Maurice Clerc
email: maurice.clerc@writeme.com

WHEN NEARER IS BETTER

come

Introduction

It has been already shown that in a lot of optimisation scenarios there can be no such thing as a No Free Lunch [START_REF] Wegener | Perhaps not a free lunch but at least a free appetizer[END_REF]. Actually it has been proved that the NFL Theorem (NFLT) is valid if and only if the set of problems (functions) is closed under permutations (c.u.p.) and each target function is equally likely [START_REF] Whitley | The no free lunch and description length[END_REF]. It has then been proved that the number of such c.u.p. subsets can be neglected compared to the overall number of possible subsets [START_REF] Igel | On classes of functions for which no free lunch results hold[END_REF]. As a consequence, in the same work, the authors dene some large classes of functions on which NFLT does not hold. For example, if the number of local minima of every function f in a class is constrained to be smaller than the maximal possible one, then this class is not c.u.p., and therefore NFLT does not hold. However being c.u.p. or not is not a feature that can be easily used by optimisation algorithms. On the contrary, a nearer is better (NisB) property is almost always assumed: most of iterative stochastic optimisation algorithms, if not all, at least from time to time look around a good point in order to nd an even better one.

This can be mathematical dened, and summarised by a single real value for any function. What is interesting is that it can be estimated (or even exactly calculated for not too big problems). The functions for which this value is positive dene a huge class, which in particular contains most of classical and less classical tests functions that we have checked by now. And what is even more interesting is that NFLT does not hold on this class: we can explicitly dene an algorithm that is better than random search, and therefore it is not unrealistic to look for the best possible algorithm.

When negative this NisB value indicates that the corresponding function is very probably deceptive for most of algorithms that precisely assume that a vague nearer is better property is true. Particle Swarm Optimisation is typically such an algorithm, and we will see thanks to this analysis how easy it is to design functions on which its classical variations are worse than random search.

Notations and Definitions

2.1. Search space and problems.

1 It means, for example, that NFLT does not hold if the performance measure takes into account the distance to the solution point. We are interested here only on samples that contain at least one solution point, i.e. here where f reaches its minimum value. Let f be a problem, and A an algorithm that samples x αt at time step t, assuming that a each time step another point is drawn. There is a probability p (f, t, a) that the sampled point is a solution point. We compute the following expectation.

(2.1)

r (f, A) = |X| t=1 p (f, t, A) t
Roughly speaking it means that the algorithm nds a solution after in average r (f, A)draws. Then we say that algorithm A is better than algorithm B for the problem f if r (f, A) < r (f, B), i.e. if in average A nds a solution quicker than B. On a whole set of functions F we can then dene the global performance by the following mean.

r (F , A) = 1 |F'| P ∈F ' r (f, A)
NFLT claims that when averaged over all |Y | |X| functions, i.e. over F, Any algorithm is equivalent to Random Search. It means that r (F, A) is the same for all algorithms, and its value is (|F| + 1) /2.

As we have seen, this is true only under very precise conditions, the most important being precisely that all. It is easy to dene subsets of functions on which it does not hold. We are now going to study two such subsets which have interesting practical applications. We assume here that we are looking for a minimum. Let f be a function, x b , x w two positions in its denition domain, so that f (x b) ≤ f (x w), and δ a distance dened on this domain. Let us dene two subdomains.

Nearer is

(3.1)

N b,w = {x, 0 < δ (x b , x) < δ (x b , x w)} B w,b = {x, x = x b , x = x w , f (x) ≤ f (x w)}
That is, N b,w is the set of points to which x b is closer than to x w , with a nonzero distance, and B w,b the set of positions that are better than x w (or equivalent to), except the two points already drawn. This last denition, which could be called better than the worse may seem strange at rst glance. Why not better than the best?. Because the corresponding class of functions would not contain some obviously good functions (see Annexe 8.6).

If we now choose x completely at random in X -{x b , x w }, the probability to nd a position better than x w is simply |B w,b | / (|X| -2). Note that for a perfect random landscape the expectation of this variable is not 1/2 as one could think, but 2/3, because the condition f (x b) ≤ f (x w)(see 8.1). Now what happens if we choose x in N b,w (assuming it is not empty)? The probability to nd a better position than x w is |N b,w B w , b| / |N b,w |. If this probability is greater than the previous one, this strategy may be interesting. We do not want it always happens, though, but just that it happens on average. Let us call this method NisB strategy. We are interested to know how much this NisB strategy is better than Random Search. To formalise this we dene the set of acceptable pairs by.

(3.2)

Ω = {(x b , x w) , x b = x w , f (x b) ≤ f (x w) , |N b,w | > 0}
and the two mean probabilities.

