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Abstract. In [5] we established a representation theorem for multipliers
(bounded operators commuting with translations) operating on a Banach space
E of functions on a locally compact abelian group G. This representation yields a
symbol defined on an abstract set UE of morphisms. In this paper we characterize
the set UE when E = L2

ω(Rk), where ω is a weight on Rk. More precisely, we show
that UE is isomorphic to the joint spectrum of the translations on L2

ω(Rk).

1. Introduction

The aim of this paper is to obtain a representation for multipliers on a Banach
spaces E of functions on Rk. The multipliers are bounded operators commuting
with the translations on E. This kind of operators are often present in analysis
and in physics and in particular in scattering theory and control theory. Such
operators have been studied from the middle of the past century and there exists
a lot of literature on this subject. A classical well-known result is the following

Theorem 1. For every multiplier on Lp(Rk), 1 ≤ p < +∞ there exists a function
hM ∈ L∞(Rk) such that we have

M̂f = hM f̂ , ∀f ∈ Lp(Rk) ∩ L2(Rk), and ‖hM‖∞ ≤ ‖M‖. (1.1)

The function hM is called the symbol of M . If E is not a Lp space, in a
very general case every multiplier becomes the convolution by a quasimeasure.
For more details about this result the reader may consult [2]. A Fourier trans-
formation of a general quasimeasure can not by defined and so it is complicated
to obtain a result similar to (1.1) in the general case. However, in a precedent
article [5] the author obtained a general representation theorem for the multipliers
(bounded operators commuting with the translations) on a general Banach spaces
of functions E on a locally compact abelian group G. Denote by Cc(Rk) the space
of the continuous functions on Rk. In [5] a set UE ⊂ Ck plays a crucial role.
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Definition 1. We define UE ⊂ Ck so that for every z ∈ UE we have∣∣∣ ∫
Rk

φ(x)e−i<z,x>dx
∣∣∣ ≤ ‖Mφ‖, ∀φ ∈ Cc(Rk),

where Mφ is the operator of convolution by φ on E.

Denote by M(E) the algebra of the multipliers on E. When the group G is
Rk the representation established in [5] is given by the following

Theorem 2. For M ∈M(E) there exists hM ∈ H∞
(
UE

)
(resp. hM ∈ L∞(UE))

if
◦

UE 6= ∅ (resp.
◦

UE = ∅) such that

M̂f(z) = hM(z)f̂(z), ∀z ∈ UE, ∀f ∈ Cc(Rk).

Here

M̂f(z) =

∫
Rk

(Mf)(x)e−i<z,x>dx, ∀z ∈ UE.

The function hM is called the symbol of M .

In [5] some important properties of UE has been proved but it was an open
problem to characterize UE. On the other hand, it is easy to prove (see [5]) that
UE is a not empty subset of the joint spectrum of the generators of the algebra
generated by the translations. For these reasons, we introduced in [5] the follow-
ing conjecture

(U) The set UE coincides with the joint spectrum of the generators of the al-
gebra generated by the translations.

Recall that the joint spectrum of m operators Aj, j = 1, ...,m in an algebra A
is the set of complex numbers (µ1, . . . , µm) ∈ Cm such that the operator

m∑
j=1

(Aj − µjI)Jj

is non invertible inA for every (J1, . . . , Jm) ∈ (A)m. Let σ(A) denote the spectrum
of A. It is well known that the joint spectrum is included in the set

∏m
j=1 σ(Aj)

but in general this inclusion is strict.
It is important to mention that if (U) holds, it will implies that the set UE is the
optimal set where a L∞ symbol exists for every multiplier on E. Let δ be a weight
on R. More precisely, δ is a measurable positive function on R satisfying:

0 < sup essx∈R
δ(x + y)

δ(x)
< +∞, ∀y ∈ R.
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The space L2
δ(R) is the set of all measurable functions f on R such that fδ ∈

L2(R). Following [4], we know that if E = L2
δ(R), then

UE =
{

z ∈ C; − ln ρ(S−1) ≤ Im(z) ≤ ln ρ(S1)
}

,

where S−1 (resp. S1) is the translation by −1 (resp. by 1) on L2
δ(R). In this case

the result in [4] says that e−iUE = σ(S1). If we consider the group G = Rk, the
set UE has the form Rk + iK, where K is a convex compact of Rk but it is not
known if K is the product of k intervals. The purpose of this paper is to prove
the conjecture (U) in the case G = Rk, provided E is a weighted L2

ω(Rk) space.
For simplicity of the exposition we assume k = 2 but our arguments works with
trivial modifications in the case k > 2.

