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In this paper, we consider the analogous of the obtacle problem in H 1 0 (Ω), on the space W 1,p 0 (Ω). We prove an existence and uniqueness of the result. In a second time, we define the optimal control problem associated. The results, here enclosed, generalize the one obtained by D.R. Adams, S. Lenhard in [1], [2] in the case p = 2.

Introduction

Let Ω be a bounded domain in R N , N ≥ 2, whose boundary is C 1 piecewise. For p > 1 and for ψ given in W 1,p 0 (Ω), define K(ψ) = {v ∈ W 1,p 0 (Ω), v ≥ ψ a.e. in Ω}. It is clear that K(ψ) is a convex and weakly closed set in L p (Ω). Let p ′ be the conjugate of p, and f ∈ L p ′ (Ω). We consider the following variational inequality called the obstacle problem:

   u ∈ K(ψ), Ω σ(u) • ∇(v -u) dx ≥ Ω f (v -u) dx, ∀v ∈ K(ψ), (1.1) 
where σ(u) = |∇u| p-2 ∇u. We shall say that ψ is the obstacle and f is the source term.

We begin to prove existence and uniqueness of a solution u to (1.1), using variational formulation of the obstacle problem on the set K(ψ). We shall then denote u by: u = T f (ψ). Secondly, we characterize T f (ψ) as the lowest f -superharmonic function greater than ψ.

2 Existence and uniqueness of the solution Proposition 1. A function u is a solution to the problem (1.1) if and only if u satisfies the following:

       u ∈ K(ψ), -∆ p u ≥ f, a.e. in Ω, Ω σ(u) • ∇(ψ -u) dx = Ω f (ψ -u) dx.
(2.1)

Proof of Proposition 1. Suppose that u satisfies (1.1). Then taking v = u + ϕ ∈ K(ψ) for ϕ ∈ D(Ω), ϕ ≥ 0, one gets that

-∆ p u ≥ f in Ω. Moreover, For v = ψ and v = 2u -ψ, one gets that Ω σ(u) • ∇(ψ -u) dx = Ω f (ψ -u) dx, hence u satisfies (2.1). Conversely, let u ∈ K(ψ) such that -∆ p u ≥ f , let v be in K(ψ) and ϕ n ∈ D(Ω), ϕ n ≥ 0 such that ϕ n → v -ψ in W 1,p 0 (Ω). Then one gets Ω σ(u) • ∇(v -ψ) = lim n→∞ Ω σ(u) • ∇ϕ n = lim n→∞ Ω -∆ p u ϕ n ≥ lim n→∞ Ω f ϕ n = Ω f (v -ψ), ∀ v ∈ K(ψ).
Using the last equality of (2.1), one gets that

Ω σ(u) • ∇(v -u) ≥ Ω f (v -u), ∀ v ∈ K(ψ), hence u satisfies (1.1).
Let us prove now the existence and uniqueness of a solution to the obstacle problem (1.1). Proposition 2. There exists a solution to (1.1), which can be obtained as the minimizer of the following minimization problem inf v∈K(ψ)

I(v), (2.2) 
where I is the following energy functional

I(v) = 1 p Ω |∇v| p - Ω f v.
Proof of Proposition 2. Using classical arguments in the calculus of variations, since K(ψ) is a weakly closed convex set in W 1,p 0 (Ω), and the functional I is convex and coercive on W 1,p 0 (Ω), then one obtains that there exists a solution u to (2.2). Proposition 3. The inequation (1.1) possesses a unique solution.

Proof of Proposition 3. Suppose that u 1 , u 2 ∈ W 1,p 0 (Ω) are two solutions of the variational inequality (1.1)

u i ∈ K(ψ) : Ω σ(u i ) • ∇(v -u i ) dx ≥ Ω f (v -u i ) dx, ∀ v ∈ K(ψ), i = 1, 2
Taking v = u 1 for i = 2 and v = u 2 for i = 1 and adding, we have

Ω [σ(u 1 ) -σ(u 2 )] • ∇(u 1 -u 2 ) ≤ 0.
Recall that we have

Ω [σ(u 1 ) -σ(u 2 )] • ∇(u 1 -u 2 ) ≥ 0, which implies that Ω [σ(u 1 ) -σ(u 2 )] • ∇(u 1 -u 2 ) = 0,
and then, u 1 = u 2 a.e in Ω. Thus, we get the existence and uniqueness of a solution to (1.1). Definition 1. We shall say that u is f -superhamonic in Ω, if u ∈ W 1,p 0 (Ω) is a weak solution to -∆ p u ≥ f , in the sense of distributions. Proposition 4. A function u is a solution of (1.1), if and only if u is the lowest f -superharmonic function, greater than ψ.