(3.3)          ξ (f) = 1 |Ω| Ω |N b,w B w,b | |N b,w | ρ (f) = 1 |Ω| Ω |B w,b | |X| -2
Then we say nearer is better is true for the function f iif.

(3.4)

ν (f) = ξ (f) -ρ (f) > 0
It can be seen as an estimation of how much the NisB strategy is better than Random Search on f . Or, intuitively, it can seen as an estimation of how much nearer is better not just by chance. Note that ν (f) may be null even for not constant functions, when |X| is small. For example, on dimension 1, it is the case with X = (1, 2, 3, 4)and f (x) = [START_REF] Darwen | Black magic: Interdependence prevents principled parameter setting[END_REF][START_REF] Clerc | TRIBES -Un exemple d'optimisation par essaim particulaire sans paramètres de contrôle[END_REF][START_REF] Clerc | Particle Swarm Optimization[END_REF][START_REF] Darwen | Black magic: Interdependence prevents principled parameter setting[END_REF]. This is because if we consider the contribution of a given pair.

η b,w (f) = |N b,w B w,b | |N b,w | - |B w,b | |X| -2
it is obviously equal to zero when f (x w) is maximum. And in this example all the four possible pairs contain a x w so that f (x w) = 4.

From now on we call F + the set of functions on X for which ν (f) > 0, F -the set of functions for which ν (f) < 0, and F = the set of functions for which ν (f) = 0. When |X| is not too big this truth value can be computed by exhaustively considering all pairs of points, as in Table 2, but most the time we just estimate it by sampling.

For simplicity we assume here discrete domains are dened by an interval and a granularity. To build the table we used the following distance between two points x = (x 1 , ..., x D) and x = (x 1 , ..., x D), sometimes noted L ∞ : Step, plateau 90%

(3.5) δ (x, x) = max (|x i -x i |) Function f Domain Granularity,|X | Landscape ξ (f) ν (f) F1188 [1, 5]
Step, plateau 90% Assuming there are k solution points x * (i.e. where the function reaches its optimum), we draw at random two points. One is x b , and the other one is x w , with f (x b) ≤ f (x w). We consider just the case where none of them is a x * , (we will see why in 3.3). It implies in particular that all x * are in B w,b . Now we draw a third point x. If we draw it at random the probability to nd a x * is then.

p 1 = k |X| -2
However, if we choose it (at random) in N b,w , the probability to nd a x * is the product of.

• k |N b,w T B w,b | |B w,b | , probability that at least one x * is in N b B w • 1 |N b,w | , probability to draw a precise x in N b,w i.e. p 1 = k |N b,w T B w,b | |N b,w ||B w,b | . Therefore, p 2 > p 1 is equivalent to |N b,w T B w,b | |N b,w | > |B w,b | |X|-2 .
For a function in F + , we have then. (3.6) probability (p 2 > p 1) > 0.5

In short, when choosing a point near to x b we have a better chance to nd a solution than when choosing it at random.

3.3.

Better than Random Search. Theorem 3.1. On the Nearer is Better class F + there is at least one algorithm better than Random Search Let f be a problem (function) belonging to F + . Let us consider the (non repeating) random algorithm R. On a given run it samples x α1 , x α2 , x α3 , Let R + be another algorithm that on a given run samples x β1 , x β2 , x β3 , We dene it as similar to R, except sometimes for the choice of one point:

• x β1 is chosen at random (uniform distribution) in X • x β2 is chosen at random (uniform distribution) in X -{x β1 } • if x β1 or
x β2 is a solution point (or both), for this precise run R + is simply R • else let x b be the best of the two positions (x β1 , x β2), and x w the worst of these two positions. We choose x β3 in N b,w . • After that, for k = 4 to X, x β k is again chosen at random (uniform distribution) in the remaining positions

The idea is to prove that R + is better than R, not on a given run, but averaged over all possible ones. For simplicity we suppose here there is just one solution point.

Note that at any time t we have.

p (f, t, R) = 1 -1 |X| 1 -1 |X|-1 ... 1 - 1 |X|-t+1 1 |X|-t = 1 |X|
Now, when one of the two rst points is a solution point, R and R + are equivalent, by denition. Else, at time 3, p (f, R + , 3) is not anymore equal to 1/ |X|. It can be written.

(3.7) p (f, 3, R +) = |X|-1 |X| |X|-2 |X|-1 1 |X|-2 + ε = 1+ε(|X|-2)

|X|

Let us consider the case ε > 0 . At time t > 3, the probability to draw a solution is again constant, but equal to.

(3.8)

1 |X| 1 -ε |X| -2 |X| -3
So to compare the performances, we just have to evaluate.

