
HAL Id: hal-00137320
https://hal.science/hal-00137320v2

Preprint submitted on 6 Jun 2007

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

When Nearer is Better
Maurice Clerc

To cite this version:

Maurice Clerc. When Nearer is Better. 2007. �hal-00137320v2�

https://hal.science/hal-00137320v2
https://hal.archives-ouvertes.fr

WHEN NEARER IS BETTER

Maurice Clerc
Maurice.Clerc@WriteMe.com
Draft 2007-05-18 (replace Draft 2007-03-19). Modi�ed de�nition, and �xed some

mistakes. A few new results.

Abstract. We de�ne a numerical �nearer is better � truth value that can

be computed or estimated for all functions on a given de�nition space. The

set of all these functions can be then partitioned into three subsets: the ones

for which this truth value is positive, the ones for which it is negative, and

the ones for which is is null. Most of classical functions belong to the �rst

subset, as the second one is useful to design problems that are deceptive for

algorithms like Particle Swarm Optimisation. Also on these subset the No Free

Lunch Theorem does not hold. Therefore it may exist a best algorithm, and

we suggest a way to design it for the �rst one.

1. Introduction

It has been already shown that in a lot of optimisation scenarios there can be no
such thing as a No Free Lunch [5]. Actually it has been proved that the NFL
Theorem (NFLT) is valid if and only if the set of problems (functions) is closed
under permutations (c.u.p.) and each target function is equally likely [10]. It has
then been proved that the number of such c.u.p. subsets can be neglected compared
to the overall number of possible subsets [6]. As a consequence, in the same work,
the authors de�ne some large classes of functions on which NFLT does not hold. For
example, if the number of local minima of every function f in a class is constrained
to be smaller than the maximal possible one, then this class is not c.u.p., and
therefore NFLT does not hold.
However being c.u.p. or not is not a feature that can be easily used by optimisation
algorithms. On the contrary, a �nearer is better� (NisB) property is almost always
assumed: most of iterative stochastic optimisation algorithms, if not all, at least
from time to time look around a good point in order to �nd an even better one.
This can be mathematical de�ned, and summarised by a single real value for any
function. What is interesting is that it can be estimated (or even exactly calculated
for not too big problems). The functions for which this value is positive de�ne
a huge class, which in particular contains most of classical and less classical tests
functions that we have checked by now. And what is even more interesting is that
NFLT does not hold on this class: we can explicitly de�ne an algorithm that is
better than random search, and therefore it is not unrealistic to look for the best
possible algorithm.
When negative this NisB value indicates that the corresponding function is very
probably deceptive for most of algorithms that precisely assume that a vague nearer
is better property is true. Particle Swarm Optimisation is typically such an algo-
rithm, and we will see thanks to this analysis how easy it is to design functions on
which its classical variations are worse than random search.

2. Notations and Definitions

2.1. Search space and problems.

1

2 britishWHEN NEARER IS BETTER

As in [11], we have a search space X,of size |X|, a set of �tness values Y , of size|Y |.
An optimisation problem f is identi�ed with a mapping f : X → Y and F is the
space of all problems. It may be useful to quickly recall under which conditions
NFLT holds.

Condition 2.1. For any position in X all values of Y are possible.

In such a case the size of F is obviously |Y ||X|. A optimisation algorithm A is
generating a time ordered sequence of points in the search space, associated with
their �tness's, called a sample.

Condition 2.2. The algorithm A does not revisit previously visited points

So an optimisation algorithm A can be seen as a permutation of the elements of X.

Condition 2.3. The algorithm may be stochastic (random), but under Condition
2.2.

That is why Random Search (let us call it R) in NFLT context is not exactly the
usual one in which each draw is independent of the previous ones. Here R is de�ned
not only by �drawing at random according to an uniform distribution� but also by
�... amongst points not already drawn�. It means that under Condition 2.2 any
algorithm, including R, is in fact an exhaustive search.

2.2. Performance.
In NFLT context, the performance of A after m iterations for a given problem f is
de�ned for any kind of sample, and assuming the following condition.

Condition 2.4. The performance is only depending on the �tness values, and not
on the positions in the search space.

It means, for example, that NFLT does not hold if the performance measure takes
into account the distance to the solution point. We are interested here only on
samples that contain at least one solution point, i.e. here where f reaches its
minimum value. Let f be a problem, and A an algorithm that samples xαtat
�time step� t, assuming that a each time step another point is drawn. There is a
probability p (f, t, a) that the sampled point is a solution point. We compute the
following expectation.

(2.1) r (f,A) =
|X|∑
t=1

p (f, t, A) t

Roughly speaking it means that the algorithm �nds a solution after �in average�
r (f,A)draws. Then we say that algorithm A is better than algorithm B for the
problem f if r (f,A) < r (f,B), i.e. if in average A �nds a solution quicker than B.
On a whole set of functions F ′ we can then de�ne the global performance by the
following mean.

r (F ′, A) =
1
|F '|

∑
P∈F '

r (f,A)

NFLT claims that when averaged over all |Y ||X| functions, i.e. over F , �Any algo-
rithm is equivalent to Random Search�. It means that r (F , A) is the same for all
algorithms, and its value is (|F|+ 1) /2.
As we have seen, this is true only under very precise conditions, the most important
being precisely that �all�. It is easy to de�ne subsets of functions on which it does not
hold. We are now going to study two such subsets which have interesting practical
applications.

3. Nearer is Better Truth Value

3.1. De�nition.

britishWHEN NEARER IS BETTER 3

We assume here that we are looking for a minimum. Let f be a function, xb, xw

two positions in its de�nition domain, so that f (xb) ≤ f (xw), and δ a distance
de�ned on this domain. Let us de�ne two subdomains.

(3.1)
Nb,w = {x, 0 < δ (xb, x) < δ (xb, xw)}
Bw,b = {x, x 6= xb, x 6= xw, f (x) ≤ f (xw)}

That is, Nb,w is the set of points to which xb is closer than to xw, with a nonzero
distance, and Bw,bthe set of positions that are better than xw (or equivalent to),
except the two points already drawn. This last de�nition, which could be called
�better than the worse� may seem strange at �rst glance. Why not �better than
the best?�. Because the corresponding class of functions would not contain some
�obviously good� functions (see Annexe 8.6).
If we now choose x completely at random in X −{xb, xw}, the probability to �nd a
position better than xw is simply |Bw,b| / (|X| − 2). Note that for a perfect random
landscape the expectation of this variable is not 1/2 as one could think, but 2/3,
because the condition f (xb) ≤ f (xw)(see 8.1).
Now what happens if we choose x in Nb,w(assuming it is not empty)? The proba-
bility to �nd a better position than xwis |Nb,w

⋂
Bw, b| / |Nb,w|. If this probability

is greater than the previous one, this strategy may be interesting. We do not want
it always happens, though, but just that it happens �on average�. Let us call this
method �NisB strategy�. We are interested to know how much this NisB strategy is
better than Random Search. To formalise this we de�ne the set of acceptable pairs
by.

