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INTRODUCTION 

In the last two decades, problems related to the seabed subsidence in the Ekofisk oilfield in 

the North Sea (about 10 m, Nagel, 2001) required a substantial revision in the production 

planning, as well as an important structural rehabilitation of the offshore platforms 

(Hermansen et al., 2000). Although it is now widely accepted that the main cause of the 

seabed settlement is the compaction of the 150 m thick layer of reservoir chalk (n = 30-48%) 

located at a 3000 m depth below seafloor, the origin of the compaction is still an open issue. 

Early studies that related the compaction to increased effective stresses due to reservoir 

depletion (Johnson & Rhett, 1986; Jones & Leddra, 1989; Leddra et al., 1993) were soon 

questioned (Jones & Mathiesen, 1993). The depletion phase (1971-1986) was followed in 

1987 by an enhanced oil recovery procedure in which cold seawater was injected 

(waterflooding). Although pressure depletion was stalled, resulting in a constant effective 

stress, seabed subsidence continued. 

Since the early eighties, the effect of the nature of the pore fluids, of their mutual interaction 

and of their interaction with the rock skeleton were examined to better interpret the origin of 

compaction (Newman, 1983; Monjoie et al., 1985; Piau & Maury, 1994; Schroeder et al., 

1998; Risnes et al., 2003). It was proposed to adopt a coupled hydro-mechanical framework 

taken from the mechanics of unsaturated soils (containing water and air as a non wetting 

fluid) and to adapt it to reservoir chalks (containing water and oil as a non wetting fluid) 

(Delage et al., 1996; Collin et al., 2002; De Gennaro et al., 2003). In this framework, it was 

demonstrated that the compaction induced by waterflooding bore strong similarities with the 

collapse of unsaturated soils when wetted under a constant load. In both cases, water was 
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 3 

considered to located in menisci in the smaller pores close to the inter-grain contacts, 

remaining the largest available porosity  to the non wetting fluid (air or oil). 

In this framework, the oil-water suction so was defined by so = uo – uw (uo and uw being the oil 

and water pressures respectively). As in unsaturated soils (Coleman, 1962; Fredlund & 

Morgenstern, 1977), two independent stress variables were considered, namely the oil-water 

suction so  and the mean net stress p – uo. An extended experimental program including 

suction controlled oedometric and triaxial tests was developed from 1997 to 2003 within the 

framework of two European projects (Pasachalk1, 2001; Pasachalk2, 2004). Suction control 

was achieved by using both the oil overpressure (or axis translation) technique (Richards, 

1941; Hilf, 1956) and the osmotic technique (Kassiff & Benshalom, 1971; Delage et al., 

1992). Among other things, the effects of physico-chemical chalk-water interactions as a 

complement of capillarity were evidenced. Finally, a constitutive "Pasachalk" model, derived 

from the Barcelona Basic Model (Alonso et al. 1990) with time effects added, was adapted to 

reservoir chalks and successfully used in reservoir simulations (Charlier et al., 2002; Collin et 

al., 2002). 

 In this note, some results of oedometer tests carried out on chalk samples under 

constant (oil-water) suction are presented. Particular emphasis is given to the effect of suction 

on the compression behaviour. Collapse due to waterflooding (i.e. decreasing the oil-water 

suction by replacing oil by water) under a constant load is also presented and discussed. 

 

TESTED MATERIAL 

Blocks of an outcrop chalk from Belgium called "Lixhe chalk", corresponding to the same 

geological layer than the Ekofisk reservoir chalk (Hod formation of the Upper Campanian 

level, Cretaceous period) were used in this study (Schroeder, 2002).  
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 4 

SEM observation highlighted remains of coccolithes (skeletal debris of unicellular algae) 

which are present in small plates of about 1 to 10 microns dimensions (Fig. 1). Between the 

calcite grains, the voids (dimensions 1 to 5 microns) represent about half of the total volume, 

with an average porosity of about 40 %. This value was corroborated by a series of mercury 

intrusion porosimetry (MIP) tests that characterised a quite well defined population of large 

pores with an average entrance radius of about 0.37 µm (Fig. 2). In the natural deposit, voids 

are filled with water in chemical equilibrium with the chalk, saturated in CaCO3. In the oil 

reservoir, chalk was initially filled by water a long time ago (35 millions years for Cretaceous 

chalks) and oil has afterwards infiltrated part of the pore space, expelling part of the water. 