(3.9)

r (f, R) -r (f, R +) = 3 1 |X| -p (f, 3, R +) + |X| t=4 1 |X| -1 |X| 1 -ε |X|-2 |X|-3 t = -3ε(|X|-2) |X| + ε(|X|-2) |X|(|X|-3) |X| t=4 t = ε |X|-2 |X| |X|+4 2 -3 > 0
It means that R + is better than R for this precise run. Now for another run it may happen that ε ≤ 0. However, because of inequality 3.6, the probability of this event is smaller than 0.5. So, over all possible dierent runs, R + is better than R with a probability greater than 0.5. Of course, it is still a quite bad algorithm, but now we know that not all algorithms are equivalent, it is worth looking for the best one.

In order to do that, we are now considering the distribution of solutions points for functions of F + . For each position x i in X we can count how many times it is a solution point when considering all functions of F + . Let n (x i) be this number and let us dene.

(3.10) This can be seen as the probability to have a solution point in x i when choosing at random (uniform distribution) a function f in F + . So we dene a characteristic distribution S + = s (x 1) , ..., s x |X| . Note that it is not a normalised probability distribution, for some functions have several solutions points, and therefore i s (x i) > 1 . We suggest the following property is true. Example 3.3. Computing a characteristic distribution is quite time consuming, as soon as the search space is not very small. However, F can be divided into equivalence classes, on which most of algorithms have the same behaviour (see Annexe 8.2 for details).

s (x i) = 1 F + n (x i) i 1 2 3
X = (1, 2, 3, 4), Y = (1, 2, 3, 4). |F| = 256, |F + | = 40 Example 3.4. X = (1, 2, 3, 4, 5), Y = (1, 2, 3, 4, 5). |F| = 3125, |F + | = 1090 i 1 2 3
All the functions in a class have the same NisB truth value , and the same prole.

Actually it would be even possible to dene fuzzy classes, but it is outside the scope of this paper.

The point is that as soon as we have dened these equivalence classes, we can work on them to compute the characteristic distribution. On the whole the process is far cheaper than a direct computation. That is why even the small tables for Example 3.4 and Example 3.5 have been built by using this method.

4. The best algorithm?

4.1. Permutational algorithms. For Example 3.5, one of the possibilities is (2, 5, 1, 6, 3, 4), and the corresponding permutational algorithm has a global performance on F + equal to 2.55, which is also the best one.

Some practical consequences

Although our analysis is mainly a theoretical one it gives some interesting enlightments and suggests some applications. Here are some of them.

5.1. About centre bias.

The bigger X the bigger F + . It means that R ++ tends to build an algorithm that is simply At each step choose a point near to the centre of the search space .

Although still the best algorithm averaged on the whole F + , it is of course quite bad on any classical benchmark set, which is always far smaller than F + , and when compared to more specic algorithms. However it nevertheless shows that for such algorithms having a bias in favour of the centre of the search space is not necessarily a weakness, on the contrary. It may explain for example why Particle Swarm Optimisation (PSO), which is indeed biased [START_REF] Monson | Exposing Origin-Seeking Bias in PSO[END_REF], is so robust. How important should be this bias has nevertheless still to be found.

Divide and conquer.

According to 4.2 there exists a best algorithm A on F + , and at least another one B that is strictly worse. Now let us consider the Nearer is worse subset F -. According to the NFLT A and B are equivalent on F. So B is necessarily better than A on F -. It implies that there exists a best algorithm on F -. In other words F can be partitioned into two classes, each one corresponding to a interval of the NisB truth value ν, and for each one there exists a best algorithm. Whether it is true or not for any interval, and, more important, if it is still possible to explicitly dene the corresponding best algorithm, is an interesting open question. Note that the answer is positive for some particular cases, for example for ν = 1.

Benchmarks.

For an algorithm that makes use of the NisB property, it may be a good idea to design a benchmark as diversied as possible from this point of view, i.e. whose NisB truth values cover a large interval. Indeed, when computing the NisB truth values for existing benchmarks it appears they not cover all the possible values.

In particular they are almost never negative.

Moreover for most of usual functions we can just estimate the NisB truth value

and not exactly compute it, as knowing the exact values would useful for a better classication of algorithms. Fortunately there is a simple way is to design on demande functions by starting from small discrete ones and by transforming them into piece-wise ones (see Annexe8.5).

Adaptive algorithms.