Proof of Proposition 4. Let u be a solution of (1.1) and v be an f -super harmonic function, greater than ψ. Let ξ = max(u, v), ξ ∈ K(ψ). Recalling that v -= sup(0, -v), one has then (ξu) = -(vu) -. From (1.1), one gets

Ω σ(u) • ∇(ξ -u) ≥ Ω f (ξ -u).
On the other hand, since ξu ≤ 0 and -∆ p v ≥ f , we have

Ω σ(v) • ∇(ξ -u) ≤ Ω f (ξ -u).
We obtain, subtracting the above two inequalities:

Ω [σ(v) -σ(u)] • ∇(ξ -u) ≤ 0, which implies that - Ω [σ(v) -σ(u)] • ∇(v -u) -≤ 0, and then (v -u) -= 0, or equivalently u ≤ v in Ω.
Recall that we define by T f (ψ) the lowest f -superharmonic function, greater than ψ.

Lemma 1. The mapping ψ → T f (ψ) is increasing.

Proof of Lemma 1. Let u 1 = T f (ψ 1 ) and u 2 = T f (ψ 2 ), which are respectively solutions to the following variational inequalities

-∆ p u i ≥ f u i ≥ ψ i , i = 1, 2 and let ψ 1 ≤ ψ 2 . It is clear that u 2 ≥ ψ 1 . Hence u 2 is f -superharmonic and using Proposition 4, one obtains u 1 ≤ u 2 .
Proposition 5. The mapping ψ → T f (ψ) is weak lower semicontinuous, in the sense that:

• If ψ k ⇀ ψ weakly in W 1,p 0 (Ω), then T f (ψ) ≤ lim inf k→∞ T f (ψ k ). • Ω |∇(T f (ψ))| p ≤ lim inf k→∞ Ω |∇(T f (ψ k ))| p .
Proof of Proposition 5. Let (ψ k ) be a sequence in W 1,p 0 (Ω) which converges weakly in W 1,p 0 (Ω) to ψ, and let ϕ k = min(ψ k , ψ). Since T f is increasing, one gets that T f (ϕ k ) ≤ T f (ψ k ). We now prove that T f (ϕ k ) converges strongly in W 1,p 0 (Ω) towards T f (ψ). This will imply that

T f (ψ) = lim k→∞ T f (ϕ k ) ≤ lim inf k→∞ T f (ψ k ).
We denote

u k as T f (ϕ k ). It is clear that u k is bounded in W 1,p 0 (Ω) since ϕ k ≤ ψ.
Hence for a subsequence, still denoted u k , there exists some u in W 1,p 0 (Ω) such that

∇u k ⇀ ∇u weakly in L p (Ω), u k → u strongly in L p (Ω). (2.3)
On the other hand, using the fact that ϕ k converges weakly to ψ in W 1,p 0 (Ω) (see Lemma 2 below), one gets the following assertion:

u k ≥ ϕ k =⇒ u ≥ ψ.
Let us prove now that u is a solution of the minimizing problem (2.2). For that aim, for v ∈ K(ψ), since v ≥ ψ ≥ ϕ k , we have

1 p Ω |∇u| p - Ω f u ≤ lim inf k→∞ 1 p Ω |∇u k | p - Ω f u k ≤ lim inf k→∞ inf w≥ϕ k 1 p Ω |∇w| p - Ω f w ≤ 1 p Ω |∇v| p - Ω f v.
Then u realizes the infimum in (2.2). At the same time, since u ∈ K(ψ), one has the following convergence

1 p Ω |∇u k | p - Ω f u k -→ 1 p Ω |∇u| p - Ω f u, when k → ∞,
which implies that u k converges strongly to u in W 1,p 0 (Ω). We can conclude that T f (ϕ k ) converges strongly to T f (ψ).

