux(1992a), Keribin (2000) and
Gassiat (2002). Moreover, Gassiat (2002) proved that if X; is a Markov chain,
the penalized-likelihood estimate converges in probability to the true number of
regimes. In Section 2, we extend the latter result to a penalized-likelihood criterion
applied to mixtures of autoregressive processes with independent regime changes.
The convergence is proven under some assumptions of which the most delicate to
verify will be the Donsker property for the class of generalized score functions S,
defined as the normalized density ratio.

In Section 3, we verify these hypothesis in the case of a Gaussian noise. Since
S, the class of score functions, is parametric, one would expect it to be Donsker
under some good regularity conditions, as in Van der Vaart (2000). But here is
where the non-identifiability problem arises and complicates the task by breaking
the regularity assumptions. The solution is to reparameterize the model in such a
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way that the identifiable and non-identifiable parameters are well separated and a
second-order Taylor expansion can be done in a neighbourhood of the identifiable
parameter. To deal with our case, we adapt the reparameterization proposed by
Liu and Shao (2003), which seems to be more convenient than the “locally conic
parameterization” in Dacunha-Castelle and Gassiat (1997, 1999). The last part
of Section 3 provides some simulation results illustrating the empirical speed of
convergence, as well as the stability of the estimate.

The last section handles the case when regime changes are Markovian. Once we
have the result in the independent case, it seems natural to generalize it by using
the marginal likelihood as defined in Gassiat (2002). Yet, it can be seen right away
that this likelihood is no longer a constrast function and the convergence is achieved
only in the particular case of constant autoregressive functions. This proves that
the marginal likelihood is not the right tool in the general case and that the true
likelihood should be studied instead.

2. MAIN RESULT IN THE INDEPENDENT REGIME-SWITCHING CASE

2.1. The model. Throughout this paper, we will study autoregressive models with
one lag of time, the extension to a finite number of lags k being immediate. Let us
consider the real-valued time series Y; which verifies the following model

1) Yi=Fx, (Y1) +ex, (1)
where

e X, is a sequence of independent identically distributed variables with values
in a finite space {1,...,po} and probability distribution 7°

e for every i € {1,...,po}, F? (y) is a parametric function depending on 6?
and it describes the autoregressive model in each of the py regimes. We
suppose throughout the rest of the paper that FQ are sublinear, that is
they are continous and there exist (a?,b?) positive real numbers such that
|sz (y)| <ally|+b9, y €R, forall i =1,..., po.

o for everyi € {1,...,po}, € (t) is an independent identically distributed noise
with density f? strictly positive with respect to the Lebesgue measure and
depending on the parameter 69

The estimate for the number of regimes will be defined in the case of strict station-
arity for which we need to assume sufficient conditions. Yao and Attali (2000) gave
such conditions for an autoregressive model with Markov switching between the
regimes. Their result can be adapted easily by replacing the invariant distribution
of the hidden Markov chain with the probability distribution of the independent
regime changes X;.

Let us then introduce the next hypothesis

(HS) (3) s > 1 such that E|e;|” < co and 32°, 79 (a9)” < 1

Following Yao and Attali (2000) argument, one can prove that under (HS) there
exists a unique strictly-stationary solution Y3, geometrically-ergodic and with invari-
ant probability measure admiting s-order moments. One may remark also that if the
model in every regime is strictly stationary, that is |ag| < 1lforeveryi € {1,....po},
then Y; is globally stationary.
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2.2. Penalized-likelihood estimate for the number of regimes. Let us con-
sider an observed sample {y1, ...,y } of the time series Y;. Then, for every observa-
tion yg, the conditional density with respect to the previous yi_1 and marginally
in Xk is

Po
£kl yn—1) = Dm0 f7 (uk — FY (ys-1))

i=1

As the goal is to estimate pg, the number of regimes of the model, let us consider
all possible conditional densities up to a maximal number of regimes P, a fixed
positive integer. We shall consider the class of functions

P
=G

p=1

p p
Op = {9 |91 92) =D mifi(ya = Fi(y1)), m >0, Y mi= 1}
i=1 i=1

where, for alli =1,...,p

e F; is a parametric function depending on 6;
e f; is a strictly positive density with respect to the Lebesgue measure de-
pending on 6;

(HC) We shall assume throughout the following that the parameters {(m;, 6;) ,i =1, ...

belong to a compact set.

For every g € Gp we define the number of regimes as

p(g)=min{pe{l,..,P}, g€ Gy}
and let po = p (f) be the true number of regimes.

We can now define the estimate p as the argument p € {1, ..., P} maximizing the
penalized criterion

(2) T, (p) = SUPgeg, Iy (g) — an (p)

where

In(9) = 10g g (yr—1,ys)

k=2
is the log-likelihood marginal in X}, and a, (p) is a penalty term.

Before stating the result on the convergence of p, we need the following likelihood
ratio inequality which is an extension of Gassiat (2002) to multivariate dependent
data and since the proof is identical, we will skip it.

Proposition 1

Let G C Gp be a parametric family of conditional densities containing the true
model f and let us define the generalized score function

, P}
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9(y1,y2) _

(y1,92) flyrye) T
-1,

L2 (u)

where p is the stationary measure of (Yy—1,Yy). Then,

(89 ko1, u8)”
Ek 2(39) (Yk—1,Yk)

supoeg (In (9) — In () < =5upeg

with (sg) (yk—1,yx) = min (0, sy (Yr—1,Yr))-

Since the sample observations are not independent, let us recall some notions on
dependent data, such as S-mixing properties and a functional central limit theorem
that we will need to prove the main result.

If (Z1) ez s a strictly stationary sequence of random variables defined on a prob-
ability space (22, K, P), we consider, for every n > 1, the S-mixing coefficients

where F° _ =0 (Zy, k <0), F°* =0 (Zy, k > n) and

1

B(A,B) = 5 Sup (A)icr» (Bi) ey Z P (A; N B;j) — P (4:) P (B;)|
1 ’ J S

Aand B — meas. partitions xgenxd

By definition, the sequence Zj, is called S-mixing if lim,— 008, = 0.