We are particularly interested here on iterative adaptive algorithms that can modify their search strategy according to what they learn about the tness function during the sampling process. Note that algorithms that perform only partial adaptations may fail badly, as proved in [START_REF] Darwen | Black magic: Interdependence prevents principled parameter setting[END_REF], so it would be better to choose a completely parameter-free method, like Tribes, a PSO variation [START_REF] Clerc | TRIBES -Un exemple d'optimisation par essaim particulaire sans paramètres de contrôle[END_REF][START_REF] Clerc | Particle Swarm Optimization[END_REF][START_REF] Godfrey | TRIBES application to the ow shop scheduling problem[END_REF].

The idea is the following: from time to time, or even at each time step, the algorithm computes the NisB truth value ν (f) of the function f , as it sees it thanks to the sampled points, and and it modies its search strategy according to this value. In Tribes, for example, each particle has to choose between three or four strategies, and the choice is depending one several criteria (status of the particle, status of the tribes it belongs to, etc.). So ν (f) could be another criterion.

Some strategies are better for exploration, some others better for exploitation.

Typically, a high ν (f) value should favours exploitation, and vice-versa. In other words an adaptive algorithm may perfectly switch from a nearer is better assumption to a nearer is worse one, and vice-versa. Note that this approach is already empirically used by some algorithms that try to take into account unsuccessful sampled positions either by direct computation or thanks to a repulsive force [START_REF] Jastrebski | Improving evolution strategies through active covariance matrix adaptation[END_REF][START_REF] Blackwell | Don't Push Me! Collision-Avoiding Swarms[END_REF].

Because of NFLT such an algorithm can not be good for all functions of F but it could be eective for a class of functions that contains some functions of F + and some functions of F -.

Generalisations

For simplicity we have assumed that both X and Y are nite. Extending our denitions to innite or unbounded ones is straightforward. Actually some formulae may even be simplied for, for example, the measure of an innite space is the same when you remove just two points.

6.1. Innite bounded search space.

Here innite means contains an innite number of points. A typical case is X = [x min , x max] D . Formulae 3.1 and 3.2 that dene N b,w , B w,b (f) and Ω are still valid. We do assume that the measures like |X| have a meaning. For example, with the above X we have |X| = |x max -x min | D . Then formulae 3.3 that dene ξ and ρ could easily be replaced by two integrals. However in order to avoid some innite quantities, it is better to directly compute the NisB truth value ν by the following formula:

ν (f) = Ω |N b,w B w,b | |N b,w | - |B w,b | |X|
Are the properties we have found still true? Probably yes, although of course it has to be proved. The reason is that what is important is the unimodality of the distribution of the solutions points, and it is only depending on the geometry of the search space, and of the denition of F + , which is still the same (set of functions f so that ν (f) > 0), no matter X and Y are nite or not, bounded or not. Let θ (x, r) = {z, z ∈ X, δ (x, z) < r} be the set of points in X that are also in the sphere of centre x and radius r, and G the gravity centre of X. Then, more precisely, this unimodality is probably true as soon as the following condition holds: Condition 6.1. For any pair of points (x, x), for any radius r, we have

δ (x, G) > δ (x , G) ⇒ |θ (x, r)| ≤ |θ (x , r)| ∃δ max , δ max > δ (x, G) > δ (x , G) ⇒ |θ (x, r)| < |θ (x , r)|
Roughly speaking, it means that a point near the bound has less neighbours than a point near the centre. In particular this condition is true for a bounded convex space. This generalisation is particularly interesting to design deceptive functions on a continuous search space (see Annexe 8.5): any algorithm that assumes that nearer is better is more or less true will be worse than Random Search on any function of F -.

Unbounded search space.

Some iterative optimisation algorithms are allowed to sample the denition space of the function outside an initially given search space X. It is typically the case for some PSO variations. However in such a case the sampled position is usually simply not evaluated. It means that the user is sure there is no solution outside X, or, at least, is not interested on any solution that could be outside X.

Then the above remark about Condition 6.1 is still valid, for anyway all points that are really taken into account are still inside X.

A more general formulation.

Finally a reasonable aim for a future work may be to prove the following. Conjecture 6.2. When taking into account only solutions points that are inside a convex space X, their distribution for functions in F + is unimodal, with its minimum on the bound. Let us dene a perfect random distribution f from X to Y as follows:

• f is surjective • the density probability of f is 1, i.e. for any u in Y , probability (f (x) < u) = u 8.1.2. Properties.

Let X be a subset of X, f min,X and f max,X the minimum and the maximum values of f on X . Then we have.

Fact 8.1. The expectation is given by (8.1)

X xf (x) dx = |X | f min,X + f max,X 2
where |X | is the measure of X consistent with the integration, i.e. |X | = X dx.

In particular the expectation of f is.

E (f) = 1 2
Fact 8.2. The probability density of f -1 is equal to 1.