Lemma 2. Suppose that ψ k converges weakly to some ψ in W 1,p 0 (Ω). Then,

ϕ k = min(ψ k , ψ) converges weakly to ψ in W 1,p 0 (Ω).
Proof of Lemma 2. We have

ψ k -→ ψ in L p (Ω).
Then

ϕ k = ψ k + ψ -|ψ k -ψ| 2 -→ ψ in L p (Ω).
Let us prove now that |∇ϕ k | is bounded in L p (Ω). For that aim, we write

Ω |∇ϕ k | p = Ω ∇ ψ k + ψ -|ψ k -ψ| 2 p ≤ C p Ω |∇ψ k | p + Ω |∇ψ| p .
Therefore the sequence ϕ k is bounded in W 1,p 0 (Ω), so it converges weakly, up to a subsequence, to ψ in W 1,p 0 (Ω).

Proposition 6. The mapping T f is an involution, i.e. T 2 f = T f . Proof of Proposition 6. Up to replacing ψ by u in the variational inequalities (1.1), and using proposition 4, one gets that u = T f (u). Then, we conclude that T 2 f (ψ) = T f (ψ).

A method of penalization

Let M + (Ω) be the set of all nonnegative Radon measures on Ω and W -1,p ′ (Ω) be the dual space of W 1,p (Ω) on Ω where p ′ is the conjugate of p (1 < p < ∞). Suppose that u solves (1.1). Using the fact that a nonnegative distribution on Ω is a nonnegative measure on Ω (cf. [START_REF] Demengel | Mesures et distributions, théorie et illustration par les exemples : Mesures de radon, distributions, convolutions, transformations de Fourier, distributions périodiques Editions Ellipses[END_REF]), one gets the existence of

µ ≥ 0, µ ∈ M + (Ω), such that Ω σ(u) • ∇Φ dx - Ω f Φ dx = µ, Φ , ∀ Φ ∈ D(Ω), (3.1) 
that we shall also write

-∆ p u = f + µ, µ ≥ 0 in Ω. Let us introduce β(x) = 0, x > 0, x, x ≤ 0. (3.2)
Clearly, β is C 1 piecewise, β(x) ≤ 0 and is nondecreasing. Let us consider, for some δ > 0, the following semilinear elliptic equation:

-∆ p u + 1 δ β(u -ψ) = f, in Ω u |∂Ω = 0. (3.3)
We have the following existence result:

Theorem 1. For any given ψ ∈ W 1,p 0 (Ω) and δ > 0, (3.3) possesses a unique solution u δ . Moreover, (1) u δ -→ u strongly in W 1,p 0 (Ω), as δ -→ 0, with u := T f (ψ).

(2) There exists a unique µ ∈ W -1,p ′ (Ω) ∩ M + (Ω) such that:

(i) -1 δ β(u δ -ψ) ⇀ µ in W -1,p ′ (Ω) ∩ M + (Ω). (ii) µ, T f (ψ) -ψ = 0. Proof of Theorem 1. (1) Let B be defined as B(r) = r 0 β(s)ds, ∀ r ∈ R.
We introduce the following variational problem inf v∈W 1,p 0 (Ω)

1 p Ω |∇v| p + 1 δ Ω B(v -ψ) - Ω f v . (3.4)
The functional in (3.4) is coercive, strictly convex and continuous. As a consequence it possesses a unique solution u δ ∈ W 1,p 0 (Ω). Since B(0) = 0, one has

1 p Ω |∇u δ | p + 1 δ Ω B(u δ -ψ) - Ω f u δ ≤ 1 p Ω |∇ψ| p - Ω f ψ,
since B ≥ 0, then u δ is bounded in W 1,p 0 (Ω). Extracting from u δ a subsequence, there exists u in W 1,p 0 (Ω), such that ∇u δ ⇀ ∇u weakly in L p (Ω), u δ → u strongly in L p (Ω).