(3.2) Ω = {(xb, xw) , xb 6= xw, f (xb) ≤ f (xw) , |Nb,w| > 0}
and the two mean probabilities.

(3.3)

ξ (f) =

1
|Ω|
∑
Ω

|Nb,w

⋂
Bw,b|

|Nb,w|

ρ (f) =
1
|Ω|
∑
Ω

|Bw,b|
|X| − 2

Then we say �nearer is better� is true for the function f iif.

(3.4) ν (f) = ξ (f)− ρ (f) > 0

It can be seen as an estimation of how much the NisB strategy is better than
Random Search on f . Or, intuitively, it can seen as an estimation of how much
�nearer is better not just by chance�. Note that ν (f) may be null even for not
constant functions, when |X| is small. For example, on dimension 1, it is the case
with X = (1, 2, 3, 4)and f (x) = (4, 2, 3, 4). This is because if we consider the
�contribution� of a given pair.

ηb,w (f) =
|Nb,w

⋂
Bw,b|

|Nb,w|
− |Bw,b|
|X| − 2

it is obviously equal to zero when f (xw) is maximum. And in this example all the
four possible pairs contain a xw so that f (xw) = 4.
From now on we call F+ the set of functions on X for which ν (f) > 0, F−the set of
functions for which ν (f) < 0, and F= the set of functions for which ν (f) = 0. When
|X| is not too big this truth value can be computed by exhaustively considering all
pairs of points, as in Table 2, but most the time we just estimate it by sampling.
For simplicity we assume here discrete domains are de�ned by an interval and a
�granularity�. To build the table we used the following distance between two points
x = (x1, ..., xD) and x′ = (x′1, ..., x

′
D), sometimes noted L∞:

(3.5) δ (x, x′) = max (|xi − x′i|)

4 britishWHEN NEARER IS BETTER

Function f Domain Granularity,|X| Landscape ξ (f) ν (f)

F1188 [1, 5] 1, 5 1 2 3 4 5

1

2

3

4

5

0.67 -0.10

F171 [1, 5] 1, 5 1 2 3 4 5

1

2

3

4

5

0.50 -0.07

F2585 [1, 5] 1, 5 1 2 3 4 5

1

2

3

4

5

0.86 0.00

Step, plateau 90% Step, plateau 90% 5,41 −100 −80 −60 −40 −20 0 20 40 60 80 100
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0.92 0.01

Step, plateau 10% [−100, 100] 5,41 −100 −80 −60 −40 −20 0 20 40 60 80 100
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0.995 0.05

Alpine [−100, 100] 5, 41 −100 −80 −60 −40 −20 0 20 40 60 80 100
0

10

20

30

40

50

60

70

80

90

0.78 0.09

Rosenbrock [−10, 10]2 1, 441
0.0e+00

2.0e+05

4.0e+05

6.0e+05

8.0e+05

1.0e+06

1.2e+06

1.4e+06

−10−8−6−4−20246810

−10
−6

−2
2

6
10

0.80 0,13

Rastrigin [−10, 10] 0.5, 41 −10 −8 −6 −4 −2 0 2 4 6 8 10
0

20

40

60

80

100

120

0.83 0.15

Parabola [−100, 100] 5, 41 −100 −80 −60 −40 −20 0 20 40 60 80 100
0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

0.91 0.23

britishWHEN NEARER IS BETTER 5

Function f Domain Granularity,|X| Landscape ξ (f) ν (f)

Parabola, o�set 50 [−100, 100] 5, 41 −100 −80 −60 −40 −20 0 20 40 60 80 100
0

5000

10000

15000

20000

25000

0.96 0.29

Parabola [0, 200] 5, 41 0 20 40 60 80 100 120 140 160 180 200
0

5000

10000

15000

20000

25000

30000

35000

40000

1.00 0.33

Table 2. �Nearer is Better� truth value ν (f) for some functions,
and how much a pure NisB algorithm is better than Random Search

Of course on dimension one it is equal to the Euclidean distance. The table shows
that F−is not empty: we can have a �nearer is worse� e�ect, i.e. a deceptive function
(actually as F+ is not empty this is anyway a consequence of the NFLT). See F1188,
F171 (c.f. 8.2.3 for more information about these functions). In such a case Random
Search may be better than a more sophisticated algorithm.

3.2. Probability to �nd the optimum.

Assuming there are k solution points x∗(i.e. where the function reaches its opti-
mum), we draw at random two points. One is xb, and the other one is xw, with
f (xb) ≤ f (xw). We consider just the case where none of them is a x∗, (we will see
why in 3.3). It implies in particular that all x∗ are in Bw,b. Now we draw a third
point x. If we draw it at random the probability to �nd a x∗is then.

p1 =
k

|X| − 2

However, if we choose it (at random) in Nb,w, the probability to �nd a x∗ is the
product of.

• k
|Nb,w

T
Bw,b|

|Bw,b| , probability that at least one x∗is in Nb

⋂
Bw

• 1
|Nb,w| , probability to draw a precise x in Nb,w

i.e. p1 = k
|Nb,w

T
Bw,b|

|Nb,w||Bw,b| .

Therefore, p2 > p1is equivalent to
|Nb,w

T
Bw,b|

|Nb,w| >
|Bw,b|
|X|−2 . For a function in F+, we

have then.

(3.6) probability (p2 > p1) > 0.5

In short, when choosing a point near to xb we have a better chance to �nd a solution
than when choosing it at random.