In particular, it means that for any given a in [0, 1] the measure of the set of points x for which f (a) ≤ f (x)is given by:

|{x, f (a) < f (x)}| = 1 -f (a)
and similarly we have.

|{x, f (x) ≤ f (a)}| = f (a) For simplicity, we choose X = [0, 1], Y = [0, 1], but the nal result of this example is valid for any other intervals. For a given pair (x 1 , x 2) of elements of X, we dene.

X (x 1) = {x, x ∈, f (x) ≤ f (x 1)} X (x 2) = {x, x ∈, f (x) ≤ f (x 2)}
i.e. X (x i)is the set of points that are better than x i from a minimisation point of view. If we draw a point at random in X, according to an uniform distribution, the probability of improvement, relatively to f

(x i), is then |X (x i)| = f (x i)
. Now let us consider the following function g (x 1 , x 2), dened on X × X:

• if f (x 1) ≤ f (x 2), g (x 1 , x 2) = |X (x 2)| • if f (x 2) ≤ f (x 1), g (x 1 , x 2) = |X (x 1)|
In other words, for each pair of points, we consider the probability of improvement relatively to the worst one, if we draw at random a third point. We can compute the mean value (the expectation) of this probability, over all pairs. For symmetry reason we have.

           E (g) = 2 1 0 x 1 {x2,f (x1)≤f (x2)} f (x 2) x 2 dx 2 dx 1 = 2 1 0 x 1 (1 -f (x 1)) 1+f (x1) 2 dx 1 = 1 0 x 1 1 -f (x 1) 2 dx 1 = E 1 -f 2
We can directly compute the expectation of 1-f 2 by noting that probability 1 -

f 2 (x) < u = 1 -probability f (x) < √ 1 -u . So the density is 1/ 2 √ 1 -u . We have then.      E 1 -f 2 = 1 2 1 0 u √ 1-u du = -1 3 (u + 2) √ 1 -u 1 0 = 2 3 So, nally. (8.2)
E (g) = 2 3 0.667 8.1.4. Discrete nite case.

On a discrete nite space, formula 8.1 is not exactly valid, and gives just an estimation. Consequently, a formula like ?? is also just an estimation. In particular if the denition space is given by an interval (say still [0, 1]) Let us consider two functions dened on the same search space X = (1, 2, 3, 4)by.

f = (3, 4, 2, 1) g = (2, 10, 1, 0)
They have the same prole, and this can be formalised. Two functions f and g on X are equivalent if for any pair of points (x, x) of X × X we have f (x) < f (x) ⇔ g (x) < g (x). In particular, if f (x) = f (x) we also have g (x) = g (x).

We are mainly interested here on optimisation algorithms that make use only of relationships between function values in order to choose the next point to draw.

Typically something like if f (x) < f (x) then draw a new point according to Rule 1, where Rule 1 is depending only on already drawn positions, and not on some values of the function. A classical example is Particle Swarm Optimisation. Running such an algorithm on two equivalent functions produces two identical sequences of positions (assuming the same pseudo-random number generator is used). Now, instead of considering all possible functions on X, we can consider just one representative for each equivalence class. From now on, we will work on such a set of functions, and we call it F. When speaking of a function, we in fact speak of any representative of an equivalence class.

Equivalence class coding.

Let us assign a rank to each position:

X = (x 1 , ..., x i , ...x m)
and let us consider a function f on X. To each pair (x i , x j) where i > j we assign the number j + (i -1)m. There are K = m (m -1) /2 such pairs. The prole of the function is dened by a K-vector r as follows.

• pairs are sorted by lexicographic order • for the pair(x i , x j) of rank k, we dene

   r (k) = 0 if f (x i) = f (x j) = 1 if f (x i) < f (x j) = 2 if f (x i) > f (x j)
Then the prole r can be summarised by an unique number Π:

Π (f) = K k=1 r (k) 3 k-1
Note that a lot of codes are not used, for the dominance relations like f (x i) < f (x j) are not independent. So the number of equivalence classes is not 3 K , but far smaller, depending on the dimensionnality of the search space, on its size, and on the size of the value space.

L p (x, x) = i |x i -x i | p 1/p
When p tends to innity, we obtain the Chebyshev (max) distance dened in 3.5. L 1 is the taxicab or Manhattan distance, and L 2 the classical Euclidean one. In any case there is a p value (not necessary an integer, but greater than 1) for which |F + | is maximum, say p M (D), and one for which it is minimum, say p m (D). In Table 7 we can see that for Example 3.5. Now let us suppose we have an algorithm that precisely makes use of the NisB property, by using distance L p . So its most robust variation, i.e. the one which is valid for the highest number of functions, is for p = p M (D), and its most specic one for p = p m (D). As discrete functions are easier to study from a NisB point of view, some algorithms like PSO do prefer moving in a continuous search space. We are interesting here on how to design a benchmark of functions on such a space. Actually there is a quite easy way: piece-wise functions. Let us give an example.

