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Rejection of Narrow Band Unknown Disturbances in an Active

Suspension System

Aurelian Constantinescu, Daniel Rey and Ioan Doré Landau

Abstract— The rejection of unknown disturbances of un-
known or varying frequencies is one of the main problems
in active vibration control. To achieve the rejection of the
disturbances (at least asymptotically) without measuring them,
a feedback solution can be considered.

This paper discusses a feedback adaptive control approach
for active vibration systems in the presence of unknown narrow
band disturbances, with the model of the plant considered
known (e.g. obtained by standard system identification). As
the controller should incorporate the model of the disturbance,
the rejection of unknown disturbances raises the problems of
adapting the internal model of the controller and re-designing
the controller in real-time.

A direct adaptive control scheme based on the internal model
principle and the use of the Youla-Kucera parameterization
is proposed. This approach is comparatively evaluated with
respect to an indirect adaptive control scheme based on the
estimation of the disturbance model. The evaluation of the
performance of the adaptive algorithms is illustrated in real
time on an active suspension system.

I. INTRODUCTION

This paper presents the evaluation of two narrow band

disturbance attenuation feedback adaptive schemes in the

case of an active suspension: a direct and an indirect one.

Several solutions for the attenuation of narrow band

disturbances of unknown or varying frequency in active

vibration control have been proposed in the literature [1],

[2], [3], [4]. These solutions have been inspired by Widrow’s

technique for adaptive noise cancellation [5] and they require

an additional transducer to provide a measurement highly

correlated with the unknown disturbance. Two main draw-

backs of these approaches can be mentioned: the necessity

of an additional transducer (whose location is generally

not obvious to determine or to use) and the complexity of

the adaptation algorithm due to the important number of

adaptation parameters.

Feedback approach is another solution which may be

considered for the rejection of the disturbance (at least

asymptotically), which does not require any additional mea-

surement. In this case, the common framework is based on

the assumption that a narrow band disturbance is the result of

a white noise or a Dirac impulse passed through the ”model
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of the disturbance”1.

The solution presented in this paper for the case of the

active suspension system considers that the plant model is

known and the disturbance model is unknown2; the model of

the plant can be obtained by standard system identification

and does not normally change during operation. One of the

approaches considered for solving this problem is the use of

the internal model principle [9], [10], [11], [12], [13], [14],

[15], [16], but other approaches may be also considered, such

as the use of an observer for the disturbance [17], [18] or

the use of a ”phase-locked” loop structure [19].

Since the parameters of the disturbance model are un-

known all these approaches lead to an adaptive implemen-

tation which can be of direct or indirect type. These two

implementation approaches for the rejection of time-varying

unknown narrow band disturbances, presented and evaluated

in this paper, are based on the internal model principle. As

such, the controller should incorporate the model of the

disturbance [9], [10], [11], [12]. Hence, the rejection of

unknown disturbances becomes a problem of adapting the

internal model of the controller and of re-designing it in

real-time.

In the indirect adaptive control scheme, the model of the

disturbance is estimated and the controller is re-computed in

real time; in this case the controller should incorporate the

estimated model of the disturbance as a pre-specified element

of the controller.

The other solution would be to consider the Youla-Kucera

parametrization of the controller (known also as the Q-

parametrization). In this case it is possible to insert and adjust

the internal model in the controller by adjusting the param-

eters of a polynomial Q (see Fig. 1). This approach leads

to a direct adaptive control scheme where the parameters

of the polynomial Q are directly adapted in order to have

the desired internal model; the polynomials R0 and S0 do

not change, so there is no need to recompute the controller

in real-time. The computational volume of the adaptation

algorithm depends upon the complexity of the disturbance

model.

From the user point of view and taking into account the

type of operation of existing adaptive disturbance compensa-

tion systems, two modes of operation of the adaptive schemes

1Throughout the paper it is assumed that the order of the disturbance
model is known but the parameters of the model are unknown.

2Other cases may be also considered, such as unknown plant and
disturbance model or unknown plant and known disturbance model, which
have been considered in the literature (see for example [6] and [7], [8],
respectively).



