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Abstract. In [6] we established a representation theorem for multipliers
(bounded operators commuting with translations) operating on a Banach space
E of functions on a locally compact abelian group G. This representation yields
a symbol defined on an abstract set UE of morphisms. In this paper we charac-
terize the set UE when G = Rk, E = L2

ω(Rk), provided ω is given as a product of
weights. More precisely, we show that UE is completely determined by the joint
spectrum of the generators of the algebra of translations on L2

ω(Rk).

1. Introduction

The aim of this paper is to obtain a representation for multipliers on a Banach
spaces E of functions on Rk.

Definition 1. A bounder operator commuting with translations on a space of
functions on a locally compact abelian group is called a multiplier.

This kind of operators are often present in analysis and in physics and in
particular in scattering theory and control theory. Such operators have been
studied from the middle of the past century and there exists a lot of literature on
this subject. A classical well-known result is the following

Theorem 1. For every multiplier M on Lp(Rk), 1 ≤ p < +∞ there exists a
function hM ∈ L∞(Rk) such that we have

M̂f = hM f̂ , ∀f ∈ Lp(Rk) ∩ L2(Rk), and ‖hM‖∞ ≤ ‖M‖. (1.1)

The function hM is called the symbol of M . If E is not a Lp space, in a very
general case every multiplier becomes the convolution by a quasimeasure. For
more details about this result the reader may consult [2]. A Fourier transformation
of a general quasimeasure cannot by defined and so it is complicated to obtain a
result similar to (1.1) in the general case. However, in a precedent article [6] the
author obtained a general representation theorem for the multipliers on a general
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Banach spaces of functions E on a locally compact abelian group G. Denote by
Cc(Rk) the space of the continuous compactly supported functions on Rk. In the
results established in [6] the set UE ⊂ Ck defined below plays a crucial role.

Definition 2. We say that z ∈ UE ⊂ Ck if we have∣∣∣ ∫
Rk

φ(x)e−i<z,x>dx
∣∣∣ ≤ ‖Mφ‖, ∀φ ∈ Cc(Rk),

where Mφ is the operator of convolution by φ on E and ‖.‖ denotes the norm of
linear operator on E.

Denote by M(E) the algebra of the multipliers on E. We may consider UE

as a set of functionals on Cc(Rk) continuous in the topology induced from M(E).
Several properties of the set UE has been proved in [6]. In particular, UE is not
empty and in some cases UE becomes the optimal (maximal) subset of Ck so that

we can define a symbol hM ∈ H∞(
◦

UE) of M ∈ M(E). More precisely, we have
the following representation [6]

Theorem 2. For M ∈M(E) there exists hM ∈ H∞
( ◦
UE

)
(resp. hM ∈ L∞(UE))

if
◦

UE 6= ∅ (resp.
◦

UE = ∅) such that

M̂f(z) = hM(z)f̂(z), ∀z ∈ UE, ∀f ∈ Cc(Rk).

Here

M̂f(z) =

∫
Rk

(Mf)(x)e−i<z,x>dx, ∀z ∈ UE.

The function hM is called the symbol of M .

The problem of the characterization of UE by the algebra of the translations
is very interesting. Thus in the case when G = R and E = L2

δ(R) is a weighted
space we showed in [5] that e−iUE = σ(S1), where σ(A) denotes the spectrum of
the operator A and S1 (resp. S−1) is the translation by 1 (resp. by -1) on L2

δ(R).
Moreover,

UE =
{

z ∈ C; − ln ρ(S−1) ≤ Im(z) ≤ ln ρ(S1)
}

,

where ρ(B) denotes the spectral radius of B.

In order to consider other locally compact abelian groups G, as Rk, Zk, we are
going to search a link between

e−iUE = {(e−iz1 , ..., e−izk) : (z1, ..., zk) ∈ UE}
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and the joint spectrum of the algebra generated by translations. Recall that the
joint spectrum of m operators Aj, j = 1, ...,m, in an algebra A is the set of
complex numbers (µ1, . . . , µm) ∈ Cm such that the operator

m∑
j=1

(Aj − µjI)Jj

is non invertible in A for every (J1, . . . , Jm) ∈ (A)m. It is well known that the joint
spectrum is included in the set

∏m
j=1 σ(Aj) but in general this inclusion is strict.