We want to design a deceptive continuous function. We can start from any discrete one that belongs to F -, say f = (0, 3, 2, 4, 2) on X = (1, 2, 3, 4, 5). Here we have ν (f) = -0.17. Then we can derive a piece-wise function g on say [0, 5[by:

x ∈ [i -1, i[⇒ g (x) = f (i)

where i is in X. On this function the probability of success of Random Search after at most n attempts is given by p (n) = 1 -(1 -1/5) n . We can compare with the result obtained by a classical PSO with say ve particles (swarm size S = 5), as shown on Table 9. Of course when the number of attempts is precisely equal to the number of particles, PSO is equivalent to R because only the random initialisation phase is performed.

Note that the function obtained by this method may be not deceptive anymore when the number of attempts (i.e. sampled points) increases. Why? Because in any case, for a function f on a continuous search space X, a conjecture is that ν (f) ≥ 0 (see Open question 8.7.1 below). It would mean that it can not be intrinsically deceptive.

However, the way PSO sees it can be. This is because the algorithm samples X, and moreover keeps only at most 2S points. Therefore, just after initialisation, it may easily tend to follow a wrong way, i.e. tend to sample some points that do not really contribute to increase the ν value, then it still tends to follow the wrong way, i.e. we are considering not anymore the positions that are better than x w but better than x b , i.e. better than the best of the pair.

However, contrarily to the intuition, the corresponding class of functions, that we can denote F +b is not included into F + . Their intersection is not empty, that is all. And also, even an obviously good function like [START_REF] Blackwell | Don't Push Me! Collision-Avoiding Swarms[END_REF][START_REF] Clerc | TRIBES -Un exemple d'optimisation par essaim particulaire sans paramètres de contrôle[END_REF][START_REF] Clerc | Particle Swarm Optimization[END_REF][START_REF] Darwen | Black magic: Interdependence prevents principled parameter setting[END_REF], which is in F + , is not in F +b . That is why studying F + seems more interesting. 8.7. Open Questions. For|X | = 5, it gives -1/3. Note that if formula 8.4 is true, it has an important consequence: although always negative, ν min could be as near to zero as we want, just by increasing |X|. It would ever mean that if |X| is intinite, then F -is empty.

An interesting question. 8.7.2. Extending a non-NisB function.

Let f be a non-NisB function (i.e. whose NisB truth value is negative) dened on X, and f a non-NisB function dened on X . We dene a new function g on X X by.

g

(x) = f (x) if x ∈ X = f (x) if x ∈ X
Is g also a non-NisB function? Note that the contrary is obviously wrong, i.e. if f and f are two NisB functions, then g is not always also a NisB one.

 Better Truth Value 3.1. Denition.

3. 4 .

 4 Characteristic distribution. 3.4.1. Denition and examples.

Conjecture 3 . 2 .

 32 The characteristic distribution of the F + class is unimodal (possibly with a plateau) with the minimum on the bound Note that if the search space is symmetrical, and has centre, like in the examples below, then the characteristic distribution is obviously also symmetrical around this centre. This conjecture is well supported by experiments. Let us give some examples on dimension 1 and 2.

Figure 8 . 1 .

 81 Figure 8.1. The 541 (ξ (f) , ρ (f)) points of the X5Y5 example

Table 9 .Figure 8 . 2 .

 982 Figure 8.2.NisB truth value for the functions (0,3,2,4,2), (0,0,3,3,2,2,4,4,2,2) etc. First negative, then positive

8. 7 . 1 .

 71 Perfect deceptive function.What is the smallest possible value for ν (f)? Intuitively, it seems it should be obtained with the perfect random landscape. If it is true, we have a quite simple

Table 2 .

 2 Nearer is Better truth value ν (f) for some functions, and how much a pure NisB algorithm is better than Random Search Of course on dimension one it is equal to the Euclidean distance. The table shows that F -is not empty: we can have a nearer is worse eect, i.e. a deceptive function (actually as F + is not empty this is anyway a consequence of the NFLT).

	10000									
	9000									
	8000									
	7000									
	6000									
	5000									
	4000									
	3000									
	2000									
	1000									
	0									
	-100	-80	-60	-40	-20	0	20	40	60	80
	5, 41									0.91	0.23

Table 3 .