3.3. Better than Random Search.

Theorem 3.1. On the �Nearer is Better� class F+ there is at least one algorithm
better than Random Search

6 britishWHEN NEARER IS BETTER

Let f be a problem (function) belonging to F+. Let us consider the (non repeating)
random algorithm R. On a given run it samples xα1 , xα2 , xα3 , Let R+be another
algorithm that on a given run samples xβ1 , xβ2 , xβ3 , We de�ne it as similar to
R, except sometimes for the choice of one point:

• xβ1 is chosen at random (uniform distribution) in X
• xβ2 is chosen at random (uniform distribution) in X − {xβ1}
• if xβ1or xβ2 is a solution point (or both), for this precise run R+is simply R
• else let xbbe the best of the two positions (xβ1 , xβ2), and xw the worst of
these two positions. We choose xβ3 in Nb,w.

• After that, for k = 4 to X, xβk
is again chosen at random (uniform distri-

bution) in the remaining positions

The idea is to prove that R+is better than R, not on a given run, but averaged over
all possible ones. For simplicity we suppose here there is just one solution point.
Note that at any time t we have.{

p (f, t, R) =
(
1− 1

|X|

)(
1− 1

|X|−1

)
...
(
1− 1

|X|−t+1

)
1

|X|−t

= 1
|X|

Now, when one of the two �rst points is a solution point, R and R+ are equivalent,
by de�nition. Else, at time 3, p (f,R+, 3) is not anymore equal to 1/ |X|. It can be
written.

(3.7)

{
p (f, 3, R+) = |X|−1

|X|
|X|−2
|X|−1

(
1

|X|−2 + ε
)

= 1+ε(|X|−2)
|X|

Let us consider the case ε > 0 . At time t > 3, the probability to draw a solution
is again constant, but equal to.

(3.8)
1
|X|

(
1− ε

|X| − 2
|X| − 3

)
So to compare the performances, we just have to evaluate.
(3.9)

r (f,R)− r (f,R+) = 3
(

1
|X| − p (f, 3, R+)

)
+

|X|∑
t=4

(
1
|X| −

1
|X|

(
1− ε |X|−2

|X|−3

))
t

= −3ε(|X|−2)
|X| + ε(|X|−2)

|X|(|X|−3)

|X|∑
t=4

t

= ε |X|−2
|X|

(
|X|+4

2 − 3
)

> 0

It means that R+is better than R for this precise run. Now for another run it may
happen that ε ≤ 0. However, because of inequality 3.6, the probability of this event
is smaller than 0.5. So, over all possible di�erent runs, R+is better than R with a
probability greater than 0.5. Of course, it is still a quite bad algorithm, but now
we know that not all algorithms are equivalent, it is worth looking for the best one.
In order to do that, we are now considering the distribution of solutions points for
functions of F+.

3.4. Characteristic distribution.

3.4.1. De�nition and examples.
For each position xi in X we can count how many times it is a solution point when
considering all functions of F+. Let n (xi) be this number and let us de�ne.

(3.10) s (xi) =
1∣∣F+
∣∣n (xi)

britishWHEN NEARER IS BETTER 7

i 1 2 3 4
n (xi) 15 21 21 15

S+ 0.38 0.53 0.53 0.38
Table 3. Distribution of solution positions for Example 3.3

This can be seen as the probability to have a solution point in xi when choosing
at random (uniform distribution) a function f in F+. So we de�ne a characteristic
distribution S+ =

(
s (x1) , ..., s

(
x|X|

))
. Note that it is not a normalised proba-

bility distribution, for some functions have several solutions points, and therefore∑
i s (xi) > 1 . We suggest the following property is true.

Conjecture 3.2. The characteristic distribution of the F+ class is unimodal (pos-
sibly with a plateau) with the minimum on the bound

Note that if the search space is symmetrical, and has �centre�, like in the examples
below, then the characteristic distribution is obviously also symmetrical around this
centre.
This conjecture is well supported by experiments. Let us give some examples on
dimension 1 and 2.

Example 3.3.

X = (1, 2, 3, 4), Y = (1, 2, 3, 4). |F| = 256, |F+| = 40

Example 3.4.

X = (1, 2, 3, 4, 5), Y = (1, 2, 3, 4, 5). |F| = 3125, |F+| = 1090
i 1 2 3 4 5
n (xi) 205 411 478 411 205

S+ 0.19 0.38 0.44 0.38 0.19

Example 3.5.

X = ((1, 1) , (2, 1) , (3, 1) , (1, 2) , (2, 2) , (3, 2)), Y = (1, 2, 3, 4, 5, 6). |F| = 46656,
|F+| = 18620
i 1 2 3

4 5 6
n (xi) 3963 6580 3963

3963 6580 3963

S+ 0.212 0.352 0.212
0.212 0.352 0.212

When using Euclidean distance, instead of the one de�ned by 3.5, we have. |F+| =
21772
i 1 2 3

4 5 6
n (xi) 4739 7636 4739

4739 7636 4739

S+ 0.213 0.344 0.213
0.213 0.344 0.213

3.4.2. Practical computation.
Computing a characteristic distribution is quite time consuming, as soon as the
search space is not very small. However, F can be divided into equivalence classes,
on which most of algorithms have the same behaviour (see Annexe 8.2 for details).
All the functions in a class have the same NisB truth value , and the same �pro�le�.
Actually it would be even possible to de�ne fuzzy classes, but it is outside the scope
of this paper.

8 britishWHEN NEARER IS BETTER

The point is that as soon as we have de�ned these equivalence classes, we can work
on them to compute the characteristic distribution. On the whole the process is far
cheaper than a direct computation. That is why even the small tables for Example
3.4 and Example 3.5 have been built by using this method.

4. The best algorithm?

4.1. Permutational algorithms.

4.1.1. De�nition.
As we have seen any run of a non repeating algorithm can be identi�ed to a per-
mutation of the elements of X , say

(
xα1 , xα2 , ..., xα|X|

)
. The algorithm is called

permutational if this permutation is always the same, for any function and for any
run (no randomness, in particular). For example, on X = (1, 2, 3, 4) the algorithm
A ≡ (4, 3, 2, 1) is �draw x4then x3then x2then x1�.

4.1.2. Performance conjectures.
On F+ we evaluate the global performance for each permutational algorithm, and
call rb (F+) the best one (the minimum one). We suggest the following property is
true.