Now, if the strictly stationary sequence Zj is f-mixing and moreover " -, 8, < 00,
one can define the £, 5 (P)-space by

1
La5(B) = {1, Ifllog < 00} [1f o5 = \/ / B (w)[Qs (W] du

where

e 3 (u) is the cadlag extension of 3, by considering 8 (u) = B, and By = 1
e if ¢ is a non-increasing function, then =1 (u) = inf {t € R, ¢ (t) < u}
e () is the quantile function of | f (Zg)|, that is the inverse of t — P (| f (Zo)| > t)

Now, let us consider F a set of functions on some space endowed with a norm ||-[|.
For every € > 0, we define an e-bracket by [[, u] = {f € F,l < f < u} such that
|[u — || < e. The e-bracketing entropy is then

Hy (e, F, [I1l) = log (M (e, F, II11))
where NV (¢, F, ||-||) is the minimum number of e-brackets necessary to cover F.

Doukhan, Massart and Rio (1995) proved that if the series (Zj), ., is strictly sta-
tionary, f-mixing and )", - B, < 00, then it converges in probability to a Gaussian
process, uniformly over any set of functions F such that F C L5 3 and
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/01 \/Hu (75 Il 5 ) de < oo,

With the previous definitions, we can state the following theorem, proven in the
Appendix :

Theorem 1

Consider the model (Yy, X) defined by (1) and the penalized-likelihood criterion
introduced in (2). Let us introduce the next assumptions :

o (A1) a,(’) is an increasing function of p, an (p1) — an (p2) = oo when
n — 0o for every p; > py and G"T(p) — 0 when n — oo for every p
o (A2) the model (Y, X}i) verifies the weak identifiability assumption (HI)

/4 Po p Po
Y omifilya = Fi(y) =Y 70 f (ya— FY (y1)) & D mida, = »_ w3 6g0
i=1 i=1 i=1 i=1

o (A3) the parameterization 8; — f;(y2 — F;(y1)) is continuous for every
(y1,y2) and there exists m (y1,y2) an integrable map with respect to the
stationary measure of (Y, Yr_1) such that |log (g)| < m

o (A4) Y} satisfies the hypothesis (HS) and the family of generalized score
functions associated to Gp

g(ylyyz)
S =4 89, S (y1,92) H yl’y2|) ,9€Gp, g# [ p CL2(p)

L2(p)

and for every e > 0
Hyy (6,5, [Ily) = O (|logel)

Then, under the hypothesis (A1)-(A4) and (HC), p — po in probability.

3. APPLICATION FOR LINEAR REGRESSIONS AND GAUSSIAN NOISE

3.1. The model. In this section we are interested whether the theorem above can
be used in applications on simulated and real-life data. We have chosen to study
the case of a gaussian noise and for this we need to verify that hypothesis (HC)
and (A1)-(A4) are fulfilled. We shall consider that the process (X;,Y:) follows
the true model

(3)  Yi=F, (Yim) +ex, (8)
where

e X, is a sequence of independent identically distributed variables with values
in a finite space {1, ...,po} and probability distribution 7°

o forevery i € {1,...,po}, F? (y) = a%y + b? describes a linear autoregressive
model in each of the py regimes

o foreveryi € {1,...,po}, €; (t) is an independent identically distributed noise

following a centered gaussian density f2 ~ N (0, (02)2)
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The noise can be written then in a simpler manner as

ex, (t) = ag(t €y
0} and g, ~ N (0,1).

We can then state the following result which ensures the strict stationarity and
ergodicity :

where Ug(t € {0(1), - Opg

Proposition 2

If |a?| < 1 for everyi € {1,...,po}, then (X4,Y}) is strictly stationary, geometrically
ergodic and, in particular, geometrically B-mizing. Moreover, there exists 6 > 0

such that E (66’32) < 0.

Now, let us consider a maximum number of regimes P > 0 and the class of all
possible conditional densities of ¥; marginal in X :

Gp—ng,Gp—{glgyl,yz mez y2 — F ())}

p=1
where
e >? ,m =1 and, with no loss of generality, we suppose that for every
(S {17 "'Jp}J U Z n> 0

o for every i € {1,...,p}, F; (y) = aiy+bi, fi ~ N (0,07) and 0; = (a;, b;, 03)
belongs to a compact set

Then, the estimate p is defined as the maximizer of (2) and it converges in prob-
ability to the true number of regimes if the assumptions of Theorem 1 hold. The
key hypothesis is that the class of generalized score functions

g9 _
F—1

g9 _
$-1]

~1 £0

L2 ()

,gEQP:

9
f

S= sg,sg:H

L*(n)

is Donsker. First, we shall verify that this class is well defined, that is H % -1

L2(n)
oo, for all g € Gp.

3.2. Existence of the score functions. We shall start with the simple case of
one true regime against two possible regimes, pp = 1 and p = 2. In this case, the
true distribution will be

Fy,y2) = [0 (y2 — F° (1))
and the possible density

g (yi,y2) =7fi (y2 — F1 (y1)) + (1 =) fa (y2 — F2 (1))

One can prove then, by direct computations, that

Proposition 3
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< o0 if ol < 2(00)2 s |ai —a®] < 6(2(00)2—03) for i € {1,2}

3_4
H f L2 ()
and § > 0 such that E (e‘;Ytz) < 00.

This sufficient condition states that the possible models should not be too different
from the real one so that the convergence holds.

The one-against-two regimes case can be easily generalized to the situation p, pg €
N:

Proposition 4
Hffi - 1| L) < oo if for every i € {1,...,p}, there exists k € {1,...,po} such that
"

0? <2 (02)2 and |a; — af| < /0 (2 (02)2 - az?) for & > 0 verifying E (e‘syf) < 0.