On the other hand, following [7], [4], the joint spectrum of a family of operators
B1, ..., Bm in a commutative Banach algebra A with unit coincides with the set

{χ(Bk), k = 1, ...,m}χ∈ bA,

where Â denotes the set of the characters of A.

It is easy to prove (see [6]) that UE is a subset of the joint spectrum of the
generators of the algebra generated by the translations. Motivated by the result
for G = R, we introduced in [6] the following conjecture

(U) The set e−iUE coincides with the joint spectrum of the generators of the
algebra generated by the translations.

This conjecture is true for all discrete locally compact abelian groups G (see
[6] for more details). The case of non discrete groups G is more complicated. In
this work we deal with the case G = Rk assuming that E = L2

ω(Rk) is a weighted
space defined below. As in [5], the main step in our argument is the construction
of special sequence of functions f1,m, ..., fk,m. Our construction is based on the
spectrum of the semi-groups of contractions and so even in the case G = R we
present in this work a simpler construction than that in [5]. On the other hand,
to generalize the argument of Section 2 for more general weights on Rk, a more
fine analysis is needed since we cannot reduce the analysis to the examination of
the spectrum of a semi-group.

We pass to the precise definitions of the weighted spaces. We say that δ is a
weight on R if δ is a measurable positive function on R satisfying:

0 < sup essx∈R
δ(x + y)

δ(x)
< +∞, ∀y ∈ R.
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The space L2
δ(R) is the set of all measurable functions f on R such that fδ ∈

L2(R).
The purpose of this paper is to prove the conjecture (U) in the case G =

Rk, E = L2
ω(Rk), provided ω is a product of weights. For simplicity of the expo-

sition we assume k = 2 but our arguments works with trivial modifications in the
case k > 2.

Let ω1 and ω2 be two weights on R. Define a weight ω on R2 by

ω(x, y) = ω1(x)ω2(y), ∀(x, y) ∈ R2.

Set

L2
ω(R2) =

{
f : R2 −→ C,

∫
R2

|f(x, y)|2ω(x, y)2dxdy < +∞
}

and consider the operator

Sa,b : L2
ω(R2) −→ L2

ω(R2)

defined by

(Sa,bf)(x, y) = f(x− a, y − b), a.e.

Definition 3. A bounded operator M on L2
ω(R2) is called multiplier if

MSa,b = Sa,bM, ∀(a, b) ∈ R2.

Set E = L2
ω(R2) and let Mω be the set of multipliers on L2

ω(R2). Taking into
account the properties of ω, it is obvious that

Mφ : L2
ω(R2) 3 f −→ f ∗ φ ∈ L2

ω(R2), ∀φ ∈ Cc(R2)

is a multiplier. Denote Iω = [− ln ρ(S−1,0), ln ρ(S1,0)] and

Ωω = {z ∈ C, Im z ∈ Iω}.
Similarly, set Jω = [− ln ρ(S0,−1), ln ρ(S0,1)] and define

Vω = {z ∈ C, Im z ∈ Jω}.
We will prove the following

Theorem 3. 1) We have UE = Ωω × Vω.
2) The joint spectrum of S1,0 and S0,1 is the set

σ(S1,0)× σ(S0,1) = e−iΩω × e−iVω

=
{

z ∈ C;
1

ρ(S−1,0)
≤ |z| ≤ ρ(S1,0)

}
×

{
z ∈ C;

1

ρ(S0,−1)
≤ |z| ≤ ρ(S0,1)

}
.

4



From Theorem 3 and the result in [6] the following representation can be
obtained directly.

Theorem 4. Let M ∈Mω. For (a, b) ∈ Iω × Jω, the function

R2 3 (x, y) −→ (Mf)(x, y)exa+yb

is in L2(R2). Moreover, there exists ha,b ∈ L∞(R2) such that∫
R2

(Mf)(x, y)e−ix(t+ia)−iy(s+ib)dxdy = ha,b(s, t)

∫
R2

f(x, y)e−ix(t+ia)−iy(s+ib)dxdy, ∀f ∈ Cc(R2)

and
‖ha,b‖∞ ≤ Cω‖M‖, ∀(a, b) ∈ Iω × Jω,

where Cω is a constant depending only on ω.