Conjecture 4.1. On F+ there exists at least one permutational algorithm A so
that r (F+, A) > rb (F+)

It means that not all permutational algorithms are equivalent: at least one is strictly
worse than the best one. For Example 3.3, we have |F| = 256, |F+| = 40, and there
are 4! = 24 permutational algorithms. Their best global performance on F+ is
rb (F+) = 1.85 (by running for example A ≡ (2, 3, 1, 4)). Not surprisingly, this
is smaller (better) than that on the whole F (global performance 2.5). However
there are several permutational algorithms with a strictly worse performance than
the best one. For example with A ≡ (1, 2, 3, 4) we have r (F+, A) = 2.1. The
conjecture says that this is true for any F . Note that it is weaker than (and implied
by) Conjecture 3.2 so we may quite safely suggest a more interesting one.

Conjecture 4.2. On F+ there exists no better algorithm than the best permuta-
tional one

This conjecture says nothing about how to �nd a best algorithm without having
to try all of the permutational ones. However under Conjecture 3.2 it is indeed
possible.

4.2. A candidate.

We explain here how to design the best permutational algorithm (or more precisely
one of the possible ones for there usually are several equivalent ones). The idea is
very simple: we build a permutation by choosing at each step the most probable
solution position not already chosen. Although it obviously �nally indeed gives
the best algorithm, this method is impracticable as usually we do not know the
characteristic distribution. However, under Conjecture 3.2 this method can be
replaced by the following one for a symmetric search space of �gravity centre� G:

Algorithm 4.3. R++ - Finding the best permutation

At each step, choose the position (not already chosen) which is the nearest one
to G (the centre of the search space). In case of equivalence, choose at random

4.2.1. Examples.
For Example 3.3 this method builds the following possible permutations: (2, 3, 1, 4),
(2, 3, 4, 1), (3, 2, 1, 4), (3, 2, 4, 1)
All the corresponding permutational algorithms have a global performance on F+

equal to 1.85, the best possible one.

britishWHEN NEARER IS BETTER 9

For Example 3.5, one of the possibilities is (2, 5, 1, 6, 3, 4), and the corresponding
permutational algorithm has a global performance on F+ equal to 2.55, which is
also the best one.

5. Some practical consequences

Although our analysis is mainly a theoretical one it gives some interesting enlight-
ments and suggests some applications. Here are some of them.

5.1. About centre bias.
The bigger X the bigger F+. It means that R++ tends to build an algorithm
that is simply �At each step choose a point near to the centre of the search space�.
Although still the best algorithm averaged on the whole F+, it is of course quite
bad on any classical benchmark set, which is always far smaller than F+, and
when compared to more speci�c algorithms. However it nevertheless shows that
for such algorithms having a bias in favour of the centre of the search space is not
necessarily a weakness, on the contrary. It may explain for example why Particle
Swarm Optimisation (PSO), which is indeed biased [8], is so robust. How important
should be this bias has nevertheless still to be found.

5.2. Divide and conquer.

According to 4.2 there exists a best algorithm A on F+, and at least another one
B that is strictly worse. Now let us consider the �Nearer is worse � subset F−.
According to the NFLT A and B are equivalent on F . So B is necessarily better
than A on F−. It implies that there exists a best algorithm on F−. In other words
F can be partitioned into two classes, each one corresponding to a interval of the
NisB truth value ν, and for each one there exists a best algorithm. Whether it is
true or not for any interval, and, more important, if it is still possible to explicitly
de�ne the corresponding best algorithm, is an interesting open question. Note that
the answer is positive for some particular cases, for example for ν = 1.

5.3. Benchmarks.
For an algorithm that makes use of the NisB property, it may be a good idea to
design a benchmark as diversi�ed as possible from this point of view, i.e. whose
NisB truth values cover a large interval. Indeed, when computing the NisB truth
values for existing benchmarks it appears they not �cover� all the possible values.
In particular they are almost never negative.
Moreover for most of usual functions we can just estimate the NisB truth value
and not exactly compute it, as knowing the exact values would useful for a better
classi�cation of algorithms. Fortunately there is a simple way is to design �on
demande� functions by starting from small discrete ones and by transforming them
into piece-wise ones (see Annexe8.5).

5.4. Adaptive algorithms.
We are particularly interested here on iterative adaptive algorithms that can mod-
ify their search strategy according to what they learn about the �tness function
during the sampling process. Note that algorithms that perform only partial adap-
tations may fail badly, as proved in [4], so it would be better to choose a completely
parameter-free method, like Tribes, a PSO variation [2, 3, 9].
The idea is the following: from time to time, or even at each time step, the algorithm
computes the NisB truth value ν (f) of the function f , as it �sees� it thanks to the
sampled points, and and it modi�es its search strategy according to this value. In
Tribes, for example, each particle has to choose between three or four strategies,
and the choice is depending one several criteria (status of the particle, status of the
tribes it belongs to, etc.). So ν (f) could be another criterion.

10 britishWHEN NEARER IS BETTER

Some strategies are better for �exploration�, some others better for �exploitation�.
Typically, a high ν (f) value should favours exploitation, and vice-versa. In other
words an adaptive algorithm may perfectly switch from a �nearer is better� assump-
tion to a �nearer is worse� one, and vice-versa. Note that this approach is already
empirically used by some algorithms that try to take into account unsuccessful sam-
pled positions either by direct computation or thanks to a repulsive �force� [7, 1].
Because of NFLT such an algorithm can not be good for all functions of F but it
could be e�ective for a class of functions that contains some functions of F+ and
some functions of F−.

6. Generalisations

For simplicity we have assumed that both X and Y are �nite. Extending our
de�nitions to in�nite or unbounded ones is straightforward. Actually some formulae
may even be simpli�ed for, for example, the measure of an in�nite space is the same
when you remove just two points.