Fig. 1. Direct adaptive control scheme for rejection of unknown distur-
bances

may be considered:

1) Self-tuning operation: the adaptation procedure starts

either on demand or when the performance is unsat-

isfactory (automatically). In this situation the current

controller is frozen during the computation of the new

controller parameters.

2) Adaptive operation: the adaptation is performed con-

tinuously and the controller parameters are updated at

each sampling.

This paper focuses on the results obtained with a direct

feedback adaptive control algorithm for the case of unknown

and time-varying frequency narrow band disturbances ap-

plied to an active suspension. The direct adaptive control

scheme uses the Youla-Kucera parametrization for the com-

putation of the controller. This algorithm takes its roots from

an idea of Tsypkin [22].

For evaluation purposes (complexity and performance) an

indirect adaptive control scheme based on the Internal Model

Principle is also presented and the results are evaluated

comparatively.

The paper is organized as follows. In section II the active

suspension system on which the algorithms have been tested

is presented. Section III is dedicated to a brief review of the

plant, disturbance and controller representation as well as of

the Q-parametrization. The direct adaptive control scheme

is presented in section IV and the indirect one in section

V. Section VI presents the results obtained in real time on

the active suspension. Some concluding remarks are given

in section VII.

II. THE ACTIVE SUSPENSION SYSTEM

The structure of the system (the active suspension) used

in this paper is presented in Fig. 2. It consists of the

active suspension, a load, a shaker and the components

of the control scheme. The mechanical construction of the

load is such that the vibrations produced by the shaker,

fixed to the ground, are transmitted to the upper side of

the active suspension. The active suspension is based on

a hydraulic system allowing to reduce the over-pressure at

the frequencies of the vibration modes of the suspension. Its

components are: an elastomer cone (1) which marks the main

chamber filled up with silicon oil, a secondary chamber (2)
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Fig. 2. Active suspension system (scheme)
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Fig. 3. Block diagram of the active suspension system

marked by a flexible membrane, a piston (3) attached to a

motor, an orifice (4) allowing the oil to pass between the two

chambers and a force sensor located between the support and

the active suspension.

The controller will act upon the piston (through a power

amplifier) in order to reduce the residual force. The sampling

frequency is 800Hz. The equivalent control scheme is shown

in Fig. 3. The system input, u(t) is the position of the

piston (see Fig. 2 and Fig. 3), the output y(t) is the residual

force measured by a force sensor. The transfer function

(q−d1C/D), between the disturbance force, up, and the

residual force y(t) is called primary path. In our case (for

testing purposes), the primary force is generated by a shaker

controlled by a signal given by the computer. The transfer

function (q−dB/A) between the input of the system, u(t),
and the residual force is called secondary path. The input

of the system being a position and the output a force, the

secondary path transfer function has a double differentiator

behavior.

The control objective is to reject the effect of unknown

narrow band disturbances on the output of the system

(residual force) - i.e. attenuate the vibrations transmitted

from the machine to the support via the active suspension.

The physical parameters of the active suspension system are

not provided by the manufacturer. The system has to be

considered as a ”black box”.



III. BASIC NOTATIONS AND PROBLEM FORMULATION

A. Plant representation and controller structure

The structure of a linear time invariant discrete time model

of the plant (used for controller design) is:

G(z−1) =
z−dB(z−1)

A(z−1)
=

z−d−1B∗(z−1)

A(z−1)
,

where:

d = plant pure time delay [no. of sampling periods];

A = 1 + a1z
−1 + . . . + anA

z−nA ;

B = b1z
−1 + . . . + bnB

z−nB = q−1B∗.

A(z−1), B(z−1), B∗(z−1) are polynomials in the complex

variable z−1 and nA, nB and nB −1 represent their orders3.

The model of the plant is obtained by system identification

of the secondary path (for details on the system identification

of the model of the active suspension see [24], [25], [26],

[27], [28]).