Let ω1 and ω2 be two weights on R. Define a weight ω on R2 by

ω(x, y) = ω1(x)ω2(y), ∀(x, y) ∈ R2.

Set

L2
ω(R2) =

{
f : R −→ C,

∫
R2

|f(x, y)|2w(x, y)2dxdy < +∞
}

and consider the operator

Sa,b : L2
ω(R2) −→ L2

ω(R2)

defined by

(Sa,bf)(x, y) = f(x− a, y − b), a.e.

Definition 2. A bounded operator M on L2
ω(R2) is called multiplier if

MSa,b = Sa,bM, ∀(a, b) ∈ R2.

LetMω be the set of multipliers on L2
ω(R2). Taking into account the properties

of ω, it is obvious that

Mφ : L2
ω(R2) 3 f −→ f ∗ φ ∈ L2

ω(R2), ∀φ ∈ Cc(R2)

is a multiplier. Denote Iω = [− ln ρ(S−1,0), ln ρ(S1,0)] and

Ωω = {z ∈ C, Im z ∈ Iω}.

Similarly, set Jω = [− ln ρ(S0,−1), ln ρ(S0,1)] and define

Vω = {z ∈ C, Im z ∈ Jω}.

We will prove the following
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Theorem 3. 1) We have UE = Uω × Vω.
2) The joint spectrum of S1,0 and S0,1 is the set

σ(S1,0)× σ(S0,1) = e−iUω × e−iVω

=
{

z ∈ C;
1

ρ(S−1,0)
≤ |z| ≤ ρ(S1,0)

}
×

{
z ∈ C;

1

ρ(S0,−1)
≤ |z| ≤ ρ(S0,1)

}
.

From Theorem 3 and the result in [5] the following representation can be
obtained directly

Theorem 4. Let M ∈Mω. For (a, b) ∈ Iω × Jω, the function

R2 3 (x, y) −→ (Mf)(x, y)exa+yb

is in L2(R2). Moreover, there exists ha,b ∈ L∞(R2) such that∫
R2

(Mf)(x, y)e−ix(t+ia)−iy(s+ib)dxdy = ha,b(s, t)

∫
R2

f(x, y)e−ix(t+ia)−iy(s+ib)dxdy, ∀f ∈ Cc(R2)

and
‖ha,b‖∞ ≤ Cω‖M‖, ∀(a, b) ∈ Iω × Jω,

where Cω is a constant depending only on ω.

If
◦
Iω 6= ∅ and

◦
Jω 6= ∅, then there exists a function h ∈ H∞(

◦
Ωω ×

◦
Vω) such that∫

R2

(Mf)(x, y)e−ixµ−iyνdxdy = h(µ, ν)

∫
R2

f(x, y)e−ixµ−iyνdxdy.

If
◦
Iω = {a} and

◦
Jω 6= ∅, then there exists a function ha ∈ H∞(

◦
Vω) such that∫

R2

(Mf)(x, y)eax−iyνdxdy = ha(ν)

∫
R2

f(x, y)eax−iyνdxdy, ∀ν ∈
◦

Vω.

If
◦

Jω = {b} and
◦
Iω 6= ∅, then there exists a function hb ∈ H∞(

◦
Ωω) such that∫

R2

(Mf)(x, y)e−ixµ+bydxdy = hb(µ)

∫
R2

f(x, y)e−ixµ+bydxdy, ∀µ ∈
◦

Ωω.

2. Construction of a sequence (fm)

An important step in our proof is the following

Proposition 1. For every fixed pair (µ, ν) ∈ Ωω × Vω and every φ ∈ Cc(R2), we
have ∣∣∣ ∫

R2

φ(x, y)e−iµx−iνydxdy
∣∣∣ ≤ ‖Mφ‖.
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Proof. In order to prove the proposition we need to construct a special
sequence (fmum)m∈N of functions. First consider the group {St,0}, t ∈ R defined
on L2

ω1
(R). This group is clearly strongly continuous and we denote by A the

generator of St,0 = etA. We have the estimate

‖St,0‖ ≤ Ceα1|t|, ∀t ∈ R, (2.1)

where C > 0 and α1 ≥ 0 are constants. This follows from the fact that ω1 is
equivalent to a special weight ω0 constructed in [1]. The norm of the operator St,0

in L2
ω0

(R) satisfies the estimate

‖St,0‖ω0 ≤ eα1|t|, ∀t ∈ R, (2.2)

where α1 is a constant and this leads to (2.1). The details of the proof of (2.2)
are given in [4] and [1].