Constant head permeability measurements (Pasachalk1, 2001) gave a value of intrinsic 

permeability K of about 1x10-14 m2 (corresponding to water and oil permeability respectively 

equal to kwater ≅ 1x10-8 ms-1, koil ≅ 7x10-9 ms-1).  

A non polar and non toxic immiscible organic liquid called Soltrol 170® (C12-C14 isoalkanes, 

Phillips Petroleum Co.) was used in this study to simulate oil. Soltrol 170® has also been 

selected for its very low solubility in water (<< 1mg/l at 20°C) and very low volatility in air 

(<< 4x10-2 mm3/h at 20°C). Soltrol 170® has a dynamic viscosity ηo = 2.028 cP and a density 

ρo = 0.78 Mg m-3. 

 

EXPERIMENTAL INVESTIGATION 

The pressure discontinuity (uo – uw) through the interface separating the two immiscible fluids 

(oil and water) gives rise to the capillary pressure (Laplace, 1806; in Morrow, 1970), that 

depends on the fluid interfacial tension and on the pore geometry. In clayey soils, additional 

physico-chemical fluid-mineral interactions exist. Both capillary and physico-chemical 

interactions are included in the definition of a potential energy called suction (Statement of 

the advisory panel 1965). This concept is considered to be valid in multiphase chalk. 
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 5 

The control of suction was accomplished using the osmotic technique (Delage et al., 1992; 

Dineen & Burland, 1995; Cui & Delage, 1996). This technique consists in putting the sample 

in contact with a regenerated cellulose semi-permeable membrane behind which a solution of 

large molecules of polyethylene glycol (PEG) is circulated. Since the large PEG molecules 

cannot go through the semi-permeable membrane, an osmotic suction that increases with the 

PEG concentration is imposed on the sample through the membrane. Note that direct suction 

measurements carried out by Dineen & Burland (1995) using the IC suction sensor (Ridley & 

Burland, 1993) on samples in which the suction was osmotically imposed showed some 

deviations from the standard calibration of Williams & Shaykewich (1969). 

Some preliminary tests showed an excellent behaviour of the semi-permeable membrane 

when put in contact with Soltrol, with no apparent chemical reaction, no membrane damage 

and no resulting PEG leaks through the membrane. This was confirmed by careful 

examination made on the sample at the end of the tests, where no evidence of PEG infiltration 

(PEG infiltration in samples due to membrane breakdown are clearly apparent) was observed. 

The validity of the osmotic technique was particularly interesting in the case of oedometer 

testing, where the use of the osmotic technique is easier than that of the overpressure 

technique. Due to the difficulty of a simultaneous direct measurement of suction, the 

Williams & Shaykewich (1969) calibration curve was used. This will probably result in an 

uncertainty at high suction levels, estimated at a maximum value of about 200 kPa when 

considering the Dineen & Burland (1995) measurements for suction values ranging between 0 

MPa and 1.5 MPa. However, as will seen further on, the range of this uncertainty will not 

significantly affect the conclusions regarding suction effects on the compression behaviour of 

the chalk. 

 

 

ha
l-0

01
37

26
4,

 v
er

si
on

 1
 - 

19
 M

ar
 2

00
7



 6 

Sample preparation 

Chalk samples were cored from a block of chalk and then shaped on a lathe at the required 

size. Samples of about 50 mm diameter and 15 mm high were used for the oedometer tests 

(Table 1). For the retention tests, samples had a diameter of about 20 mm and their height 

ranged between 20 to 25 mm (De Gennaro et al., 2003). All the samples were oven dried at 

105°C, put under vacuum (approximately -94 kPa for 24 hours) and oil saturated under 

vacuum. The oil saturated state is to be related to a “dry” state of the chalk (with no water 

inside) with very high values of suction so. 