The controller to be designed is a RS-type polynomial

[29], [30] controller (see Fig. 3). The output of the plant

y(t) and the input u(t) may be written as:

y(t) =
q−dB(q−1)

A(q−1)
· u(t) + p1(t); (1)

S(q−1) · u(t) = −R(q−1) · y(t), (2)

where q−1 is the delay (shift) operator4, p1(t) is the resulting

additive disturbance on the output of the system. R(z−1),
S(z−1) are polynomials in z−1 having the orders nR, nS ,

with the following expressions :

R(z−1) = r0 + r1z
−1 + . . . + rnR

z−nR

= R′(z−1) · HR(z−1) ; (3)

S(z−1) = 1 + s1z
−1 + . . . + snS

z−nS

= S′(z−1) · HS(z−1), (4)

where HR and HS are pre-specified parts of the controller

(used for example to incorporate the internal model of a

disturbance or to open the loop at certain frequencies).

Using (1) and (2), the output of the system can be written

as

y(t) =
A(q−1)S(q−1)

P (q−1)
· p1(t) = Syp(q

−1) · p1(t), (5)

where

P (z−1) = A(z−1)S(z−1) + z−dB(z−1)R(z−1) (6)

defines the poles of the closed loop and Syp is the output

sensitivity function (the transfer function between the distur-

bance p1(t) and the output of the system y(t)).
For more details on RS-type controllers and sensitivity

functions see [29].

3The complex variable z−1 will be used for characterizing the system
behavior in the frequency domain and the delay operator q−1 will be used
for describing the system behavior in the time domain.

4x(t) = q−1x(t + 1)

B. Problem formulation

Suppose that p1(t) is a deterministic disturbance, so it can

be written as

p1(t) =
Np(q

−1)

Dp(q−1)
· δ(t), (7)

where δ(t) is a Dirac impulse and Np(z
−1) and Dp(z

−1)
are coprime polynomials in z−1, of degrees nNp

, nDp
. We

are interested in the rejection of narrow band disturbances

and in this case the roots of Dp(z
−1) are on the unit circle5.

The energy of the disturbance is essentially represented by

Dp. The contribution of the terms of Np is weak compared

to the effect of Dp, so one can neglect the effect of Np.

In order to apply the Internal Model Principle (to introduce

the disturbance model into the controller) we shall consider

the pre-specified part of S(z−1) as HS(z−1) = Dp(z
−1).

For details on the Internal Model Principle see [9]. Hence

the controller is computed using (6), where P , Dp, A, B,

HR and d are given6.

C. Q-parametrization

The Youla-Kucera parametrization (Q-parametrization) for

disturbance rejection has been explicitely proposed by Y.

Z. Tsypkin in [12]. Let [R0(z
−1), S0(z

−1)] be the nominal

controller (without internal model of the disturbance), verify-

ing the diophantine equation (6) and satisfying the imposed

robustness constraints. The control law is

S0(q
−1) · u(t) = −R0(q

−1) · y(t).

Using the Q-parametrization of all stable controllers [23],

[12], the controller polynomials R(z−1) and S(z−1) get the

form:

R(z−1) = R0(z
−1) + A(z−1)Q(z−1); (8)

S(z−1) = S0(z
−1) − z−dB(z−1)Q(z−1). (9)

The central controller (R0, S0) can be computed by poles

placement (but any other design technique can be used).

Given the plant model (A,B, d) and the desired closed-loop

poles P one has to solve:

P (z−1) = A(z−1)S0(z
−1) + z−dB(z−1)R0(z

−1). (10)

Equations (8) and (9) characterize the set of all stabilizable

controllers assigning the closed loop poles as defined by

P (z−1). For the purpose of this paper Q(z−1) is considered

to be a polynomial of the form:

Q(z−1) = q0 + q1z
−1 + . . . + qnQ

z−nQ . (11)

To compute Q(z−1) in order that the controller incorporates

the internal model of the disturbance one has to solve the

diophantine equation:

S′(z−1)Dp(z
−1) + z−dB(z−1)Q(z−1) = S0(z

−1), (12)

5Since the external disturbance is narrow band, the filtering effect of the
primary path around the central frequency can be approximated by a gain
and phase lag which will be captured by Np.