Let µ ∈ C be such that eµ ∈ σ(S1,0). We denote by <,>ωi
, i = 1, 2, the

scalar product in L2
ωi

(R), i = 1, 2, and by ‖.‖ωi
, i = 1, 2, the norm in these spaces.

Next we denote by <,>ω and ‖.‖ω the scalar product and the norm in the space
L2

ω(R2). Firs, our aim is to prove that there exists a sequence (fm)m∈N of functions
of L2

ω1
(R) such that

lim
m→+∞

< (eAt − eµt)fm, fm >ω1= 0, ∀t ∈ R (2.3)

‖fm‖ω1 = 1, ∀m ∈ N. (2.4)

Since eσ(A) ⊂ σ(S1,0), we have to deal with two cases:
(i) µ ∈ σ(A),
(ii) µ /∈ σ(A).

In the case (i) we have µ ∈ σp(A) ∪ σc(A) ∪ σr(A), where σp(A) is the point
spectrum, σc(A) is the continuous spectrum and σr(A) is the residual spectrum
of A. If we have

µ ∈ σp(A) ∪ σc(A),

it is easy to see that there exists a sequence (fm) ∈ L2
ω1

(R) such that

‖(A− µ)fm‖ω1 −→
m→+∞

0, ‖fm‖ω1 = 1, ∀m ∈ N.

Then the equality

(eAt − eµt)fm =
( ∫ t

0

eµ(t−s)eAsds
)
(A− µ)fm,

yields
‖(eAt − eµt)fm‖ω1 −→

m→+∞
0, ∀t ∈ R
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and we deduce (2.3). If µ /∈ σp(A) ∪ σc(A), we have µ ∈ σr(A) and

Im(A− µI) 6= L2
ω1

(R).

Therefore there exists h ∈ D(A∗), ‖h‖ω1 = 1, such that

< f, (A∗ − µ)h >ω1= 0, ∀f ∈ D(A).

This implies (A∗ − µ)h = 0 and we take f = h. Then

< (eAt − eµt)f, f >ω1=< f, (eA∗t − eµt)f >ω1

=
〈
f,

( ∫ t

0

eµ(t−s)eA∗sds
)
(A∗ − µ)f

〉
ω1

= 0.

In this case we set

fm = f, ∀m ∈ N
and we get again (2.3).

The case (ii) is more difficult. First, we observe that if µ /∈ σ(A), we have
eµ /∈ eσ(A), hence eµ ∈ σ(eA) \ eσ(A). Let ω0 be a special weight equivalent to ω1

(see the beginning of the section). Without lost of generality we can consider that
{St,0} and A are operating on L2

ω0
(R2). The spectrum of St,0 (resp. A) operating

on L2
ω1

(R2) is the same as the spectrum of St,0 (resp. A) operating on L2
ω0

(R2).
Then, taking into account (2.2), we are in situation to apply in L2

ω0
(R2) the results

for the spectrum of the semi-groups in a Hilbert space (see [2], [3]). Following
these results, there exists a sequence of integers nk converging to ∞ such that

‖(A− (µ + 2πink))
−1‖ω0 ≥

2

k
, ∀k ∈ N.

Consequently, the equivalence of the norms corresponding to ω1 and ω0 shows
that there exists a sequence (gnk

) such that ‖gnk
‖ω1 = 1 and

‖(A− (µ + 2πink))
−1gnk

‖ω1 ≥
C

k
,

where C > 0 is a constant independent on k and we set

fnk
=

(A− (µ + 2πink)I)−1gnk

‖(A− (µ + 2πink)I)−1gnk
‖ω1

.

This implies

(eAt − eµ+2πinkt)fnk
= (eAt − eµt)fnk

=( ∫ t

0

e(µ+2πink)(t−s)eAsds
)
(A− (µ + 2πink))fnk
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and we deduce
‖(eAt − eµt)fnk

‖ −→
k→+∞

0.

In this case we set fm = fnm and we arrange again the properties (2.3) and (2.4).