According to Teicher (1963), the weak identifiability hypothesis (A2) is verified
for mixtures of gaussian densities. Moreover, since, by assumption, for every i €

{1,..,p}, m > n > 0, the estimates 6, = (él,n,...,ep,n) are consistent and the

sufficient conditions in Proposition 4 are verified immediately for n sufficiently
large.

Next, let us prove that S is Donsker and that Hj (e, S, [|-||l,) = O (|loge|) for all
e>0.

3.3. Donsker property for the class of generalized score functions S. For
g9 € Gp, let us denote 6 = (61,...,0,) and ®# = (m1,...,mp), so that the global
parameter will be & = (6, 7) and the associated generalized score function

SP :=Sg=
9 _
41

L2(w)

Proving that a parametric family like S is a Donsker class is usually immediate
under good regularity conditions (see, for instance, Van der Vaart (2000)). In this
particular case, the problems arise when g — f and the limits in L? (i) of s, have to
be computed. To achieve our proof, let us then split S into two classes of function.

We shall consider Fo C Gp a neighbourhood of f such that it exists § > 0 verifying
foz{geap,|§—1” ga,g¢f}andletsoz{sg,gefo}.
L2(p)

On S\ Sy, it can be easily seen that

g1 g2 91 _ 92

;1 ;1 I Tl
a_q 2 _ 1‘ @ _q
ooz W e ll e Il

for every g1, 92 € Gp \ Fo and, moreover, by the definition of Sp,

71 F-1 2o e
g 1] 2 -1 BRCH A P
f L2(p) ! L2 (1) Nl L2 ()
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On the other hand, under the assumptions in Proposition 4, *;% has square inte-
grable partial derivatives of order one and, using the result on parametric classes
of functions in Van der Vaart (2000), we get that

1 4P
Aj 6,5\ S0, 1) = 0 ()

It remains to prove that Sy is Donsker. The guiding idea is to reparameterize
the model in a convenient manner which will allow a Taylor expansion around the
identifiable part of the true value. We shall use a slight modification of the method
proposed by Liu and Shao (2003).

In the following we will make the additional assumption py < p.
Let us remark that when % — 1 = 0, the weak identifiability hypothesis (A2) and
the fact that for every ¢ € {1,...,p}, m; > n > 0, implies that there exists a vector

t = (ti)o<i<p, Such that 0 =to < t; < ... <tp, = p and, modulo a permutation, ®
can be rewritten as follows :

ti

0 o .
0,51._1“ =..= Hti = Gi, Z T; =T, 1€ {1,...,p0}
j=ti—1+1

With this remark, one can define in the general case s

= (8i)1<icp, and ¢ =
(qj)lsjsp so that, for every i € {1,...,po} , j € {ti=1 + 1,..., 1},

ti
s
.= g0 g =7
8 = E : Tj Ty 45 = Y
Jj=ti—1+1 I=t;—1+1 T

and the new parameterization will be

G)t = (¢t;¢t); ¢t = <(01)1§_7§p ) (Si)lfifpo—l) ) ¢t = (q])lsjsp

with ¢; containing all the identifiable parameters of the model and ; the non-
identifiable ones. Then, for g = f, we will have that

o) = (69,...69 .., 60,60, 0,..,0)7
—— —_—— ——r
51 tpo —tpo—1 Do — 1

This reparameterization allows to write a second-order Taylor expansion of % -1
at ¢Y. For ease of writing, we shall first denote

95 (W1,92) = 90, (U1, 2) = —ps filp—Fiw)

i=1 ngzo (y2 — Fio (y1))

Then, the density ratio becomes :

po

ti
%—1=Z(8z‘+7f?) > 49

=1 Jj=ti_1+1

. _ po—1 .
and since sp, = — > 107" S,
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g po—1 ti po—1 tpg
7= o (si+al) Do agi+ (7?30 - Si) > 4
=1

j=ti_1+1 i=1 J=tpg—1+1

By remarking that when ¢; = ¢?, % does not vary with ¢, we will study the

variation of this ratio in a neighbourhood of ¢9 and for fixed 1);. First, let us
introduce the following notations of the ¢;-derivatives of g; computed at ¢?:

0 /// dg;
gl- = gJ (¢t ) wt) ] = 662 (¢t ) wt) = 6093] (¢?7 wt)
J

With these notations we can state the following result :

Proposition 5

Let us denote D (¢y,1;) = Hg("’"—f’”’“ -1

. For any fized 1y, there exists the
L2 (p)

second-order Taylor expansion at ¢} :

1
% —1= (8= 8)" Glogpn + 5 (=8 o0y (8 = &) +0(D (d1,01))
with
T
i Po
(6 —69)" g/ N=D T 405 — 07 | gi+ ) sige
(69,%) —
Jj=ti—1+1 i=1
and
T Po t; T
(06 = 82)" 9(s0.p) (86— 87) = 2s; g0 — 67 | gi+
(¢3
i=1 Jj=ti—1+1
t; T
+m Y 4 (6;-67) gi (65— 67)
j=ti—1+1
Moreover,

TII

1
(66 = 89) " Gy + 5 (00 = 89" oy (&1 = 80) =0 ¢4 = &
(82:%:) T 9 (

Using the Taylor expansion above, we can now show that Sz, = {sy, g € Fo, 9 # [}
is a Donsker class. With the next result, hypothesis (A4) is directly verified :

Proposition 6
The number of e-brackets N (e, So, ||-|l,) covering Sy is O (%)gpo.

With this last assertion, it is proven that Theorem 1 applies in the Gaussian case
and that the only constraints are the stationarity of each autoregressive model in
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the mixture and the choice of a penalty term according to hypothesis (A1). The
next section contains some numerical examples on simulated data which verify the
convergence and the stability properties of the estimate p.