6It is assumed that Dp and B do not have common factors.



where Dp(z
−1), d, B(z−1) and S0(z

−1) are known and

S′(z−1) and Q(z−1) are unknown. Equation (12) has a

unique solution for S′(z−1) et Q(z−1) with: nS0
≤ nDp

+
nB + d − 1, nS′ = nB + d − 1, nQ = nDp

− 1. It may be

seen that the order nQ of the polynomial Q depends upon

the structure of the disturbance model.

IV. DIRECT ADAPTIVE CONTROL

A. Known Parameters Case

In the case when the parameters of Dp(z
−1) are known,

we compute Q(z−1) by solving the diophantine equation

(12), the controller being obtained using the relations (8)

and (9).

B. Unknown Parameters Case

The objective is to find an estimation algorithm which

will directly estimate the parameters of the internal model

in the controller in the presence of an unknown disturbance

(but of known structure) without modifying the closed loop

poles. The Q-parametrization is a potential option since

modifications of the Q polynomial will not affect the closed

loop poles. In order to build an estimation algorithm it is

necessary to define an error equation which will reflect the

difference between the optimal Q polynomial and its current

value.

In [12], such an error equation is provided and it can

be used for developing a direct adaptive control scheme.

Using the Q-parametrization, the output of the system in the

presence of a disturbance can be expressed as:

y(t) =
A(q−1)[S0(q

−1) − q−dB(q−1)Q(q−1)]

P (q−1)

·
Np(q

−1)

Dp(q−1)
· δ(t)

=
S0(q

−1) − q−dB(q−1)Q(q−1)

P (q−1)
· w(t), (13)

where w(t) is given by (see also Fig. 1):

w(t) =
A(q−1)Np(q

−1)

Dp(q−1)
·δ(t) = A(q−1)·y(t)−q−d

·B(q−1)·u(t),

(14)

In the time domain, the internal model principle can be in-

terpreted as finding Q such that asymptotically y(t) becomes

zero.

Consider the estimated polynomial Q̂(t, q−1) as

Q̂(t, q−1) = q̂0(t) + q̂1(t)q
−1 + . . . + q̂nQ

(t)q−nQ ,

the associated estimated parameter vector θ̂(t) =
[q̂0(t) q̂1(t) . . . q̂nQ

(t)]T and the observation vector

φT (t) = [w2(t) w2(t − 1) . . . w2(t − nQ)], where

w2(t) =
q−dB∗(q−1)

P (q−1)
· w(t). (15)

After computations, the a priori and a posteriori adapta-

tion errors may be written as (for details see [31]):

ε0(t + 1) = w1(t + 1) − θ̂T (t)φ(t) ;

ε(t + 1) = w1(t + 1) − θ̂T (t + 1)φ(t),

with

w1(t + 1) =
S0(q

−1)

P (q−1)
· w(t + 1) ; (16)

w(t + 1) = A(q−1)y(t + 1) − q−dB∗(q−1)u(t)(17)

For the estimation of the parameters of Q̂(t, q−1) the

following parameter adaptation algorithm is used:

θ̂(t + 1) = θ̂(t) + F (t)φ(t)ε(t + 1) ; (18)

ε(t + 1) =
ε0(t + 1)

1 + φT (t)F (t)φ(t)
; (19)

ε0(t + 1) = w1(t + 1) − θ̂T (t)φ(t) ; (20)

F (t + 1) =
1

λ1(t)



F (t) −
F (t)φ(t)φT (t)F (t)

λ1(t)
λ2(t)

+ φT (t)F (t)φ(t)



 ,(21)

where λ1(t) and λ2(t) allow to adjust the adaptation speed

(for details see [29]).

In order to implement this methodology for disturbance

rejection (see Fig. 1), it is supposed that the plant model
z−dB(z−1)

A(z−1)
is known (identified) and that it exists a con-

troller [R0(z
−1), S0(z

−1)] which verifies the desired specifi-

cations in the absence of the disturbance. One also supposes

that the degree nQ of the polynomial Q(z−1) is fixed,

nQ = nDp
−1 (i.e. the structure of the disturbance is known).