 Subsequent wetting down to controlled values of suction was made using the osmotic 

technique. Samples full of oil were inserted in a cylinder-shaped semi permeable membrane 

that was subsequently plunged in a PEG solution at the desired concentration (see Cui & 

Delage, 1996). When doing so, a good contact between the membrane and the sample should 

be ensured. Due to the higher surface tension of water as compared to that of oil, water 

coming through the membrane progressively infiltrated the sample, giving rise to oil 

expulsion out of the sample. Visual observation showed that the expelled oil remained inside 

the membrane. This technique of imposing a suction when no stress application is required 

appeared quite convenient and inexpensive to treat many samples at the same time. Note that 

the infiltration of water in an oil saturated chalk is comparable to the waterflooding carried 

out in the oil reservoir chalk to enhance oil recovery. 

 

Retention properties of Lixhe chalk 

The wetting path of the retention curve of the Lixhe chalk containing oil and water is 

presented in Fig. 3 in a Log so : Srw diagram, where Srw is the degree of saturation in water. At 

high suctions (so higher than 0.5 MPa), large changes in suction induce small changes in 

expelled oil volume, whereas same suction changes at lower suction involves significantly 

ha
l-0

01
37

26
4,

 v
er

si
on

 1
 - 

19
 M

ar
 2

00
7



 7 

larger expelled volume, leading to a residual degree of saturation in water of 70% (average) at 

zero suction.  

This high residual degree of saturation in water shows the high water wettability of 

this chalk. Similar data are used in the Amott quantification of water wettability of reservoir 

rocks (Amott, 1959). Other North Sea chalks, like for instance in the Valhall oilfield 

(Andersen et al. 1992), present a hydrophobic behaviour. The origin of such a behaviour can 

be either adsorption of organic molecules along the coccolithe surfaces, due to the contact that 

occurred between oil and chalk minerals during a very long period of time of the reservoir 

history at elevated temperature (between 130 °C and 150 °C) and pore pressure (44.5 MPa at 

2400 m depth), or surface alteration due to oil-based drilling mud. It is most probable that the 

degree of wettability or non wettability to water of chalks is of utmost importance in the 

coupled hydro-mechanic behaviour of chalks. 

 

Suction controlled oedometer 

The samples were tested in the osmotic oedometer cell presented in Fig. 4. In this device, the 

bottom of the sample is in contact with a semi-permeable membrane below which a solution 

of polyethylene glycol (PEG) is circulated (Kassiff & Benshalom, 1971; Delage et al., 1992). 

Water exchanges through the membrane are monitored through visual observation of the 

water level in the graduated tube placed in the bottle that contains the PEG solution. Water 

exchanges were in general very slow and it was observed that a period of time of about 15 

days was necessary to reach equilibrium after imposing the desired suction. 

In order to reach the desired net vertical stress, the sample was loaded using a high 

pressure oedometer frame with a double lever arm that allowed a maximum vertical stress of 

approximately 60 MPa to be applied to a 50 mm diameter sample (Marcial et al., 2002). A 
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 8 

standard step loading procedure was adopted. At each stage, the stabilisation of the PEG level 

in the tube was checked. 

 

TEST RESULTS AND DISCUSSION 

Figure 5 shows the results of 4 compression tests performed on chalk samples submitted to 

various oil-water suctions, namely: 0.1, 0.4 MPa (Fig. 5(a)) and 0.8 MPa and dry sample (Fig. 