3.4. Numerical examples. Once the theoretical result is verified in the Gaussian
case, let us give some numerical experiments to illustrate it. Three things will be
interesting to study: the speed of convergence, since we do not have it theoretically,
the stability and the influence of the penalty term. For parcimony purposes and
because of the important computation time, only the BIC penalty term was consid-
ered here, other possibilities are to be studied later. The examples are mixtures of
two autoregressive models in which we vary the leading coeflicients and the weights
of the discrete mixing distribution. For each of them, we simulate 20 samples of
lenghts n = 200, 500, 1000, 1500, 2000 and we fix P = 3 the upper bound for the
number of regimes.

The likelihood is maximized via an EM algorithm (see, for instance, Dempster,
Laird and Rubin (1977) or Redner and Walker (1984)). To avoid local maxima, the
procedure is initialized several times with different starting values : in our case, ten
different initializations provided good results. The stopping criteria applies when
either there is no improvement in the likelihood value, either a maximum number
of iterations, fixed at 200 here for reasonable computation time, is reached.

The results are summarized in Tables 1 and 2 at the end of this paper. The true
conditional density is

f@i,y2) =m0 17 (v2 — FY (1)) + (1= 7)) £3 (2 — F3 (11))

with F? (y1) = ady; + ) and f? ~ N (0, (09)2) for i € {1,2}. For every example,

we pick equal standard errors o) = 09 = 0.5 and let vary the rest of the coefficients:

79 € {0.5,0.7,0.9}, a?,a3 € {0.1,0.5,0.9}, b9 € {1,0.5} and b3 € {—1,—-0.5}. In
Table 1, the convergence is reached rapidly for a small number of observations,
while in Table 2 this is less obvious, since the two components are chosen closer.
However, in most of the examples, 2000 sample points are enough to obtain a good
estimate of the number of regimes.

4. IS IT POSSIBLE TO GENERALIZE TO MARKOV-SWITCHING REGIMES?

Let us now consider the more general case where the process (X;,Y;) follows the
true model

4)  Yi=FY (Y1) +ex, ()
where

e X, is a homogeneous Markov chain, irreducible and aperiodic, with finite
state-space {1,...,po} and 7° is the stationary probability measure

e foreveryi € {1,...,po}, F? (y) and g; () have the same properties of sublin-
earity and, respectively, existence of a strictly positive density as in Section
2

According to Yao and Attali (2000), there exists a unique strictly-stationary and
geometrically-ergodic solution (X;,Y;) under the hypothesis

(HS) (3) s > 1 such that E|e1]° < 00 and p (Qs) < 1,
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(a(l))s 7T(1)1 T (ago)s W?po
Qs = : .
(a(l))s 71-201 e (ago)s 7.‘-20170

where af are the leading coefficients in the linear functions dominating F and =f;
are the entries of the transition matrix of Xy, 4,5 € {1, ...,po}. The hypothesis (HS)
is clearly verified whenever a? < 1, for all i € {1,...,po}.

Considering an observed n-sample of Y;, one would attempt to naturally extend the
method of constructing the estimate p in the previous section. Several problems
arise : on one hand, the non-identifiability which can be managed by reparameter-
izing the model and, on the other hand, X; which is an unobserved and dependent
process. This dependence will not allow an explicit form for the conditional density,
marginal in Xy :

Po

f (yk | Yk—15---» yO) = Z]P)(Xk =1 | Yk—1, "'7y0) fzo (yk - Fio (yk—l))

i=1

since P(Xy =4 | Yk—1,---,Yo) has to be computed recursively. However, since X
is stationary, we can define a new cost function which will involve the invariant
probability measure.

As in section 2, for P > 0 a fixed integer, we consider the class of all possible
mixture densities

Qp—ng, Gp—{g|g Y1,Y2) Zﬂ'zfz y2— Fi(y ))}

p=1

and for every g € Gp we define the number of regimes as

p(g) =min{pe{1,..,P}, g€ Gy}

Let us define the new cost function

In(9) = log g (ys—1,yx) = Y _ log (Z mifi (y2 — F (yl))>
k=2 i=1

k=2

One may notice that [, (g) resembles to the conditional likelihood marginal in X,
and may expect it to be maximized for g = f, where “the true value” is now written
as

f(yk | yk—l;---;yO Zﬂ— fz Yk — (yk 1))

Let us now verify if 1, (g) is a contrast function and the maximum is reached at f.
If (X,Y>,Y1) is a generic variable having as distribution the stationary mesure of
the extended Markov chain (X, Y%, Y1)

E[In(g) ZIP’ [n%|X=i]=
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i S mifi (Y2 = Fj (1))
= ZW?/ In | S ’ 12 (y2 — F (1)) i (y1) dyrdys
i1 y1,¥2€R j=1T35J; (112 _Fj (yl))

where pu; (y1) is the stationary measure of Yj, conditionally to X = 4 and finally,
by Fubini,

E[in(g) —In(f)] =

3 25 mifi W2 = F (1)) \ = 0,0, o ,
- /ylmERln( P00 gy — I (y1))> ;m I (y2 = FY (y1)) pi (y1) dyady

j=1"34j

The last term can be immediately proven to be negative in either of the following
cases :

o pi(y1) = p(yr) for all i € {1,...,po} which leads to mixtures of autoregres-
sive models treated in Section 2.

e Fj(y1) and F? (y1) are constant for j € {1,...,p}, i € {1,...,po}, but this
corresponds to hidden Markov models studied in Gassiat (2002).

In the general case, however, there is no reason for the last integral to be nega-
tive. Simulation results proved that the penalized estimate p diverges when the
true model is, for instance, a two-regime Markov-switching autoregressive model.
This means that the cost function considered as a generalization of the “marginal
likelihood” does not have the good properties to be a contrast and the problem of
estimating po remains open in the general case of autoregressive Markov switching
models.