6.1. In�nite bounded search space.

Here �in�nite� means �contains an in�nite number of points�. A typical case is
X = [xmin, xmax]D. Formulae 3.1 and 3.2 that de�ne Nb,w, Bw,b (f) and Ω are still
valid. We do assume that the measures like |X| have a meaning. For example, with
the above X we have |X| = |xmax − xmin|D. Then formulae 3.3 that de�ne ξ and
ρ could easily be replaced by two integrals. However in order to avoid some in�nite
quantities, it is better to directly compute the NisB truth value ν by the following
formula:

ν (f) =
∫

Ω

(
|Nb,w

⋂
Bw,b|

|Nb,w|
− |Bw,b|

|X|

)
Are the properties we have found still true? Probably yes, although of course it
has to be proved. The reason is that what is important is the unimodality of the
distribution of the solutions points, and it is only depending on the geometry of the
search space, and of the de�nition of F+ , which is still the same (set of functions
f so that ν (f) > 0), no matter X and Y are �nite or not, bounded or not.
Let θ (x, r) = {z, z ∈ X, δ (x, z) < r} be the set of points in X that are also in the
�sphere� of centre x and radius r, and G the �gravity centre� of X. Then, more
precisely, this unimodality is probably true as soon as the following condition holds:

Condition 6.1. For any pair of points (x, x′), for any �radius� r, we have{
δ (x,G) > δ (x′, G) ⇒ |θ (x, r)| ≤ |θ (x′, r)|
∃δmax, δmax > δ (x,G) > δ (x′, G) ⇒ |θ (x, r)| < |θ (x′, r)|

Roughly speaking, it means that a point �near� the bound has less �neighbours� than
a point near the centre. In particular this condition is true for a bounded convex
space. This generalisation is particularly interesting to design deceptive functions
on a continuous search space (see Annexe 8.5): any algorithm that assumes that
�nearer is better� is more or less true will be worse than Random Search on any
function of F−.

6.2. Unbounded search space.

Some iterative optimisation algorithms are allowed to sample the de�nition space
of the function outside an initially given search space X. It is typically the case
for some PSO variations. However in such a case the sampled position is usually
simply not evaluated. It means that the user is sure there is no solution outside X,
or, at least, is not interested on any solution that could be outside X.
Then the above remark about Condition 6.1 is still valid, for anyway all points that
are really taken into account are still inside X.

britishWHEN NEARER IS BETTER 11

6.3. A more general formulation.

Finally a reasonable aim for a future work may be to prove the following.

Conjecture 6.2. When taking into account only solutions points that are inside a
convex space X, their distribution for functions in F+is unimodal, with its minimum
on the bound.

7. Conclusion

For optimisation algorithms that use the �Nearer is Better� property that is de�ned
here, i.e. for most of them, there is an in�nite class of problems on which there
are algorithms better than Random Search, and therefore it is worth looking for
the best one. We suggest a candidate. Of course, being the best relatively to the
whole �Nearer is Better� class usually means being quite bad on a speci�c sub-class
when compared to classical optimisation algorithms. In particular all commonly
used benchmarks are such sub-classes. However preliminary results seem to show
that each of these benchmark can be included in a sub-class that is characterised
by a positive threshold for the �Nearer is Better� truth value. It may be a hint to
explicitly design the best algorithm for each benchmark set. Or, conversely, the
NisB truth value may be a tool to design benchmarks that contains functions that
are deceptive for most of optimisation algorithms.

8. Annexe

8.1. Perfect Random Landscape.

8.1.1. De�nition.
Let us de�ne a perfect random distribution f from X to Y as follows:

• f is surjective
• the density probability of f is 1, i.e. for any u in Y , probability (f (x) < u) =

u

8.1.2. Properties.
Let X ′ be a subset of X, fmin,X′and fmax,X′the minimum and the maximum values
of fon X ′. Then we have.

Fact 8.1. The expectation is given by

(8.1)
∫

X′
xf (x) dx = |X ′| fmin,X′ + fmax,X′

2

where |X ′| is the measure of X ′ consistent with the integration, i.e. |X ′| =
∫

X′ dx.
In particular the expectation of f is.

E (f) =
1
2

Fact 8.2. The probability density of f−1is equal to 1.

In particular, it means that for any given a in [0, 1] the measure of the set of points
x for which f (a) ≤ f (x)is given by:

|{x, f (a) < f (x)}| = 1− f (a)

and similarly we have.
|{x, f (x) ≤ f (a)}| = f (a)

8.1.3. Example.

12 britishWHEN NEARER IS BETTER

∆x E (g)
0.5 1
0.4 0.8
0.3 0.675
0.2 0.673
0.1 0.634
0.05 0.680
0.01 0.669

Table 4. Mean probability of improvement relatively to f (xw),
knowing that f (xw) ≥ f (xb), with (xb, xw)drawn at random, for
non repeating random search on [0, 1], for a perfect random land-
scape and for di�erent granularities ∆x

For simplicity, we choose X = [0, 1], Y = [0, 1], but the �nal result of this example
is valid for any other intervals. For a given pair (x1, x2) of elements of X, we de�ne.{

X ′ (x1) = {x, x ∈, f (x) ≤ f (x1)}
X ′ (x2) = {x, x ∈, f (x) ≤ f (x2)}

i.e. X ′ (xi)is the set of points that are �better than� xi from a minimisation point
of view. If we draw a point at random in X, according to an uniform distribution,
the probability of improvement, relatively to f (xi), is then |X ′ (xi)| = f (xi). Now
let us consider the following function g (x1, x2), de�ned on X ×X:

• if f (x1) ≤ f (x2), g (x1, x2) = |X ′ (x2)|
• if f (x2) ≤ f (x1), g (x1, x2) = |X ′ (x1)|

In other words, for each pair of points, we consider the probability of improvement
relatively to the worst one, if we draw at random a third point. We can compute
the mean value (the expectation) of this probability, over all pairs. For symmetry
reason we have.

E (g) = 2
∫ 1

0
x1

(∫
{x2,f(x1)≤f(x2)} f (x2) x2dx2

)
dx1

= 2
∫ 1

0
x1 (1− f (x1))

1+f(x1)
2 dx1

=
∫ 1

0
x1

(
1− f (x1)

2
)

dx1

= E
(
1− f2

)
We can directly compute the expectation of 1−f2 by noting that probability

(
1− f2 (x) < u

)
=

1− probability
(
f (x) <

√
1− u

)
. So the density is 1/

(
2
√

1− u
)
. We have then.

E
(
1− f2

)
= 1

2

∫ 1

0
u√
1−u

du

= − 1
3

[
(u + 2)

√
1− u

]1
0

= 2
3

So, �nally.

(8.2) E (g) =
2
3
' 0.667

8.1.4. Discrete �nite case.
On a discrete �nite space, formula 8.1 is not exactly valid, and gives just an esti-
mation. Consequently, a formula like ?? is also just an estimation. In particular if
the de�nition space is given by an interval (say still [0, 1]) and a �granularity� ∆x,
we obtain di�erent values, depending on ∆x, as we can see on table 4.