5(b)). Due to the overall importance of the initial void ratio on the compression behaviour, 

compression curves have been grouped according to their initial void ratio to facilitate 

comparisons. Data of samples with higher initial void ratios (0.715 at 0.1 MPa and 0.702 at 

0.4 MPa) are presented in Fig. 5(a) and that with lower void ratios (0.665 at 0.8 MPa and 

0.649 in dry state) in Fig. 5(b). All samples were loaded up to 10 MPa, submitted to an 

unloading-reloading cycle, and subsequently loaded up to a maximum vertical stress which 

was selected depending on the suction applied (20 MPa for the sample at so = 0.1 MPa, 30 

MPa for the sample at so = 0.4 MPa, 40MPa for the sample at so = 0.8 MPa and for the dry 

sample). The corresponding void ratio was calculated from the volumetric strain obtained 

after 24 hours of applied constant loading. 

 The initial water saturation degrees (Srw) of the samples can reasonably be estimated 

from the retention curve of Fig. 3, giving respectively Srw  = 50%, 20% and 10%, for the 

samples at 0.1, 0.4 and 0.8 MPa respectively.  

It can be observed in Fig. 5 that the yield stress (i.e. the maximum past consolidation 

stress) increases with increasing suction, i.e. with lower degrees of saturation in water (Srw). 

These results are in accordance with well established results showing a higher yield stress 

observed on chalk full of oil as compared to chalk full of water (Schroeder et al., 1998; 

Delage et al., 1996). They are also compatible with the water weakening effect. However, the 

results of Fig. 5 complete these observations by also accounting for the gradual effect of 
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 9 

partial saturation in both fluids under a controlled suction. In this regard, the change in yield 

stress with suction is compatible with the conclusions drawn on unsaturated soils by Alonso et 

al. (1987 and 1990) and that founded the notion of a LC (Loading Collapse) curve. Note that, 

the results of the four tests presented here cannot be plotted together to determine a LC curve 

because of the effects of the change in void ratios, and increased density having also a 

significant effect on the yield stress. However, unlike in unsaturated soils, the slope in the 

plastic zone does not appear to be suction dependent. Conversely, like in unsaturated soils, the 

elastic response investigated by the unloading-reloading sequences, does not show any 

significant suction effect. 

The collapse phenomenon of an oil saturated chalk sample due to waterflooding has 

been investigated in the framework of unsaturated soil mechanics by infiltration of water 

under a vertical load of 10 MPa, as shown in Fig. 6. In this test, the initial (theoretically) 

infinite oil-water suction was reduced to zero. In the absence of an available water saturated 

compression test at the same initial void ratio, a test at low suction (0.1 MPa) has been plotted 

together with the collapse test. As mentioned earlier, the initial degree of water saturation of 

this sample is about 5%, as compared to the average value of 70% observed on samples 

saturated under a zero suction (see Fig. 3). 

Water was infiltrated using the same system that allowed to circulate PEG solutions 

during suction controlled tests (Fig. 4). Thus, the circulation of pure water at the bottom of the 

chalk sample was ensured by the peristaltic pump shown in Fig. 4. However, with respect to 

the apparatus layout shown in the same figure, neither PEG solution nor cellulotic semi-

permeable membrane were necessary. The final point in Fig. 6 (point B) has been obtained 

after one week of continuous water circulation, and defines a total decrease of 0.025 in void 

ratio (path AB). This variation of the void ratio corresponds to a compressive volumetric 

strain of about 1.5%. Some creep may also have affected this volume decrease (Ruddy et al., 
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 10 

1989; De Gennaro et al., 2003). It is worth noting that the induced volumetric strain due to 

wetting results from a natural infiltration process, developing from the bottom to the top of 

the sample. Unlike in waterflooding, during which the soft rock is soaked by water injection 

under pressure and suction may attain negative values (i.e. uw > uo , forced imbibition) and the 

residual oil saturation, infiltration requires much more time to achieve the water saturation 

degree corresponding to the complete suction release down to zero (i.e. Srw of about 70%). 

Consequently, it is believed that higher volumetric strain would have been induced if water 

was injected at constant pressure. Nevertheless, the collapse observed in Fig. 6 is significant 

and comparable to earlier data of Newman (1983) on chalk samples from Cora, Dan and 

Gorm North Sea oilfields. The comparison with the 0.1 MPa compression curve shows that 

the point B is not located on or below the 0.1 MPa compression curve, as could have been 

expected referring to well established results in unsaturated soils as shown through the double 

oedometer approach of Jennings & Knight (1957) and the state surface of Matyas & 

Radhakrishna (1968). This difference is, however, often observed in natural soils and is not 

surprising in this natural chalk.  