If
◦
Iω 6= ∅ and

◦
Jω 6= ∅, then there exists a function h ∈ H∞(

◦
Ωω ×

◦
Vω) such that∫

R2

(Mf)(x, y)e−ixµ−iyνdxdy = h(µ, ν)

∫
R2

f(x, y)e−ixµ−iyνdxdy.

If
◦
Iω = {a} and

◦
Jω 6= ∅, then there exists a function ha ∈ H∞(

◦
Vω) such that∫

R2

(Mf)(x, y)eax−iyνdxdy = ha(ν)

∫
R2

f(x, y)eax−iyνdxdy, ∀ν ∈
◦

Vω.

If
◦

Jω = {b} and
◦
Iω 6= ∅, then there exists a function hb ∈ H∞(

◦
Ωω) such that∫

R2

(Mf)(x, y)e−ixµ+bydxdy = hb(µ)

∫
R2

f(x, y)e−ixµ+bydxdy, ∀µ ∈
◦

Ωω.

2. Construction of a sequence (fmum)

An important step in our proof is the following

Proposition 1. For every fixed pair (µ, ν) ∈ Ωω × Vω and every φ ∈ Cc(R2), we
have ∣∣∣ ∫

R2

φ(x, y)e−iµx−iνydxdy
∣∣∣ ≤ ‖Mφ‖.

Proof. In order to prove the proposition we need to construct a special
sequence (fmum)m∈N of functions. First consider the group {St,0}, t ∈ R, defined
on L2

ω1
(R). This group is clearly strongly continuous and we denote by A the

generator of St,0 = etA. We have the estimate

‖St,0‖ ≤ Ceα1|t|, ∀t ∈ R, (2.1)
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where C > 0 and α1 ≥ 0 are constants. This follows from the fact that ω1

is equivalent to the special weight ω0 constructed in [1]. The details and the
justifications of the construction of ω0 are given in [5], [1]. For the convenience of
the reader we expose below the main steps. Set γ(x) = ln(ω1(x)) a.e. and

ω0(x) = exp
(∫ 1

2

− 1
2

γ(x + u) du
)
, ∀x ∈ R.

The weight ω0 is well-defined and continuous (see [5], [1]). We have

ω0(x)

ω(x)
= exp

(∫ 1
2

− 1
2

γ(x + u)− γ(x)du
)
≤ exp

(∫ 1
2

− 1
2

M0 du
)

= eM0 a.e.,

where

M0 = sup
x∈[−1,1]

sup essx∈R |γ(x + t)− γ(x)|, ∀t ∈ R.

In the same way we get
ω(x)

ω0(x)
≤ eM0 a.e.

It follows that the weights ω0 and ω1 are equivalent and L2
ω1

(R2) = L2
ω0

(R2).
For a bounded operator T on L2

ω1
(R2), define

‖T‖ω := sup
f∈L2

ω(R2), f 6=0

‖Tf‖ω

‖f‖ω

and ‖T‖ω0 := sup
f∈L2

ω(R2), f 6=0

‖Tf‖ω0

‖f‖ω0

.

We have

‖St,0‖ω0 = sup
x∈R

exp (γ0(x + t)− γ0(x)) ≤ eM0|t|, ∀t ∈ R. (2.2)

Set

βω = exp

∫ 1
2

− 1
2

sup essx∈R (γ(x + u)− γ(x)) du.

Notice that

βω
−2 ‖St,0‖ω ≤ ‖St,0‖ω0 ≤ βω

2 ‖St,0‖ω

which leads to (2.1).
Let µ ∈ C be such that eµ ∈ σ(S1,0). We denote by <,>ωi

, i = 1, 2, the
scalar product in L2

ωi
(R), i = 1, 2, and by ‖.‖ωi

, i = 1, 2, the norm in these spaces.
Next we denote by <,>ω and ‖.‖ω the scalar product and the norm in the space
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L2
ω(R2). First, our aim is to prove that there exists a sequence (fm)m∈N of functions

of L2
ω1

(R) such that

lim
m→+∞

< (eAt − eµt)fm, fm >ω1= 0, ∀t ∈ R, (2.3)

‖fm‖ω1 = 1, ∀m ∈ N. (2.4)

Since eσ(A) ⊂ σ(S1,0), we have to deal with two cases:
(i) µ ∈ σ(A),
(ii) µ /∈ σ(A).