Using the exact likelihood could be a possible direction to follow. Gassiat and
Keribin (2000) proved the divergence of the likelihood ratio test statistic in the par-
ticular case of mixtures with Markov regime, but the consistency of some penalized-
likelihood estimate should be obtained under suitable assumptions. Leroux (1992b),
Ryden (1995) and Francq, Roussignol and Zakoian (2001) have already shown
that the penalized-likelihood criterion does not underestimate the true number of
regimes in the case of mixtures, hidden Markov models and, respectively, GARCH
models with the coefficients depending on the state of an unobserved Markov chain.
Extending their result to autoregressive models with Markov switching is imme-
diate, the difficult part which remains open being to prove that the penalized-
likelihood estimate does not overestimate the number of regimes.
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wd 0.5 0.7 0.9
ad =01 200 0 20 0 0 20 0 0 18 2
a3 =0.1 500 0 20 0 0 20 0 0 20 0
1000 | 0 20 0 0 20 0 0 20 0
1500 | 0 20 0 0 20 0 0 20 0
2000 | O 20 0 0 20 0 0 20 0
ad =0 200 0 20 0 0 19 1 1 19 0
a3 500 0 20 0 0 20 0 0 20 0
1000 | 0 20 0 0 20 0 0 20 0
1500 | 0 20 0 0 20 0 0 20 0
2000 | O 20 0 0 20 0 0 20 0
af =0.1 200 0 20 0 0 20 0 4 16 0
ad =09 500 0 20 0 0 20 0 0 20 0
1000 | © 20 0 0 20 0 0 20 0
1500 | 0 20 0 0 20 0 0 20 0
2000 | O 20 0 0 20 0 0 20 0
ad =05 200 0 19 1 0 18 2 0 20 0
a3 =05 500 0 20 0 0 20 0 0 18 2
1000 | 0 20 0 0 20 0 0 20 0
1500 | 0 20 0 0 20 0 0 20 0
2000 | 0 20 0 0 20 0 0 20 0
a? =05 200 0 19 1 0 20 0 11 9 0
ad =0.9 500 0 20 0 0 20 0 0 20 0
1000 | 0 20 0 0 20 0 0 20 0
1500 | 0 20 0 0 20 0 0 20 0
2000 | O 20 0 0 20 0 0 20 0
a =0.9 200 0 20 0 0 20 0 0 16 4
a3 =0.9 500 0 20 0 0 20 0 0 20 0
1000 | 0 19 1 0 20 0 0 20 0
1500 | 0 20 0 0 20 0 0 20 0
2000 | O 20 0 0 20 0 0 20 0
TABLE 1. Results for b9 =1, = -1, 09 =09 =0.5

APPENDIX

Proof of Theorem 1. The proof is an extension of Gassiat (2002). First, let us prove
that p does not overestimate pq :

P
PH>p)< Y, P(T.(p) > Talpo)) =

p=po+1
P
= Y P(supgeg,in(9) — an (p) > supgeg,,ln (9) — an (po)) <
p=po+1
P n 2
1 0 Sg (Yi-1,Y]
< Y P (goumpeq =Tt ) g, )

p=po+1 ZZ:Q (39)2 (Yi—1,Yy)
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wd 0.5 0.7 0.9
n |p= =2 p=3|p= =2 p=3|p=1 p=2 p=3
al 1 200 | 20 0 0 20 0 0 20 0 0
a3 =0.1 500 | 18 2 0 18 2 0 20 0 0
1000 | 14 6 0 9 11 0 11 9 0
1500 | 6 14 0 4 16 0 5 15 0
2000 | 5 15 0 0 20 0 1 19 0
a =01 200 | 12 8 0 13 7 0 20 0 0
al 500 11 19 0 6 14 0 18 2 0
1000 | 0 20 0 1 19 0 14 6 0
1500 | 0 20 0 0 20 0 8 12 0
2000 | O 20 0 0 20 0 7 13 0
af =0.1 200 0 20 0 4 16 0 17 3 0
ad =09 500 0 20 0 0 20 0 9 11 0
1000 | 0 20 0 0 20 0 9 11 0
1500 | 0 20 0 0 20 0 4 16 0
2000 | O 20 0 0 20 0 0 20 0
a9 =05 200 | 18 2 0 20 0 0 19 1 0
a3 =05 500 | 20 0 0 19 1 0 19 1 0
1000 | 14 6 0 13 7 0 10 10 0
1500 | 9 11 0 5 15 0 5 15 0
2000 | 3 17 0 0 20 0 3 17 0
a? =05 200 9 11 0 11 9 0 20 0 0
ad =0.9 500 0 20 0 7 13 0 19 1 0
1000 | 0 20 0 0 20 0 19 1 0
1500 | 0 20 0 0 20 0 18 2 0
2000 | O 20 0 0 20 0 14 6 0
a? =09 200 | 20 0 0 19 0 19 1 0
ay=0.9 500 | 20 0 0 18 2 0 17 3 0
1000 | 14 6 0 7 13 0 11 9 0
1500 | 7 13 0 5 15 0 3 17 0
2000 | 6 14 0 0 20 0 0 20 0

TABLE 2. Results for b9 = 0.5, b3 = —0.5, 0 =09 = 0.5

Under the hypothesis (HS), there exists a unique strictly stationary solution Y
which is also geometrically ergodic and this implies that Y} is in particular geomet-
rically S-mixing. Then, by remarking that

BTSY;@_MY;C) — ﬂ:k—l

we obtain that the bivariate series (Yj_1,Y}) is also strictly stationary and geomet-
rically S-mixing.