 3 Distribution of solution positions for Example 3.3

	4

 we have seen any run of a non repeating algorithm can be identied to a permutation of the elements of X , say x α1 , x α2 , ..., x α |X| . The algorithm is called permutational if this permutation is always the same, for any function and for any run (no randomness, in particular). For example, on X = (1, 2, 3, 4) the algorithm A ≡ (4, 3, 2, 1) is draw x 4 then x 3 then x 2 then x 1 .

	the best algorithm, this method is impracticable as usually we do not know the
	characteristic distribution. However, under Conjecture 3.2 this method can be
	replaced by the following one for a symmetric search space of gravity centre G:
	Algorithm 4.3. R ++ -Finding the best permutation
	At each step, choose the position (not already chosen) which is the nearest one

4.1.1. Denition.

As 4.1.2. Performance conjectures.

On F + we evaluate the global performance for each permutational algorithm, and call r b (F +) the best one (the minimum one). We suggest the following property is true.

Conjecture 4.1. On F + there exists at least one permutational algorithm A so that r (F + , A) > r b (F +) It means that not all permutational algorithms are equivalent: at least one is strictly worse than the best one. For Example 3.3, we have |F| = 256, |F + | = 40, and there are 4! = 24 permutational algorithms. Their best global performance on F + is r b (F +) = 1.85 (by running for example A ≡ (2, 3, 1, 4)). Not surprisingly, this is smaller (better) than that on the whole F (global performance 2.5). However there are several permutational algorithms with a strictly worse performance than the best one. For example with A ≡ (1, 2, 3, 4) we have r (F + , A) = 2.1. The conjecture says that this is true for any F. Note that it is weaker than (and implied by) Conjecture 3.2 so we may quite safely suggest a more interesting one. Conjecture 4.2. On F + there exists no better algorithm than the best permutational one This conjecture says nothing about how to nd a best algorithm without having to try all of the permutational ones. However under Conjecture 3.2 it is indeed possible.

4.2. A candidate.

We explain here how to design the best permutational algorithm (or more precisely one of the possible ones for there usually are several equivalent ones). The idea is very simple: we build a permutation by choosing at each step the most probable solution position not already chosen. Although it obviously nally indeed gives to G (the centre of the search space). In case of equivalence, choose at random 4.2.1. Examples. For Example 3.3 this method builds the following possible permutations: (2, 3, 1, 4), (2, 3, 4, 1), (3, 2, 1, 4),

[START_REF] Clerc | Particle Swarm Optimization[END_REF][START_REF] Clerc | TRIBES -Un exemple d'optimisation par essaim particulaire sans paramètres de contrôle[END_REF][START_REF] Darwen | Black magic: Interdependence prevents principled parameter setting[END_REF][START_REF] Blackwell | Don't Push Me! Collision-Avoiding Swarms[END_REF]

All the corresponding permutational algorithms have a global performance on F + equal to 1.85, the best possible one.

 7. ConclusionFor optimisation algorithms that use the Nearer is Better property that is dened here, i.e. for most of them, there is an innite class of problems on which there are algorithms better than Random Search, and therefore it is worth looking for the best one. We suggest a candidate. Of course, being the best relatively to the whole Nearer is Better class usually means being quite bad on a specic sub-class when compared to classical optimisation algorithms. In particular all commonly used benchmarks are such sub-classes. However preliminary results seem to show that each of these benchmark can be included in a sub-class that is characterised by a positive threshold for the Nearer is Better truth value. It may be a hint to explicitly design the best algorithm for each benchmark set. Or, conversely, the NisB truth value may be a tool to design benchmarks that contains functions that are deceptive for most of optimisation algorithms.

	8. Annexe
	8.1. Perfect Random Landscape.

8.1.1. Denition.

Table 4 .

 4 Mean probability of improvement relatively to f (x w), knowing that f (x w) ≥ f (x b), with (x b , x w)drawn at random, for non repeating random search on [0, 1], for a perfect random landscape and for dierent granularities ∆x

	0.5	1
	0.4	0.8
	0.3	0.675
	0.2	0.673
	0.1	0.634
	0.05	0.680
	0.01	0.669

8.1.3. Example. ∆x E (g)

Table 5 .

 5 8.2.3. An example of classes of a Nearer is Better subset. They can be easily generated by a program and we have numbered them from F1 to F3125. Note that, by denition, the equivalence classes are not depending on |Y | as soon as it is at least equal to |X|. Of course, however, the number of representatives in each class is depending on |Y |. Here the number of the classes is 541. In Table5we present some of them, along with the ν and ρ values. Assigning these values to a whole class is possible thanks to the consistency theorem 8.3 (see below). On gure 8.1 we can also see the 541 (ξ (f) , ρ (f)) points. Such a gure ξ (f) ρ (f) Some examples of equivalence classes for the X5Y5 example

	Let us consider the set of all possible unidimensional functions on X with values in
	Y , with.
	X = (1, 2, 3, 4, 5)
	Y = {1, 2, 3, 4, 5}
	We can call in short this example X5Y5. There are |Y | |X| = 3125 such func-
	tions.