Using

1 δ Ω B(u δ -ψ) ≤ C and the continuity of B one has 0 ≤ Ω B(u -ψ) ≤ lim inf δ→0 Ω B(u δ -ψ) = 0, hence u ∈ K(ψ).
We want to prove now that u solves (1.1). Let v ∈ K(ψ), since B(r) ≥ 0, ∀ r ∈ R one gets:

1 p Ω |∇u| p - Ω f u ≤ lim inf δ→0 1 p Ω |∇u δ | p - Ω f u δ ≤ lim inf δ→0 1 p Ω |∇u δ | p + 1 δ Ω B(u δ -ψ) - Ω f u δ ≤ lim inf δ→0 inf u≥ψ 1 p Ω |∇u| p + 1 δ Ω B(u -ψ) - Ω f u ≤ 1 p Ω |∇v| p - Ω f v.
Then, one concludes that ∇u δ -→ ∇u strongly in L p (Ω) and since u ∈ K(ψ), then u solves (1.1).

(2) (i) let u δ be the solution of (3.3), since ∇u δ is uniformly bounded in L p (Ω) by some constant C, we get that -∆ p u δf is bounded in W -1,p ′ (Ω), so it converges weakly, up to a subsequence, in W -1,p ′ (Ω). Hence, -1 δ β(u δψ) converges too, up to a subsequence, in W -1,p ′ (Ω), and we have

- 1 δ β(u δ -ψ) ⇀ µ weakly in W -1,p ′ (Ω),
where µ is a positive distribution, hence a positive measure. Then, by ( 1), we see that u and µ are linked by the relation (3.1). We now prove (ii): let u be the solution of (1.1). Taking ϕ = (ψu) ∈ W 1,p 0 (Ω) in the above inequalities, one gets

- 1 δ Ω β(u δ -ψ) (u -ψ) dx ≤ ∇u δ p-1 p ∇(ψ -u) p + f p ′ ψ -u p .
Since u ∈ K(ψ), passing to the limit we obtain:

µ, ψ -u = Ω |∇u| p-2 ∇u • ∇(ψ -u) - Ω f (ψ -u) = 0, by (2.1) 
Then (ii) follows.

4 Optimal Control for a Non-Positive Source Term 4.1 Optimal control for a non positive source term Proposition 7. Let f, ψ and T f (ψ) be as in (1.1). One has

1 p Ω |∇T f (ψ)| p ≤ 1 p Ω |∇ψ| p dx + Ω f [T f (ψ) -ψ] dx.
Proof of Proposition 7. From (1.1) taking v = ψ and using Hölder's inequality, we have

Ω |∇T f (ψ)| p ≤ p -1 p ∇T f (ψ) p p + 1 p ∇ψ p p + Ω f [T f (ψ) -ψ] dx. Note that since T f (ψ) ≥ ψ, it follows that if f ≤ 0, then Ω |∇T f (ψ)| p dx ≤ Ω |∇ψ| p dx. (4.1) 
Let us now introduce the following problem, said "optimal control problem":

inf ψ∈W 1,p 0 (Ω) J f ( ψ), (4.2) 
where

J f ( ψ) = 1 p Ω |T f ( ψ) -z| p + |∇ ψ| p dx, (4.3) 
for some given z ∈ L p (Ω). z is said to be the initial profile, ψ is the control variable and T f (ψ) is the state variable. The pair (ψ * , T f (ψ * )) where ψ * is a solution for (4.2) is called an optimal pair and ψ * an optimal control. In this section, we establish the existence and uniqueness of the optimal pair in the case where f ≤ 0. Theorem 2. If f ∈ L p ′ (Ω), f ≤ 0 on Ω, then there exists a unique optimal control ψ * ∈ W 1,p 0 (Ω) for (4.2). Moreover, the corresponding state u * coincides with ψ * , i.e. T f (ψ * ) = ψ * . Proof of Theorem 2. In a first time we prove that there exists a pair of solutions of the form (u * , u * ), hence (u * = T f (u * )). Let (ψ k ) k be a minimizing sequence for (4.3), then T f (ψ k ) is bounded in W 1,p (Ω), therefore T f (ψ k ) converges for a subsequence towards some u * ∈ W 1,p 0 (Ω). Moreover, using the lower semicontinuity of T f as in proposition 5, one gets

T f (u * ) ≤ lim inf k→∞ T f (T f (ψ k )) ≤ lim k→∞ T f (ψ k ) = u * ,
and by the definition of T f , T f (u * ) ≥ u * . Hence u * = T f (u * ).