This fact, together with the assumption on the e-bracketing entropy of S with re-
spect to the [|-[|;2(,) norm and the condition that S C L3 (k) ensures that Theorem
4 in Doukan, Massart and Rio (1995) holds and

1 n
ﬁzsg (Ye—1,Y2) [ g € Gp
k=2
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is uniformly tight and verifies a functional central limit theorem. Then,

2
1 n
Supgegp m (; Sg (Yk—h Yk)) = O]p (1)

On the other hand, S C L5 (i), thus S? C £ (p) and using the Ls-entropy con-
dition 8% = {(sg)2 , g€ g,,} is Glivenko-Cantelli. Since (Yj;—1,Y%) is ergodic and

strictly s_tationary, we obtain the following uniform convergence in probability :

. 1 o ) 2
infyeg,—7 D (5)” Vi1, Y2) —nosoo infye, ||(3)_|
k=2

2

To finish the first part, let us prove that

infyeg, (89),H2 >0

If we suppose, on the contrary, that inf,cg,

(sg) H = 0, then there exists a
—ll2

sequence of functions (sg,),~, ; 9n € Gp such that H(sg") H — 0. The L,-
2 —lI2

convergence implies that (s,,) — 0in L; and a.s. for a subsequence s, . Since

[ 8g.dp =0 and sy, = (s4,) + (54,),, where (sq,), = maz (0, s,,), we obtain

that f(sgn)+ dp = — [(sg,)_dp= [ ‘(sg")_‘ dp and thus (sg,), — 0in L; and
a.s. for a subsequence sy ,,. The hypothesis (A4) ensures the existence of a
square-integrable dominating function for S and, finally, we get that a subsequence
of s, coverges to 0 a.s. and in Ly, which contradicts the fact that [ sjd,u =1 for
every g € Gp, so that :

(EZ:Q SQ (Yk—la Yk))2 — O]P’ (1)
Yohes (59)° (Y1, Vi)

SUPgeg,

Then, by the uniform tightness above and the hypothesis (A1),
Let us now prove that p does not underestimate pg :

po—1

P(p<po) < D P(Tn(p) >Tn(po)) <

< poz—l P (Supgegp (I (9) =l (f)) > an (p) — an (po))

n—1 n—1

- =y 9(Ve—1,Y4) :

Now, I, (9) =l (f) = > fp_olog <f(Yk—1 Yk)) and under the hypothesis (A3), the
class of functions {log*}, g€ gp} is P-Glivenko-Cantelli (the general proof for a

parametric family can be found in Van der Vaart (2000)) and since (Yj_1,Y%) is
ergodic and strictly stationary, we obtain the following uniform convergence in
probability :
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%Supgegp (ln (g) -1l (f)) — SUPgeg, /log%fd/.l/

Since p < pg and using assumption (A2), the limit is negative. By hypothesis (A1),
M"f(”o) converges to 0 when n — 00, so we finally have that P (p < pp) — 0

and the proof is done.

Proof of Proposition 2

Since the noise is gaussian and |a?| < 1foreveryi € {1,...,po}, the hypothesis (HS)
is verified and, by Yao and Attali (2000), there exists a unique strictly stationary
and geometrically ergodic solution, which in particular will be geometrically (-
mixing.

On the other hand, the gaussian noise implies the existence of moments of any
order. Now let us prove the existence of an exponential moment for Y;. By denoting
o =mazri=1,., oY, p=max la?| < 1,b=mazx |b?| and for s € N*, one
has :

’Llpo ’Llpo

IA

s 2s 8
Vi[** = |F%, (Yic1) +ex, )] < (p[Yica| + b+ o lee)* <

2s

< (b+o|et|+fjpk <b+a|et_k|)> - (ipk <b+a|et_k|>)

k=1

By taking the expectation,

¥

1 oo 28 0o N
E (|K5|25) 2s <FE (Z pFb+o |5tk|)> < Zpk (b+ oF (|5t—k|25) 23)
k=0 k=0

and since p < 1 and the Ly-norm is dominated by the Ly, we finally obtain

1 b+oFE (|Et|2s)E Bl
E |Y2|25 25 < < b+0E |€t|25 25
1-p 1-

The exponential moment can be computed then by

2k 2
§Y2\ _ E|Yt| k< Eled| bto
E (e ) - Z 0 Z o [P\1z P)
k=0 k=0
The last term being the moment generating function of a x? (1)-distribution, it will

2
be finite for any & such that 0 < § < % (117%;) .
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Proof of Proposition 3

5~

f

= 9(y1,92) >2 .
- /yl,yzem (f(yl,yz) 1) f(y1,y2) dyadp (y1)

L2 (u)

2

9° (y1,y2)

— g LI nd -1
/yl,erw Fluye) w(v1)

By replacing g (y1,y2) = 7f1 (y2 — F1 (1)) + (1 — 7) f2 (y2 — F> (y1)) and using

2f1(y2 — Fy (1)) f2 (2 — Fo (1)) < f1 (2 — Fy (1)) + f5 (g2 — F> (1))

one gets finally

-

The last term will be finite if, for instance,

dy2dp (y1)—1

/ 7fi (2 —Fi (1) + (L =7) 5 (g2 — F> (1))
L2(u)  Jyrya€R? [ (1,y2)

S (y2—Fi(y1))
{ Jys yaer dedu (y1) < o0

fo(y2—F2(y1))
fy1,y2€R2 2 g?yL;ﬁ“ dy2dp (y1) < 00

The last step is to replace fi, fo and f° by centered gaussian densities with standard
errors o1, o2 and, respectively, 0° and consider also Fy (y) = a1y + b1, F» (y) =
azy + by and FO (y) = a®y + 1°.

For i € {1,2}, each of the integrals above becomes :

f2 (g2 — Fi(y1)) ( o°
e ———"dysd = _—
/yl,yQE]RZ f (ylayZ) yaclt (yl) /111 ER /Z/2€R \/2_71'0'12

wond (L L N o (F,~<y1)—po<y1))2}d
p{ (U? 2(00)2>(y2 (yl))}dw) p{ 20 —o? 1 (y1)

2(0°)” Fi(y1) =02 F°(y1)
2(0%)%—0?

where m (y1) =

To have a sufficient condition, the integral in ys is finite if o2 < 2 (00)2, as for the
integral in y, using the existence of an exponential moment for Y;, it is enough to

- _a%)?
have 2(((:0)7:7)02 < 4.