Total ξ (f) > ρ (f) 35% Total ξ (f) ≤ ρ (f) 65%

Table 7 .

 7 Actually this is almost obvious. To evaluate the NisB truth value ξ, we need to build some N b,w and B w,b sets, as dened by 3.1. Let us consider two equivalent Nearer is Better class size for dierent kinds of distance, have seen that the Nearer is Better class F + is depending of the kind of distance (at least as soon as dimension is greater than 1). Let us consider the general formula of the Minkowsky distance of order p (p-norm distance):

	p	|F + |
	1 20788
	1.5	21772
	2 21772
	2.5	21772
	10	21772
	∞ 18620
	and for Example 3.5	
	8.3. About distances.	

We

Table 8 .

 8 as soon as |Y | is greater than |X|.Then it is possible to compute the F + size for any Y by using the following formula:Let us give immediately an example for |X| = 5 and dimension 1 (table8). Remember that the a (|X| , |Y |) values are for the moment known just experimentally. For |Y | = 2 we have 5 functions that are in F + , like say (1, 1, 1, 2, 2) . For |Y | = 3, we have C 2 3 = 3 possibilities to make use of exactly two values. Each of them generates then 5 functions for, because of equivalence, if a function like (1, 1, 1, 2, 2) is in F + , then (1, 1, 1, 3, 3)and (2, 2, 2, 3, 3)also are in F + . By adding these 15 functions to the 53 ones (i.e. a (5, 3) C 3 3 = a (5, 3) in formula 8.3), we nd that the size of F + is 68. Same reasoning for the next lines of the table. How to compute |F + | when knowing a (|X| , |Y |). The limit rate is here 40/5! = 0.33 This value can be seen as an estimation of the rate when |Y | = |X|. As a (|X| , |Y |) is actually also depending on the dimension D of the search space X, and on the kind of distance L that is used, we can name it a * (|X| , D, L). It may be worth re-explaining its meaning. When the search space and the function value space have the same size m, this is the proportion of bijective functions that also have the NisB property. In other words, if we could say for x% of the bijective functions the NisB truth value is positive, then we could estimate on the whole, the size of F + is x |X|

			min(|X|,|Y |)	
	(8.3)	F + =	a (|X| , j) C j |Y |
			j=2	
		lim	|F + | |F| |Y |/|X|→∞	=	a (|X| , |X|) |X|!

8.4. F + size.

Unfortunately we do not have yet a formula that would directly give the size of the subset F + . However there is already possible to say a few things. For a given |X| let us suppose that for |Y | = 2, |Y | = 3, ..., |Y | = |X|, we do know the number of functions in F + that make use of exactly |Y | values, and let us call it a (|X| , |Y |). Note that by denition a (|X| , j) = 0 What is interesting is the rate |F + | / |F|, for as soon as |Y | is similar to |X|, or greater, it depends almost only on a (|X| , |X|). It is easy to derive its limit value from formula 8.3. |X| . 8.5. From discrete to continuous search space.

Prole

Class size Class codeΠ

Representative n (1) n (2) n (3) n (4)

, the set is the same when considering f or g. Same reasoning, even simpler, for ρ.

Theorem 8.4. For a given prole (i.e. a given equivalence class) there is just one possible set of positions of the minima Or, in other words, no matter which representative is chosen in an equivalence class, the positions of the minima are always the same. Again, it is almost obvious. Let us consider a given function f . Let X min be the set of positions of the minima of this function. It means that for all pairs of points (x i , x j) of X min the relationship is f (x i) = f (x j), and for all pairs of points (x i , x j)with x i in X -X min and x j in X min we have f (x i) > f (x j). For an equivalent function g the relationships are exactly the same, and it proves that any minimum of f is a minimum of g. The same reasoning shows that any minimum of g is a minimum of f . Thanks to these consistency theorems, it is easier to compute the characteristic distribution. Let us consider again Example 3.3, with X = (1, 2, 3, 4), and Y = (1, 2, 3, 4). There are 75 equivalence classes, and 12 of them have the NisB property.

The list is given in Table 6 . Now to compute the characteristic distribution, we can do it by considering just one representative by class, i.e. 12 functions, and by weighting each solution position by the corresponding class size. Of course we have rst to compute the classes, but it is worth doing it, for in the whole process the most time consuming operation is to compute the NisB truth value for each function.

From Table 3, which shows the number of solution points on each position, we can derive the distribution D + = (0.33, 0.42, 0.42, 0.33).