In the case (i) we have µ ∈ σp(A) ∪ σc(A) ∪ σr(A), where σp(A) is the point
spectrum, σc(A) is the continuous spectrum and σr(A) is the residual spectrum
of A. If we have

µ ∈ σp(A) ∪ σc(A),

it is easy to see that there exists a sequence (fm) ∈ L2
ω1

(R) such that

‖(A− µ)fm‖ω1 −→
m→+∞

0, ‖fm‖ω1 = 1, ∀m ∈ N.

Then the equality

(eAt − eµt)fm =
( ∫ t

0

eµ(t−s)eAsds
)
(A− µ)fm,

yields
‖(eAt − eµt)fm‖ω1 −→

m→+∞
0, ∀t ∈ R

and we deduce (2.3). If µ /∈ σp(A) ∪ σc(A), we have µ ∈ σr(A) and

Ran(A− µI) 6= L2
ω1

(R),

where Ran(A − µI) denotes the range of the operator A − µI. Therefore there
exists h ∈ D(A∗), ‖h‖ω1 = 1, such that

< f, (A∗ − µ)h >ω1= 0, ∀f ∈ D(A).

This implies (A∗ − µ)h = 0 and we take f = h. Then

< (eAt − eµt)f, f >ω1=< f, (eA∗t − eµt)f >ω1

=
〈
f,

( ∫ t

0

eµ(t−s)eA∗sds
)
(A∗ − µ)f

〉
ω1

= 0.

In this case we set
fm = f, ∀m ∈ N

and we get again (2.3).
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The case (ii) is more difficult. First, we observe that if µ /∈ σ(A), we have
eµ /∈ eσ(A), hence eµ ∈ σ(eA) \ eσ(A). Let ω0 be the special weight equivalent to
ω1 (see the beginning of the section). Without lost of generality, we can consider
{St,0} and A as operators on L2

ω0
(R2). The spectrum of St,0 (resp. A) operating

on L2
ω1

(R2) is the same as the spectrum of St,0 (resp. A) operating on L2
ω0

(R2).
Then, taking into account (2.2), we are in situation to apply in L2

ω0
(R2) the results

for the spectrum of the semi-groups in a Hilbert space (see [2], [3]). Following
these results, there exists a sequence of integers nk converging to ∞ such that

‖(A− (µ + 2πink))
−1‖ω0 ≥

2

k
, ∀k ∈ N.

Consequently, the equivalence of the norms corresponding to ω1 and ω0 shows
that there exists a sequence (gnk

) such that ‖gnk
‖ω1 = 1 and

‖(A− (µ + 2πink))
−1gnk

‖ω1 ≥
C

k
,

where C > 0 is a constant independent on k and we set

fnk
=

(A− (µ + 2πink)I)−1gnk

‖(A− (µ + 2πink)I)−1gnk
‖ω1

.

This implies

(eAt − eµ+2πinkt)fnk
= (eAt − eµt)fnk

=( ∫ t

0

e(µ+2πink)(t−s)eAsds
)
(A− (µ + 2πink))fnk

and we deduce

‖(eAt − eµt)fnk
‖ −→

k→+∞
0.

In this case we set fm = fnm and we arrange again the properties (2.3) and (2.4).

Remark. We cannot apply directly the argument concerning the case (ii) to
L2

ω(R2) since for the group St,0 in L2
ω(R2) we may have C > 1 in the estimate

(2.1). On the other hand, by a standard argument we may reduce the analysis of
St,0 in L2

ω0
(R2) to a contraction semi-group.

Let ν ∈ C be such that eν ∈ σ(S0,1). Repeating the above argument, we
construct a sequence (um) satisfying properties (2.3) and (2.4) replacing A by the
generator B of the semi-group {S0,t}t∈R and µ by ν. Now, we write

<

∫
R2

φ(t, s)
(
eµt+νs − eAt+Bs

)
fmumdtds, fmum >ω
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=

∫
R

< umeνs

∫
R

< φ(t, s)(eµt − eAt)fm, fm >ω1 dt, um >ω2 ds

+

∫
R

<

∫
R

< φ(t, s)(eνs − eBs)um, um >ω2 ds eAtfm, fm >ω1 dt

= I1 + I2.