Proof of Proposition 4

In the general case, the true and the possible conditional densities are

f(1,92) ZW 5 (g2 = F5 (1)) 9 (91, 92) Zﬂ'zfz y2 — Fi (y1))

Then, the norm of the generalized score function can be written as
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-

2
9° (y1,92)
/yl,yzenv [ (y1,92) ? ,u( 1)

L2 ()

dy2dp (yl) -1

= / (20, mifi (y2 — Fi (1))
y1,y2ER? E] 1 ;) ? (y2 _F;‘) (Z/l))

and by the inequality (X2, mifi (2 — Fi (11)))” < X0, mif? (92 — Fi (1)), w
will obtain that the integral is finite if

fZ(yQ_F'(Zh)) o
/yl,yzew >0 m0F9 (g2 — FO (y ))dyZdM (y1) <

foralli € {1,...,p}. On the other hand, since 3352, 79 9 (ya = F (1)) > 7R £ (v2 — FR (v1))
for every k € {1,...,po}, the condition will become 51m11ar to that in Proposition
3. We will have that the generalized score function is well defined if for every

i € {1,...,p}, there exists k € {1, ...,po} such that

2 (y2— F; (1))
/Z/l,yzeRZ fk (y2 — FO (y ))dy?dﬂ (y1) <

7

which is verified if 0? < 2 (0?)” and la; —al| < /6 (2 (09)* — 0.2).

Proof of Proposition 5

The first term in the developpement can be computed easily by remarking that the
gradient of § —1 at (¢9,9) is :

- y 8 i
o fori € {1,...po} and j € {tios + 1, ti}, 257 (60, 04) = nlay
o forie {1,....,po — 1},

g_1 t
(é ) (@0,%0) = E5se 11 9969 = 5% i 4969, = 99 — 963,

The term of second order can be obtained by direct computations once the hessian
in computed at (¢9,;):

=nlqg! ,i=1,.,poand j=ti_1 +1,...t;

(2, )

. 69%8—011) (62,44) =0,4,0=1,..,pand j #1
(¢, ¢¢) =0
(2, )

,i,k:].,...,po—].

!

=gqj9;,i=1,..,pp—land j=t;_1 +1,.... %

92 , .
° ag,aa ) (¢t,¢t) = —qjg;)0 ,i=1,..,pp—land j =1, 1 +1,....%py
e the other crossed derivatives of s; and 6; are zero
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It remains to prove that the rest is o (||<;$t - ¢?||) and this will follow if the third-
order derivative is uniformly bounded in ® by a map with finite integral and using
the linear independence in Lemma 1. As it can be seen easily that this derivative
can be expressed in terms of g;, j = 1,...,p and their partial derivatives of order
one, two and three in ; , a sufficient condition to verify is that latter are uniformly
bounded in ® by an integrable map.

Let us check the last assertion. Since §; = (a;,b;,0;), the partial derivatives of
order one of g;, j = 1,...,p are :

1
J
—_— y ’y =
60]'( ! 2) Vnf (yl,yQ) ( 8@1 8b

where

09; \/Q_W% (Y1,92) s Var L 0J; (y1,92) \/ﬁgi (yl,y2)>
0j

— Ly (y2—F; (1))
J

VERSE (,0) = U (o = B ()¢

|<d
<.w

— 525 (y2—Fi(31))?
J

VIR (1) = o3 (1a = B ()

of; - F 21| -k @e-Fi)?
m% (y1,92) = (2 = F @))” Ui w)” _ e ;
J J

J

The Hessians of g;, j = 1,...,p can be written as :

2.
(y1;y2) Vv 2'”38 L (yl;yQ)
(Z/l,y2) \/2778,, 30 (¥1,92)
8% f
\Ziryrrn ag (Y1,92) V2 Bb Ba — (y1,Y2) V27T (yl,yz)

\/ﬂ (yl; y?)
329j 1

8
= V2m T Ba;0b; 31, (ylaﬁ’JZ)

oI
007 V2rf (y1,92) \/_

with

82f
\/2_ 8(1? (y1,¥2)

H? 1 1 (y2—Fj(y1))
Var oI () = | + ()
ab] g gj
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& f; 1 — 5t (y2—Fj(31))*
VQWWQJ (y1,92) = . (y2 — Fy (y1))* - 275
J

2
(yz —F;(y1))* +
: o

J

G| e

Concerning the third-order partial derivatives of g;, j = 1,...,p, we shall remark,

using the expressions above, that they will be written as linear combinations of pow-
- . — 52z (y2— Fj(31))?
ers of 0%, y1 and y» — Fj (y1), multiplied by the exponential term e 275 ! .
This remark, together with the assumptions in Section 3.2, imply the existence of
dg; 0%g; 8%g;
89;° 963 ° 963 °

a finite integral function which dominates g;, j =1, ..., p uniformly
in 6]

The last thing we need to prove, the inverse implication being obvious, is

T p

T 1
(60 = 62)" Glgop) + 5 (9= 8))" Gspu) (D= 87) =0 = ¢ = ¢}
First, let us state and prove the following lemma, :

Lemma 1

The family of functions

Oggo Oggo 1 Oggo 32999 32999 82990 32900 32990 32990 1
902 Ba;  Bb; "o Doy | OB’ Bl ' 002 Baido;’ 0azdb;’ Bbidoy’ P

is linearly independent.