The following procedure is applied at each sampling time

for adaptive operation:

1) Get the measured output y(t + 1) and the applied

control u(t) to compute w(t + 1) using (17).

2) Compute w1(t+1) and w2(t) using (16) and (15) with

P given by (10).

3) Estimate the Q-polynomial using the parametric adap-

tation algorithm (18) - (21).

4) Compute and apply the control (see Fig. 1):

S0(q
−1)·u(t+1) = −R0(q

−1)·y(t+1)−Q̂(t, q−1)·w(t+1).
(22)

For the self tuning operation of the adaptive scheme, the

estimation of the Q- polynomial starts once the level of

the output is over a defined threshold. A parameter adap-

tation algorithm (18) - (21) with asymptotically decreasing

adaption gain is used and the estimation is stopped when

the adaptation gain is below a pre-specified level. During

the estimation of new parameters, the controller is kept

constant. The controller is updated once the estimation phase

is finished.

An analysis of the stability of the algorithm may be found

in [31].

V. INDIRECT ADAPTIVE CONTROL

The indirect adaptive control methodology for the attenu-

ation of narrow band disturbances consists in two steps:

1) identification of the disturbance model;

2) computation of a digital controller using the identified

disturbance model.



The disturbance is considered as a stationary signal having

a rational spectrum. As such it may be considered as the out-

put of a filter with the transfer function Np(z
−1)/Dp(z

−1)
and a white noise as input:

y(t) =
Np(q

−1)

Dp(q−1)
· e(t), (23)

where e(t) represents a gaussian white noise, and

Np(z
−1) = 1 + np1

z−1 + . . . + npnNp
z−nNp ;

Dp(z
−1) = 1 + dp1

z−1 + . . . + dpnDp
z−nDp .

Therefore the disturbance model can be represented by an

ARMA model. As we deal with narrow band disturbances,

the filtering effect of the primary path in cascade with

the output sensitivity function (when operating in closed

loop) around the central frequency of the disturbance can

be approximated by a gain and a phase lag which will be

captured by the Np(z
−1)/Dp(z

−1) model.

From (23) one obtains:

y(t+1) = −

nDp
∑

i=1

dpi
y(t−i+1)+

nNp
∑

i=1

npi
e(t−i+1)+e(t+1).

(24)

The problem is, in fact, an on-line adaptive estimation of

parameters in presence of noise [29], [20]. Equation (24)

is a particular case of identification of an ARMAX model.

The Recursive Extended Least Squares method [29] may be

used, for example, which is dedicated to the identification

of this type of model. The parameter adaptation algorithm

given in (18) - (21) is used. The controller parameters are

frozen while the disturbance model is identified. Once the

disturbance model is identified, the controller containing the

disturbance dynamics is computed by solving the diophantine

equation (6) and using (4) with HS(z−1) = D̂p(z
−1) (the

identified model of the disturbance). In order to apply this

methodology we suppose that the plant model is known (e.g.

obtained by identification). We also suppose that the degrees

nNp
and nDp

of Np(z
−1) respectively Dp(z

−1) are fixed.

VI. RESULTS OBTAINED ON THE ACTIVE SUSPENSION

The narrow band disturbance rejection procedure using

the direct and indirect adaptive control schemes proposed in

sections IV and V, is illustrated in real time for the case of

the control of an active suspension (presented in section II).

In our case the disturbance will be a time-varying frequency

sinusoid, so we shall consider nDp
= 2 and nQ = nDp

−1 =
1.

The identification procedure in open and closed-loop op-

eration for the active suspension is discussed in detail in

[24], [25], [26], [27], [28]. The frequency characteristic of

the identified primary path model (open-loop identification),

between the signal up sent to the shaker in order to generate

the disturbance and the residual force y(t), is presented

in Fig. 4. The first vibration mode of the primary path

model is near 32Hz. The frequency characteristic of the

identified secondary path model (closed-loop identification),
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is presented also in Fig. 4. This model has the following

complexity: nB = 14, nA = 16, d = 0. The identification

has been done using as excitation of the piston a PRBS

(Pseudo Random Binary Sequence) with frequency divider

p = 4 (for details on the PRBS signals see [29]). There exist

several low damped vibration modes on the secondary path,

the first one being at 31.8Hz with a damping factor 0.07.