We have ∣∣∣ ∫
R

< φ(t, s)(eµt − eAt)fm, fm >ω1 dt
∣∣∣

≤ ‖φ‖∞
∫

suppφ(.,s)

| < (eµt − eAt)fm, fm >ω1 |dt.

The property

< (eµt − eAt)fm, fm >ω1 −→
m→+∞

0, ∀t ∈ R.

implies

I1 −→
m→+∞

0.

In the same way we get

I2 −→
m→+∞

0.

It is clear that

| < fmum, fmum >ω | = 1, ∀m ∈ N.

Consequently, for every φ ∈ Cc(R2) we get∣∣∣ ∫
R2

φ(t, s)eµt+νsdtds
∣∣∣

=
∣∣∣ <

∫
R2

φ(t, s)eµt+νsfmumdtds, fmum >ω

∣∣∣
≤ I1 + I2 +

∣∣∣ <

∫
R2

φ(t, s)eAt+Bsfmum dtds, fmum >ω

∣∣∣
and we conclude that ∣∣∣ ∫

R2

φ(t, s)eµt+νsdtds
∣∣∣ ≤ ‖Mφ‖.

This completes the proof of Proposition 1. �
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3. Proofs of the conjecture (U)

For E = L2
ω(R2) denote UE by Uω. We pass to the proof of the main theorem

of the paper.
Proof of Theorem 3. Recall that

σ(S1,0) =
{

z ∈ C;
1

ρ(S−1,0)
≤ |z| ≤ ρ(S1,0)

}
= e−iΩω

and

σ(S0,1) =
{

z ∈ C;
1

ρ(S0,−1)
≤ |z| ≤ ρ(S0,1)

}
= e−iVω

(see [5]). Taking into account these results and applying directly Proposition 1,
we get

Ωω × Vω ⊂ Uω.

Let G be the set of the continuous morphisms from R2 into C∗. More precisely

θ : R2 −→ C∗

is an element of G if and only if θ is continuous and

θ((x1, x2), (y1, y2)) = θ(x1, x2)θ(y1, y2), ∀(x1, x2) ∈ R2, ∀(y1, y2) ∈ R2.

Set

Uω = {θ ∈ G :
∣∣∣ ∫

R2

φ(x, y)θ(x, y)−1dxdy
∣∣∣ ≤ ‖Mφ‖, ∀φ ∈ Cc(R2)

}
.

There exists a trivial isomorphism between Uω and Uω. Indeed,

θ ∈ Uω ⇔ θ(x, y) = ei(z1x+z2y), for some (z1, z2) ∈ Uω. (3.1)

Notice that it was proved in [6] that if θ ∈ Uω, then there exists a character
Γθ on the algebra of the translations such that

Γθ(Sx,y) = θ(x, y), ∀(x, y) ∈ R2. (3.2)

From the theory of commutative Banach algebras with unit, it follows that
the joint spectrum of S1,0 and S0,1 is the set of pairs (χ(S1,0), χ(S0,1)), where χ
runs over the set of all characters on the algebra of the translations ([7]). It is
clear that the pair

(θ(1, 0), θ(0, 1)) = (Γθ(S1,0), Γθ(S0,1))

is in the joint spectrum of S1,0 and S0,1. Hence, the property (3.1) implies that

e−iΩω × e−iVω = σ(S1,0)× σ(S0,1)
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is a subset of the joint spectrum of S1,0 and S0,1. Since the joint spectrum of two
operators is a subset of the product of their spectra, we conclude that the joint
spectrum of S1,0 and S0,1 is

e−iΩω × e−iVω = σ(S1,0)× σ(S0,1).

This completes the proof of 2).

If z = (z1, z2) ∈ Uω, by (3.1) and (3.2) we get

(e−iz1 , e−iz2) ∈ σ(S1,0)× σ(S1,0) = e−iΩω × e−iVω

and hence
Uω ⊂ Ωω × Vω.

We conclude that
Uω = Ωω × Vω

and the proof of 1) is complete.
�
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