Let ν ∈ C be such that eν ∈ σ(S0,1). Repeating the above argument, we
construct a sequence (um) satisfying properties (2.3) and (2.4) replacing A by the
generator B of the semi-group {S0,t}t∈R and µ by ν. Now, we write

<

∫
R2

φ(t, s)
(
eµt+νs − eAt+Bs

)
fmumdtds, fmum >ω

=

∫
R

< umeνs

∫
R

< φ(t, s)(eµt − eAt)fm, fm >ω1 dt, um >ω2 ds

+

∫
R

<

∫
R

< φ(t, s)(eνs − eBs)um, um >ω2 ds eAtfm, fm >ω1 dt

= I1 + I2.

We have ∣∣∣ ∫
R

< φ(t, s)(eµt − eAt)fm, fm >ω1 dt
∣∣∣

≤ ‖φ‖∞
∫

supp(φ(t,.))

| < (eµt − eAt)fm, fm >ω1 |dt.

The property
< (eµt − eAt)fm, fm >ω1 −→

m→+∞
0, ∀t ∈ R.

implies
I1 −→

m→+∞
0.

In the same way we get
I2 −→

m→+∞
0.

It is clear that
| < fmum, fmum >ω | = 1, ∀m ∈ N.

Consequently, for every φ ∈ Cc(R2),∣∣∣ ∫
R2

φ(t, s)eµt+νsdtds
∣∣∣

=
∣∣∣ <

∫
R2

φ(t, s)eµt+νsfmumdtds, fmum >ω

∣∣∣
≤ I1 + I2 +

∣∣∣ <

∫
R2

φ(t, s)eAt+Bsfmum dtds, fmum >ω

∣∣∣
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and we conclude that ∣∣∣ ∫
R2

φ(t, s)eµt+νsdtds
∣∣∣ ≤ ‖Mφ‖.

This completes the proof of Proposition 1. �

3. Proofs of the conjecture (U)

Now we pass to the proof of the main theorem. For E = L2
ω(R2) denote UE

by Uω.

Proof of Theorem 3. Recall that

σ(S1,0) =
{

z ∈ C;
1

ρ(S−1,0)
≤ |z| ≤ ρ(S1,0)

}
= e−iΩω

and

σ(S0,1) =
{

z ∈ C;
1

ρ(S0,−1)
≤ |z| ≤ ρ(S0,1)

}
= e−iVω

(see [4]). Taking into account these results and applying directly Proposition 1,
we get

Ωω × Vω ⊂ Uω.

Let G be the set of the continuous morphisms from R2 into C∗. Set

Uω = {θ ∈ G;
∣∣∣ ∫

R2

φ(x, y)θ(x, y)−1dxdy
∣∣∣ ≤ ‖Mφ‖, ∀φ ∈ Cc(R2)

}
.

There exists a trivial isomorphism between Uω and Uω. Indeed,

θ ∈ Uω ⇔ θ(x, y) = ei(z1x+z2y), for some (z1, z2) ∈ Uω. (3.1)

In [5] it is proved that if θ ∈ Uω, then there exists a character Γθ on the algebra
of the translations such that

Γθ(Sx,y) = θ(x, y), ∀(x, y) ∈ R2. (3.2)

From the theory of commutative Banach algebras with unit, it follows that
joint spectrum of S1,0 and S0,1 is the set of pairs (χ(S1,0), χ(S0,1)), where χ is a
character on the algebra of the translations ([6]). This definition is equivalent to
the definition of the joint spectrum given in the Introduction. It is clear that the
pair

(θ(1, 0), θ(0, 1)) = (Γθ(S1,0), Γθ(S0,1))

is in the joint spectrum of S1,0 and S0,1. Hence, the property (3.1) implies that

e−iΩω × e−iVω = σ(S1,0)× σ(S0,1)
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is a subset of the joint spectrum of S1,0 and S0,1. Since the joint spectrum of two
operators is a subset of the product of their spectra, we conclude that the joint
spectrum of S1,0 and S0,1 is

e−iΩω × e−iVω = σ(S1,0)× σ(S0,1).

This completes the proof of 2).

If z = (z1, z2) ∈ Uω, we get by (3.1) and (3.2)

(e−iz1 , e−iz2) ∈ σ(S1,0)× σ(S1,0) = e−iΩω × e−iVω

and hence
Uω ⊂ Ωω × Vω.

We conclude that
Uω = Ωω × Vω

and the proof of 1) is completed.
�
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