The identified model of the secondary path has been used

for the design and implementation of the controller.

The central controller (without the internal model of the

disturbance) has been designed using the pole placement

method and the secondary path identified model. A pair of

dominant poles has been fixed at the frequency of the first

vibration mode (31.8Hz), with a damping ξ = 0.8, and the

other poles of the model have been considered as auxiliary

desired closed loop poles. In addition a pre-specified part

HR = 1 + q−1 (R = HRR′) which assures the opening of

the loop at 0.5fs has been introduced and 10 auxiliary poles

at 0.7 have been added to the desired closed-loop poles. The

resulting nominal controller has the following complexity:

nR = 14, nS = 16 and it satisfies the imposed robustness

constraints on the sensitivity functions7.

A. Frequency hopping sinusoidal disturbances (direct and

indirect adaptive control)

In order to evaluate the performance of the direct and

indirect methods in real time, frequency hopping sinusoidal

disturbances between 25 and 47Hz have been used (the first

vibration mode of the primary path is near 32Hz).

For both direct and indirect adaptive control methods, two

protocols have been defined: one for a self-tuning operation,

the other for an adaptive operation.

• Protocol 1 : Self-tuning operation

The system operates in closed loop with a frozen

controller. As soon as a change of the disturbance is

7Any design method allowing to satisfy these constraints can be used.
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detected (by measuring the variance of the residual

output), the estimation algorithm is started with the last

frozen controller in operation. When the algorithm con-

verges (a criterion has to be defined), a new controller

is computed and applied to the system. The adaptation

algorithm is stopped and one waits for a change of

frequency.

• Protocol 2 : Adaptive operation

The estimation algorithm works continuously (once the

loop is closed) and the controller is recomputed at each

sampling. The adaptation gain in this case does not tend

asymptotically to zero.

• Start up: For comparison purposes the system is started

in open-loop for both protocols. After 5 seconds (4000
samples) a sinusoidal disturbance of 32Hz is applied

on the shaker. The model of the disturbance is es-

timated and an initial controller is computed (same

initial controller for both direct and indirect adaptive

control). In the case of the self-tuning operation the

adaptation algorithm is stopped while in the case of the

adaptive operation the adaptation algorithm continues to

be active.

After the start up ends, every 10 seconds (8000 samples)

sinusoidal disturbances of different frequency are applied

(32Hz, 25Hz, 32Hz, 47Hz, 32Hz).

1) Protocol 1 : Self-tuning operation. Real time exper-

imental results: The measured residual forces obtained in

self-tuning operation with the direct and indirect adaptation

methods are presented in Fig. 5 and Fig. 6, respectively.

We note in general a faster convergence speed of the direct

adaptive control scheme compared to the indirect one (except

for 47Hz).

For the self-tuning protocol, the spectral densities of the

residual force obtained in open loop respectively in closed

loop using the direct adaptation scheme (after the algorithm

converges) are presented in Fig. 7, for the three frequencies
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Fig. 6. Time domain results with the indirect adaptation method in self-
tuning operation
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Fig. 7. Spectral densities of the residual force in open and in closed loop,
with the direct adaptation method in self-tuning operation

used: 25, 32 and 47 Hz. We remark that the attenuations

are larger than 49 dB for all frequencies considered. Similar

results are obtained with the indirect adaptation (for details

see [24]).

We note the appearance of two harmonics of the first

vibration mode of the primary path on the spectral density in

open loop when the frequency of the disturbance corresponds

with the first resonance mode of the system (32 Hz). They

appear in open loop because of the non-linearities of the

system at large signals (there is an important amplification

of the disturbance at the resonance frequency of the system

in open loop). The harmonics do not appear in closed loop

operation.