In unsaturated soils, collapse is interpreted as a breakdown of an open porous 

metastable granular structure whose stability was ensured in the unsaturated state by capillary 

menisci at inter-granular contacts. Here, some questions arise due to the initial dry state of the 

chalk before oil saturation and to the existence of capillary menisci in such conditions. It 

seems more probable that the strongest inter-granular links existing in the oil saturated sample 

(which, if not capillary, have a significant physico-chemical component due to the high 

reactivity of carbonate) are progressively weakened by the infiltration of water through the 

smallest pores (i.e. at the inter-grain contacts) giving rise to collapse. 
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CONCLUSIONS 

An interpretation of the collapse mechanism induced by waterflooding in chalk reservoir 

rocks has been proposed in this note, based on the use of a framework taken from the 

mechanics of unsaturated soils. The relevant developments allowing for chalk mechanical 

testing under oil-water suction control have been described. 

 The osmotic technique has been used to control oil-water suction during retention tests 

following a wetting path. Its reliability in controlling suction in chalk has been verified. A 

series of suction controlled tests in the osmotic oedometer cell, performed on chalk samples 

having different relative saturation in oil and water, provided information on the mechanical 

behaviour of multiphase chalk under Ko conditions and controlled suction. Due to the 

presence of two immiscible pore fluids (oil and water) of different surface tension properties, 

the volume change behaviour of oil reservoir chalk appears to present various similarities 

with that of unsaturated soils. Experimental results highlight the influence of oil-water suction 

on the mechanical response of the material. 

As in unsaturated soils, the elastic behaviour of chalk is not affected by suction. 

Conversely, increasing suction induce an increase of the vertical stress at yielding. Suction 

decrease has been recognised to play a major role in interpreting the collapse due to wetting 

under constant load. This situation is comparable to that encountered in oilfields when 

waterflooding is used to enhance oil production. Water weakening effects and chalk 

compaction (collapse) seem likely to occur through the loss of strength of the inter-granular 

links existing in the oil saturated sample. The nature of these links includes both capillary and 

physico-chemical fluids-chalk interactions, and is well represented by the oil-water suction. 

On the other hand, some differences can be mentioned in comparison with unsaturated 

soil behaviour, namely: (i) the lack of dependence of the slope of the virgin compressibility 
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 12 

curve of the chalk on the suction values and (ii) the stress independence of the collapse 

phenomenon. 

Time-dependent behaviour of oil reservoir chalks, including the analysis and 

elucidation of suction effects on creep, are currently the object of further research in this area. 
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Table 1. Physical properties of chalk samples (oedometric tests) 

Sample D (mm) H (mm) Ws (g) Wsat (g) Srw (%) eo
(1) so (MPa) 

1 49.89 17.11 52.41 63.26 98.6 0.704 Oil sat. 
2 49.84 13.64 43.11 - - 0.649 Dry 
3 49.91 13.46 42.23 50.47 98.3 0.665 0.8 
4 49.84 14.19 43.43 52.28 97.4 0.702 0.4 
5 49.47 12.51 37.43 45.31 98.7 0.715 0.1 
(1) calculated with Gs = 2.71 
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 (a)     (b) 

Figure 1 : SEM pictures of Lixhe chalk at various magnifications : (a) 10µm, (b) 1 µm 

 

 

 

 

Figure 2 : Pore size distribution curve of Lixhe chalk 
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Figure 3 : Retention curve (wetting path) of Lixhe chalk 

 

 

 

Figure 4 : Suction controlled oedometer 
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Figure 5 : Suction controlled oedometer tests on Lixhe chalk : (a) eo ≅ 0.7, (b) eo ≅ 0.65 
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Figure 6 : Wetting induced collapse of oil saturated Lixhe chalk sample 
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