8.2. Equivalences and simpli�cations.

8.2.1. Equivalent functions.

britishWHEN NEARER IS BETTER 13

Let us consider two functions de�ned on the same search space X = (1, 2, 3, 4)by.{
f = (3, 4, 2, 1)
g = (2, 10, 1, 0)

They have the same �pro�le�, and this can be formalised. Two functions f and g on
X are equivalent if for any pair of points (x, x′) of X ×X we have f (x) < f (x′) ⇔
g (x) < g (x′). In particular, if f (x) = f (x′) we also have g (x) = g (x′).
We are mainly interested here on optimisation algorithms that make use only of
relationships between function values in order to choose the next point to draw.
Typically something like �if f (x) < f (x′) then draw a new point according to Rule
1�, where Rule 1 is depending only on already drawn positions, and not on some
values of the function. A classical example is Particle Swarm Optimisation. Running
such an algorithm on two equivalent functions produces two identical sequences of
positions (assuming the same pseudo-random number generator is used).
Now, instead of considering all possible functions on X, we can consider just one
representative for each equivalence class. From now on, we will work on such a set
of functions, and we call it F̃ . When speaking of a function, we in fact speak of any
representative of an equivalence class.

8.2.2. Equivalence class coding.
Let us assign a rank to each position:

X = (x1, ..., xi, ...xm)

and let us consider a function f on X. To each pair (xi, xj) where i > j we assign
the number j + (i − 1)m. There are K = m (m− 1) /2 such pairs. The pro�le of
the function is de�ned by a K-vector r as follows.

• pairs are sorted by lexicographic order
• for the pair(xi, xj) of rank k, we de�ne r (k) = 0 if f (xi) = f (xj)

= 1 if f (xi) < f (xj)
= 2 if f (xi) > f (xj)

Then the pro�le r can be �summarised� by an unique number Π:

Π (f) =
K∑

k=1

r (k) 3k−1

Note that a lot of codes are not used, for the �dominance� relations like f (xi) <
f (xj) are not independent. So the number of equivalence classes is not 3K , but far
smaller, depending on the dimensionnality of the search space, on its size, and on
the size of the value space.

8.2.3. An example of classes of a �Nearer is Better� subset.
Let us consider the set of all possible unidimensional functions on X with values in
Y , with. {

X = (1, 2, 3, 4, 5)
Y = {1, 2, 3, 4, 5}

We can call in short this example X5Y5. There are |Y ||X| = 3125 such func-
tions.They can be easily generated by a program and we have numbered them from
F1 to F3125. Note that, by de�nition, the equivalence classes are not depending
on |Y | as soon as it is at least equal to |X|. Of course, however, the number of
representatives in each class is depending on |Y |. Here the number of the classes is
541. In Table 5 we present some of them, along with the ν and ρ values. Assigning
these values to a whole class is possible thanks to the consistency theorem 8.3 (see
below). On �gure 8.1 we can also see the 541 (ξ (f) , ρ (f)) points. Such a �gure

14 britishWHEN NEARER IS BETTER

ξ (f) ρ (f) Example % ξ (f) ρ (f) Example %

1 1 F33: (1, 1, 2, 2, 3) 0.16% 0.62 0.62 F1456: (3, 2, 4, 2, 1) 0.16%
0.95 0.81 F1377: (3, 2, 1, 1, 2) 0.32% 0.60 0.63 F128: (1, 2, 1, 1, 3) 0.32%
0.91 0.78 F626: (2, 1, 1, 1, 1) 0.32% 0.48 0.52 F1331: (3, 1, 4, 2, 1) 0.16%
0.90 0.79 F1382: (3, 2, 1, 2, 2) 0.32% 0.52 0.57 F761: (2, 2, 1, 3, 1) 0.32%
0.88 0.81 F778: (2, 2, 2, 1, 3) 0.32% 0.62 0.67 F1661: (3, 4, 2, 3, 1) 0.16%
0.81 0.71 F1429: (3, 2, 3, 1, 4) 0.16% 0.45 0.52 F1291: (3, 1, 2, 4, 1) 0.16%
0.76 0.67 F2833: (5, 3, 4, 2, 3) 0.03% 0.47 0.56 F1791: (3, 5, 2, 4, 1) 0.03%
0.93 0.90 F1403: (3, 2, 2, 1, 3) 0.32% 0.67 0.72 F966: (2, 3, 4, 4, 1) 0.16%
0.78 0.72 F2679:(5, 2, 3, 1, 4) 0.03% 0.36 0.48 F411: (1, 4, 2, 3, 1) 0.16%
0.86 0.83 F753: (2, 2, 1, 1, 3) 0.32% 0.69 0.75 F762: (2, 2, 1, 3, 2) 0.32%
0.67 0.62 F1452: (3, 2, 4, 1, 2) 0.16% 0.73 0.75 F903: (2, 3, 2, 1, 3) 0.32%
0.62 0.57 F679: (2, 1, 3, 1, 4) 0.16% 0.69 0.76 F901: (2, 3, 2, 1, 1) 0.32%
0.69 0.67 F2010: (4, 2, 1, 3, 2) 0.12% 0.67 0.75 F162:(1, 2, 2, 3, 2) 0.32%
0.69 0.67 F1386: (3, 2, 1, 3, 1) 0.32% 0.35 0.52 F256:(1, 3, 1, 2, 1) 0.32%
...

Total ξ (f) > ρ (f) 35% Total ξ (f) ≤ ρ (f) 65%
Table 5. Some examples of equivalence classes for the X5Y5 example

Figure 8.1. The 541 (ξ (f) , ρ (f)) points of the X5Y5 example

suggests that there exists a positive minimum for these both functions, and also for
their di�erence ν (see the Open question 8.7.1).