Proof of Lemma 1

To prove the linear independence, we need the following equivalence which holds
whenever 6; = (a;,b;,0;), 1 =1, ...,pg are distinct :

Po 1 2
-5z (y2—Fi(y1)) .
E H(ylayZ)e 207 . " :05 (V)y17y2<:>Pi (ylayQ) :077‘: 17"'7p0

where P; (y1,y2) are polynomials of y; and y> and F; (y1) = a;y1+b; fori =1, ....po

Now, let us consider the linear combination

Py 1 ®i9p9 + 30 B g+ vl gl

T T
ith gt = (220 200 P99\ _ (P9 09 Do ey ey Day
WL 9; = \ Bai 86 2 Fos ) 9 T | TBaZ 882 > B0? * Baidb;’ Baidoi’ Bbido; ) °

BT = (Bi,1,Bi2:Bi3) and v = (Vi1,Yi,2, Yi,35 Yisd» Y51 Vis6)-
Then,

& S T 1 S T 1n o 2(3/2 Fi(y1))?
E Qiggo + E Bi 9i + E % 9 =0& E P (y1,y2)e E Qi
=1 =1 =1

i=1

where
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1 1

1
P; (y1,y2) = Fln) Varos [Oti + ,Bi,lg_% (y2 — Fi (y1)) +ﬂi,20—? (y2 — Fi (y1)) +

s (= (2 — Fr ()2 — — ) + i s (y2 — F; (31))* ) +
“\o? 0; ' o} o}

1 1 1
#ria (= 2+ 2y G = Foln))® ) s (5 G = Bt -
K3 (2

6 4
o; g; g

3
-~y (—y—i 9y, —F <y1))2) s (—% (v2 = Fi () + 2 (4o - <y1))3) ;
g o; o; o;

2 7

+7i6 (_a%-3 (y2 — Fi (1)) + = (y> = i (yl))3)]

5
o;

If now y» — oo, the left term in the equality vanishes and then Y ©° a; = 0 and

by the remark in the beginning of the proof, we obtain that P; (y;,y2) = 0 for
i=1,...,p0. By coefficient identification for y3, y193, y3, y?y2 and y1942 we obtain
immediately that v;3 = vi,5 = Vi,6 = Vi,1 = V5,4 = 0 and it remains that

a; +ﬂz’,l% (y2 — Fi (y1)) +ﬂi,2% (y2 — Fi (y1)) + Bis (% (y2 — F; (11))” - %) +

i i
11 ,
iz |\ ==+ 7 W2 —Fi(y1))" | =0, V) y1,92
Ui U'i

Here again, by coeflicient identification we will have that v; » = —B;—S and 31 =
Bi2 = o = 0 and the proof is done.

Let us go back now to what remains to prove in Proposition 5. For v fixed, let us
consider ¢; verifying

1
(¢ — ¢g)TQE¢g,¢t) t3 (¢ — ¢?)Tgfl¢,g,¢t) (¢ —¢7) =0

The two terms can be replaced by their expressions in Proposition 5 and we obtain

Po tq r Po
ZW? Z 40, — 67 | gi +25i90?+
=1 Jj=ti—1+1 =1
T
Po t; t; T
+> (28| D a0 girmd Y 4 (0;,-67) g (6;-67)| =0
=1 Jj=ti—1+1 } Jj=ti—1+1

With lemma 1, the equality above holds iff :

e the coefficients of ggo are zero, which implies s; = 0,4 =1,...,pp — 1
82g

. 82940 69 .
e the coefficients of — > and - are zero, then for all ¢ =1, ..., po
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t; t;
0 02 _ 0 0\2 _
Y gy —a)) =a) Y gi(oj-0f) =0
j=ti—1+1 j=ti—1+1
and since 79 and ¢; = s i were supposed stricly positive, we will have
1=t;_q+1 71

aj=af and o; =0f foralli =1,....po, j = ti1 +1,..., 1.

When replacing s;, a; and o, the equality becomes

Po o t; 0\699? Po 0 t; o2 6299?
Z"Ti '72 q;bj — b; ab; + Zﬂ—i '72 9j (bj - bz) 61)3 =0
=1 Jj=ti—1+1 =1 Jj=ti—1+1

and by the linear independence b; =b? for all i = 1,...,po, j = ti—1 + 1,..., t;.

Proof of Proposition 6

The idea of this proof is to bound Njj (¢, So, [||l,) by the number of e-brackets
covering a wider class of functions. For every g € Fy, we will consider the reparam-
eterization ® = (¢, 1) which allows to write a second-order developpement of the
density ratio :

Ao 1 — (00 8) Glgg o + 5 (0= )l g (61 = 80) +0(D (61, )

Then, by remarking that the first two terms in the Taylor expansion are linear
combinations of ggo, g, 94, ¢ = 1, ..., pg, the density ratio can be written also as :

Po Po Po

(s, %

L’fw) —1=) aigpo+ D B g+ D 7 g2 +0(D (b))
=1 =1 =1

0940 896? 8299?

where 8 = (Bi,1, Bi2: Bi3), ¥ = (Vi1> Yis2> Yi,3s Yisds Virs)» 9ist = | Bat> 75> Bz +
i Bb; 0 ob2

T
d 8gg0 0%990 07950 07950 0940
an gi72 - 80,? ? 801.2 ? Ba;0b; ? Ba;00;? Ob;00;

Now, using the linear independence in Lemma 1, there exists m > 0 such that for
every (ai,BiT,'yiT,i = l,po) of norm 1,

>m
L2(p)

Po Po po
D g + Y Bl gia + D i
=1 =1 i=1

At the same time, since

(b, %) _
Fo—1 _1

H 9(be,%e) _ 1)

L2() L2 ()

we will have thatg(tgle¢e)uclidean norm of the coefficients in the second-order devel-
t,%) g
oppement of ”Wtf)lﬂ— is upper bounded by % This fact implies that Sp
A PION
can be included in

1 9969

o; Oo;

%
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Po _ 1
H= {Z (aigag + 87 g +%~Tg,'-') +o(1), | (877 i =T,po)| < E}

i=1

and then obviously AV (e, H, ||-[|,) = O (%)gpo .