In self-tuning operation, one uses an adaptation gain F (t)
with variable forgetting factor, with λ0 = 0.97 and the initial
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Fig. 8. Time domain results with the direct adaptation method in the
adaptive case (trace = 3 · 10−9)

forgetting factor λ1(0) = 0.97 (the forgetting factor is given

by λ1(t) = λ0λ1(t − 1) + 1 − λ0, with 0 < λ0 < 1).

For the variable forgetting factor the adaptation gain tends

asymptotically towards zero. The convergence criterion has

been fixed as a threshold on the trace value of the adaptation

gain matrix. For details see [24].

The detection of a change of frequency is done using

the variance of the measured residual force computed on

a sliding window of 50 samples.

2) Protocol 2 : Adaptive operation. Real time experimen-

tal results: The measured residual force obtained in adaptive

operation is presented in Fig. 8 for the direct adaptation

method and in Fig. 9 for the indirect one. An adaptation

gain with variable forgetting factor combined with a constant

trace [29] has been used in order to be able to track

automatically the changes of disturbance characteristics. The

attenuation obtained with the indirect adaptive scheme is less

good than in the self tuning operation and less good than the

one obtained with the direct adaptive scheme.

Note: In adaptive operation, the parameters of the con-

troller have to be re-computed at each sampling instant

based on the current estimation of the disturbance model

(non vanishing adaptation gain). Unfortunately, when the

estimated frequency approaches the true one, the output

sensitivity function will have a pair of complex zeros on

the unit circle leading to a very strong attenuation of the

measured effect of the disturbance. This will make the

estimation of the exact frequency almost impossible. As a

consequence, in adaptive operation there will be a ”bias” on

the estimated frequency caused by the need to have a certain

level of the measured output to carry on the estimation8.

The spectral densities of the residual force (after the

algorithm converges) are similar with those obtained in self-

8This phenomenon has been clearly observed both in simulation and on
the real system and has also been discussed in the literature [19], [15].
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Fig. 9. Time domain results with the indirect adaptation method in the
adaptive case (trace = 5 · 10−7)

tuning operation [24].

According to the real time results presented above, one

can conclude that the direct adaptive control scheme gives

better results than the indirect one, from the point of view

of the convergence speed and performance. In addition, the

direct adaptation scheme is much simpler than the indirect

one in terms of number of operations.

B. Linear swept frequency sinusoidal disturbances (direct

adaptive control)

Consider now that the frequency of the sinusoidal distur-

bance varies continuously and let’s use a chirp disturbance

signal (linear swept-frequency signal) between 25 and 47Hz.

The tests have been done as follows: Start up in closed

loop at t = 0 with the central controller. Once the loop

is closed, the adaptation algorithm works permanently and

the controller is updated (direct approach) at each sampling.

After 5 seconds a sinusoidal disturbance of 25 Hz (constant

frequency) is applied on the shaker. From 10 to 15 seconds

a chirp between 25 and 47 Hz is applied. After 15 seconds a

47 Hz (constant frequency) sinusoidal disturbance is applied

and the tests are stopped after 18 seconds. The time-domain

results obtained in open and in closed-loop (direct adaptive

control) are presented in Fig. 10. We can remark that the

performances obtained are very good.

VII. CONCLUSIONS

It was shown in this paper that the use of the internal

model principle combined with the adaptation of the internal

model implemented in the controller allows a very good

rejection of the unknown narrow band disturbances in active

suspension systems without requiring the use of an additional

transducer. Two adaptive approaches (direct and indirect

adaptation) have been presented and tested comparatively on

an active suspension.
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Fig. 10. Real-time results obtained with the direct adaptive method and a
chirp disturbance: (a) Open loop; (b) Closed loop

The results obtained in real time lead us to conclude

that the direct adaptive control scheme provides better

performance than the indirect one. Furthermore, from the

performances point of view, the adaptive operation is more

interesting than the self-tuning one for the direct adaptive

control scheme. Moreover, the direct algorithm is much

simpler than the indirect one.
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