8.2.4. Consistency theorems.

Theorem 8.3. If two functions f and g are equivalent, then ξ (f) = ξ (g), and
ρ (f) = ρ (g)

Actually this is almost obvious. To evaluate the NisB truth value ξ, we need to
build some Nb,w and Bw,b sets, as de�ned by 3.1. Let us consider two equivalent

britishWHEN NEARER IS BETTER 15

Pro�le Class size Class codeΠ Representative n (1) n (2) n (3) n (4)
2 2 2 0 0 0 6 26 (3,2,2,2) 6 6 6
2 2 2 2 2 0 4 242 (4,2,1,1) 4 4
2 2 2 2 0 1 4 323 (4,2,1,2) 4
0 0 1 0 1 1 6 333 (1,1,1,4) 6 6 6
1 1 1 0 1 1 4 337 (2,3,3,4) 4
2 0 1 1 1 1 4 362 (3,1,3,4) 4
0 1 1 1 1 1 4 363 (2,2,3,4) 4 4
1 1 1 1 1 1 1 364 (1,2,3,4) 1
2 1 1 1 1 1 1 365 (2,1,3,4) 1
2 2 2 2 2 1 1 485 (4,3,1,2) 1
2 2 2 0 2 2 4 674 (4,2,2,1) 4
2 2 2 2 2 2 1 728 (4,3,2,1) 1

Total 15 21 21 15

Table 6. F̃+ list for Example 3.3. For each class the size is given,
the Π code, and also a representative function. How to compute
the characteristic distribution is given in the four last columns

functions f and g. A Nb,w set is depending on positions, not on functions values.
A Bw,b set is depending on a relationship like f (x) ≤ f (x′). As we have f (x) ≤
f (x′) ⇔ g (x) ≤ g (x′), the set is the same when considering f or g. Same reasoning,
even simpler, for ρ.

Theorem 8.4. For a given pro�le (i.e. a given equivalence class) there is just one
possible set of positions of the minima

Or, in other words, no matter which representative is chosen in an equivalence class,
the positions of the minima are always the same. Again, it is almost obvious. Let
us consider a given function f . Let Xmin be the set of positions of the minima of
this function. It means that for all pairs of points (xi, xj) of Xmin the relationship
is f (xi) = f (xj), and for all pairs of points (xi, xj)with xi in X −Xmin and xj in
Xmin we have f (xi) > f (xj). For an equivalent function g the relationships are
exactly the same, and it proves that any minimum of f is a minimum of g. The
same reasoning shows that any minimum of g is a minimum of f .
Thanks to these consistency theorems, it is easier to compute the characteristic
distribution. Let us consider again Example 3.3, with X = (1, 2, 3, 4), and Y =
(1, 2, 3, 4). There are 75 equivalence classes, and 12 of them have the NisB property.
The list is given in Table 6 . Now to compute the characteristic distribution, we
can do it by considering just one representative by class, i.e. 12 functions, and by
�weighting� each solution position by the corresponding class size. Of course we
have �rst to compute the classes, but it is worth doing it, for in the whole process
the most time consuming operation is to compute the NisB truth value for each
function.
From Table 3, which shows the number of solution points on each position, we can
derive the distribution D+ = (0.33, 0.42, 0.42, 0.33).

16 britishWHEN NEARER IS BETTER

p |F+|
1 20788
1.5 21772
2 21772
2.5 21772
10 21772
∞ 18620

Table 7. Nearer is Better class size for di�erent kinds of distance,
and for Example 3.5

8.3. About distances.
We have seen that the Nearer is Better class F+ is depending of the kind of distance
(at least as soon as dimension is greater than 1). Let us consider the general formula
of the Minkowsky distance of order p (p-norm distance):

Lp (x, x′) =

(∑
i

|xi − x′i|
p

)1/p

When p tends to in�nity, we obtain the Chebyshev (�max�) distance de�ned in 3.5.
L1is the taxicab or Manhattan distance, and L2 the classical Euclidean one. In any
case there is a p value (not necessary an integer, but greater than 1) for which |F+|
is maximum, say pM (D), and one for which it is minimum, say pm (D). In Table 7
we can see that for Example 3.5.
Now let us suppose we have an algorithm that precisely makes use of the NisB
property, by using distance Lp. So its most robust variation, i.e. the one which is
valid for the highest number of functions, is for p = pM (D), and its most speci�c
one for p = pm (D).

8.4. F+size.

Unfortunately we do not have yet a formula that would directly give the size of the
subset F+. However there is already possible to say a few things. For a given |X|
let us suppose that for |Y | = 2, |Y | = 3, ..., |Y | = |X|, we do know the number of
functions in F+ that make use of exactly |Y | values, and let us call it a (|X| , |Y |).
Note that by de�nition a (|X| , j) = 0 as soon as |Y | is greater than |X|.Then it is
possible to compute the F+size for any Y by using the following formula:

(8.3)
∣∣F+

∣∣ = min(|X|,|Y |)∑
j=2

a (|X| , j) Cj
|Y |

Let us give immediately an example for |X| = 5 and dimension 1 (table 8). Remem-
ber that the a (|X| , |Y |) values are for the moment known just experimentally. For
|Y | = 2 we have 5 functions that are in F+, like say (1, 1, 1, 2, 2) . For |Y | = 3, we
have C2

3 = 3 possibilities to make use of exactly two values. Each of them �gener-
ates� then 5 functions for, because of equivalence, if a function like (1, 1, 1, 2, 2) is in
F+, then (1, 1, 1, 3, 3)and (2, 2, 2, 3, 3)also are in F+. By adding these 15 functions
to the 53 ones (i.e. a (5, 3) C3

3 = a (5, 3) in formula 8.3), we �nd that the size of F+

is 68. Same reasoning for the next lines of the table.
What is interesting is the rate |F+| / |F|, for as soon as |Y | is similar to |X|, or
greater, it depends almost only on a (|X| , |X|). It is easy to derive its limit value
from formula 8.3.

lim

(
|F+|
|F|

)
|Y |/|X|→∞

=
a (|X| , |X|)

|X|!

britishWHEN NEARER IS BETTER 17

|Y | a (|X| , |Y |) j = 2 j = 3 j = 4 j = 5 |F+| |F| rate

2 5 5 5 32 0.16
3 53 15 68 243 0.28
4 94 30 212 336 1024 0.33
5 40 50 530 470 1090 3125 0.35
6 0 75 1060 1410 240 2785 7776 0.36
100 0 24750 8570100 368595150 3011500800 3388690800 1010 0.34

Table 8. How to compute |F+| when knowing a (|X| , |Y |). The
limit rate is here 40/5! = 0.33

This value can be seen as an estimation of the rate when |Y | = |X|. As a (|X| , |Y |)
is actually also depending on the dimension D of the search space X, and on the
kind of distance L that is used, we can name it a∗ (|X| , D, L). It may be worth
re-explaining its meaning. When the search space and the function value space have
the same size m, this is the proportion of bijective functions that also have the NisB
property. In other words, if we could say �for x% of the bijective functions the NisB
truth value is positive�, then we could estimate �on the whole, the size of F+ is
x |X||X|�.