We prove that (u * , u * ) is an optimal pair. Using proposition 5, by the lower semicontinuity in W 1,p 0 (Ω) of T f :

J f (u * ) = 1 p Ω {|u * -z| p + |∇u * | p } dx ≤ lim inf k→∞ 1 p Ω {|T f (ψ k ) -z)| p + |∇ψ k | p } dx = inf ψ∈W 1,p 0 (Ω) J f (ψ).
Secondly, we prove that every optimal pair is of the form (u

* , u * ). Observe that if (ψ * , T f (ψ * )) is a solution then (T f (ψ * ), T f (ψ * )) is a solution. Indeed Ω {|T f (ψ * ) -z)| p + |∇T f (ψ * )| p } dx ≤ Ω {|T f (ψ * ) -z)| p + |∇ψ * | p } dx. So Ω |∇T f (ψ * )| p dx = Ω |∇ψ * | p dx, (4.4) 
by inequality (4.1), using the Hölder's inequality, one obtains then

0 ≤ Ω f (ψ * -T f (ψ * )) dx ≤ Ω σ(T f (ψ * )) • ∇(ψ * -T f (ψ * )) dx ≤ Ω |∇T f (ψ * )| p-2 ∇T f (ψ * ) • ∇ψ * - Ω |∇T f (ψ * )| p ≤ Ω |∇T f (ψ * )| p p-1 p Ω |∇T f (ψ * )| p 1 p - Ω |∇T f (ψ * )| p = 0, which implies Ω |∇T f (ψ * )| p-2 ∇T f (ψ * ) • ∇ψ * - Ω |∇T f (ψ * )| p = 0.
Let us recall that by convexity, one has the following inequality

1 p Ω |∇ψ * | p + p -1 p Ω |∇T f (ψ * )| p - Ω |∇T f (ψ * )| p-2 ∇T f (ψ * ) • ∇ψ * ≥ 0.
Then the equality holds and by the strict convexity, one gets ∇(ψ * ) = ∇(T f (ψ * )) a.e., hence ψ * = T f (ψ * ). Finally, we deduce from the two previous steps that the pair is unique. Suppose that (u 1 , u 1 ) and (u 2 , u 2 ) are two solutions, and consider ( u 1 +u 2 2 , T f ( u 1 +u 2 2 )). We prove that it is also a solution. Indeed:

Ω u 1 + u 2 2 -z p + ∇T f ( u 1 + u 2 2 ) p dx ≤ Ω u 1 + u 2 2 -z p + ∇ u 1 + u 2 2 p dx ≤ 1 2 (J f (u 1 ) + J f (u 2 )) = inf ψ∈W 1,p 0 (Ω)
J f (ψ), which implies that u 1 = u 2 . Thus, the uniqueness of the optimal pair for f ≤ 0 holds.

Optimal control for a nonnegative source term

We are interested here to the case f ≥ 0 on Ω. In what follows we will denote by Gf the unique function in W 1,p 0 (Ω) which verifies -∆ p (Gf ) = f, in Ω a.e.

Gf = 0, on ∂Ω, where f ∈ L p ′ (Ω) and Gf ∈ W 1,p 0 (Ω). Theorem 3. Suppose that f ∈ L p ′ (Ω) is a nonnegative function. Suppose that z ∈ L p (Ω), satisfying z ≤ Gf a.e on Ω. Then the minimizing problem (4.2) has a unique optimal pair (0, Gf ). Lemma 3. Let T f (ψ) be a solution to (1.1) and Gf defined as above. Then T f (ψ) is greater than Gf .

Proof of Lemma 3. We have that -∆ p (Gf ) = f , and T f (ψ) realizes -∆ p (T f (ψ)) ≥ f . Then, by the Comparison Theorem for -∆ p we get that Gf ≤ T f (ψ).

Proof of Theorem 3. In a first time we prove that (0, Gf ) is an optimal pair. Indeed, for all ψ ∈ W 1,p 0 (Ω)

J f (ψ) = 1 p Ω {|Gf -z + T f (ψ) -Gf | p + |∇ψ| p } ≥ 1 p Ω |Gf -z| p + p|Gf -z| p-2 (Gf -z)(T f (ψ) -Gf ) ≥ 1 p Ω {|Gf -z| p } = J f (0).

The equality with (ψ * , T f (ψ * )) implies that we have equality in each step, so we get ∇ψ * p = 0, then ψ * = 0 a.e. in Ω. Thus, (0, Gf ) is the unique optimal control pair.