8.5. From discrete to continuous search space.

As discrete functions are easier to study from a NisB point of view, some algorithms
like PSO do prefer �moving� in a continuous search space. We are interesting here
on how to design a benchmark of functions on such a space. Actually there is a
quite easy way: piece-wise functions. Let us give an example.
We want to design a deceptive continuous function. We can start from any discrete
one that belongs to F−, say f = (0, 3, 2, 4, 2) on X = (1, 2, 3, 4, 5). Here we have
ν (f) = −0.17. Then we can derive a piece-wise function g on say [0, 5[by:

x ∈ [i− 1, i[⇒ g (x) = f (i)

where i is in X. On this function the probability of success of Random Search after
at most n attempts is given by p (n) = 1 − (1− 1/5)n. We can compare with the
result obtained by a classical PSO with say �ve particles (swarm size S = 5), as
shown on Table 9. Of course when the number of attempts is precisely equal to the
number of particles, PSO is equivalent to R because only the random initialisation
phase is performed.
Note that the function obtained by this method may be not deceptive anymore when
the number of attempts (i.e. sampled points) increases. Why? Because in any case,
for a function f on a continuous search space X, a conjecture is that ν (f) ≥ 0 (see
Open question 8.7.1 below). It would mean that it can not be intrinsically deceptive.
However, the way PSO sees it can be. This is because the algorithm samples X,
and moreover keeps only at most 2S points. Therefore, just after initialisation, it
may easily tend to follow a wrong way, i.e. tend to sample some points that do not
really contribute to increase the ν value, then it still tends to follow the wrong way,
etc. On the contrary, when the sampling is completely �regular�, and keeping all

Number of attempts Random search PSO 5 particles

5 0.67 0.67
20 0.99 0.73

Table 9. Comparison of Random Search and PSO on a piece-wise
deceptive function. For PSO the success rate is estimated over 5000
runs

18 britishWHEN NEARER IS BETTER

Figure 8.2. NisB truth value for the functions (0,3,2,4,2),
(0,0,3,3,2,2,4,4,2,2) etc. First negative, then positive

points, when t increases so does the ν value. It can be negative at the beginning,
then positive, as we can see on �gure 8.2.

8.6. Nearer is Better than the best.

It is perfectly possible to de�ne �Nearer is Better� in a apparently more restrictive
way. In Equation 3.1 we can replace Bw,b by.

Bw,b = {x, x 6= xb, x 6= xw, f (x) ≤ f (xb)}

i.e. we are considering not anymore the positions that are better than xw but better
than xb, i.e. �better than the best� of the pair.
However, contrarily to the intuition, the corresponding class of functions, that we
can denote F+b is not included into F+. Their intersection is not empty, that is
all. And also, even an �obviously good� function like (1, 2, 3, 4), which is in F+, is
not in F+b. That is why studying F+ seems more interesting.

8.7. Open Questions.

8.7.1. Perfect deceptive function.
What is the smallest possible value for ν (f)? Intuitively, it seems it should be
obtained with the perfect random landscape. If it is true, we have a quite simple
lowest bound.

(8.4) νmin ≥
(

1− |X|
|X| − 2

)
1
2

For|X| = 5, it gives −1/3. Note that if formula 8.4 is true, it has an important
consequence: although always negative, νmin could be as near to zero as we want,
just by increasing |X|. It would ever mean that if |X| is intinite, then F− is empty.
An interesting question.

8.7.2. Extending a non-NisB function.

britishWHEN NEARER IS BETTER 19

Let f be a non-NisB function (i.e. whose NisB truth value is negative) de�ned
on X, and f ′ a non-NisB function de�ned on X ′. We de�ne a new function g on
X
⋃

X ′ by. {
g (x) = f (x) if x ∈ X

= f ′ (x) if x ∈ X ′

Is g also a non-NisB function? Note that the contrary is obviously wrong, i.e. if f
and f ′ are two NisB functions, then g is not always also a NisB one.

References

[1] Tim M. Blackwell and P. J. Bentley. Don't Push Me! Collision-Avoiding
Swarms. In Congress of Evolutionary Computation, pages 1691�1696, Piscat-
away, New Jersey, 2002.

[2] Maurice Clerc. TRIBES - Un exemple d'optimisation par essaim particulaire
sans paramÃ¨tres de contrÃ´le. In OEP'03 (Optimisation par Essaim Partic-
ulaire), Paris, 2003. 14 pages.

[3] Maurice Clerc. Particle Swarm Optimization. ISTE (International Scienti�c
and Technical Encyclopedia), 2006.

[4] Paul Darwen. Black magic: Interdependence prevents principled parameter set-
ting. pages 227�237, 2000. Institute for Food and Crop Research, Christchurch,
New Zealand.

[5] T. Wegener I. Droste, S. Jansen. Perhaps not a free lunch but at least a free
appetizer. pages 833�839. GECCO, Morgan Kaufmann Publishers, 1999.

[6] C. Igel and M. Toussaint. On classes of functions for which no free lunch results
hold. Information Processing Letters, 86:317�321, 2003.

[7] G. A. Jastrebski and D. V. Arnold. Improving evolution strategies through
active covariance matrix adaptation. pages pp. 9719�9726, Vancouver� 2006.
IEEE World Congress on Computational Intelligence, IEEE Press, Piscataway,
New Jersey.

[8] Christopher K. Monson and Kevin D. Seppi. Exposing Origin-Seeking Bias in
PSO. In GECCO'05, pages 241�248, Washington, DC, USA, 2005. Nice use of
TRIBES. PSOGauss (constricted PSO with Gaussian noise).

[9] Godfrey C. Onwubolu. TRIBES application to the �ow shop scheduling prob-
lem. In New Optimization Techniques in Engineering, pages 517�536. Springer,
Heidelberg, Germany, 2004. particl swarm adaptive.

[10] M. D. Whitley D. Schumacher, C. Vose. The no free lunch and description
length. In A. Wu W. Langdon H.-M. Voigt M. Gen S. Sen M. Dorigo S.
Pezeshk M. Garzon L. Spector, E. Goodman and E. Burke, editors, Genetic
and Evolutionary Computation Conference (GECCO 2001), San Francisco,
CA, USA, Morgan Kaufmann., pages 565�570, San Francisco, CA, USA, 2001.
Genetic and Evolutionary Computation Conference, Morgan Kaufmann.

[11] David H. Wolpert and William G. Macready. No free lunch theorems for opti-
mization. IEEE Transactions on Evolutionary Computation, 1(1):67�82, 1997.

