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On some nonlinear partial differential equations involving the 1-Laplacian

In this paper we present an approximation result concerning the first eigenvalue of the 1-Laplacian operator. More precisely, for Ω a bounded regular open domain, we consider a minimisation of the functional

For n large enough, the infimum is achieved in some sense on BV (Ω), and letting n go to infinity this provides an approximation of the first eigenfunction for the first eigenvalue, since the term n Ω |u| 2 -1 2 "tends" to the constraint u 1 = 1.

1 Introduction: the first eigenvalue for the 1-Laplacian

In recent fields, several authors were interested on the study of the "first eigenvalue" for the 1-Laplacian operator, that we shall denote as the not everywhere defined u → -div( ∇u |∇u| ). Due to the singularity of this operator, the definition of the first eigenvalue can be correctly defined with the aid of a variational formulation: let λ 1 be defined as

λ 1 := inf u∈W 1,1 0 (Ω) u 1 =1 Ω |∇u|.
(1.1)

Notice that λ 1 is well defined and is positive, due to Poincaré's inequality.

In order to justify the term "eigenvalue" for λ 1 , one must prove the existence of an associated "eigenfunction". As in the p-Laplacian case, an eigenfunction will be a solution of (1.1). Unfortunately, since W 1,1 (Ω) is not a reflexif space, one cannot hope to obtain a solution for (1.1) by classical arguments.

This difficulty can be overcome by introducing the space BV (Ω), which is the weak closure of W 1,1 (Ω), and by extending the infimum to that space, using the features of BV (Ω): Density of regular maps in BV , existence of the trace map on the boundary... However, these properties are not sufficient to obtain solutions by classical methods, since the trace map -which is well defined on BV (Ω)-is not continuous for the weak topology. This new difficulty can be "solved" by introducing -as it is the case in the theory of minimal surfaces and in plasticity and also for related problems-a "relaxed" formulation for (1.1). This relaxed formulation consists in replacing the condition {u = 0} on the boundary by the addition of a term This problem has an infimum equal to λ 1 . It can be seen by approximating function in BV (Ω) by functions in W 1,1 (Ω) for a topology related to the narrow topology of measures. This topology is precised in section 2.

Then the existence of a minimizer of (1.2) in BV (Ω) can be proved, using classical arguments, arguments which will be precised later in this paper.

To obtain the partial differential equation satisfied by a minimizer of (1.2), equation which can be seen as an eigenvalue's equation, the author used in [START_REF] Demengel | Functions locally almost 1-harmonic[END_REF] an approximation of (1.1) by the following problem on W 1,1+ε 0 (Ω):

λ 1+ε := inf u∈W 1,1+ε 0 (Ω) u 1=1 Ω |∇u| 1+ε , (1.3) 
and proves that λ 1+ε converges to λ 1 . Moreover, if u ε is a positive solution of the minimizing problem defined in (1.3), u ε converges weakly in BV (Ω) to some u which satisfies

-div ∇u |∇u| = λ 1 ,
in a sense which needs to be precised, and is detailed in the present paper.

Let us note that it is also proved in [START_REF] Demengel | Theoremes d'existence pour des equations avec l'operateur 1-Laplacien, premiere valeur propore pour -∆ 1[END_REF] that there are caracteristic functions of sets which are solutions. These sets are therefore called eigensets.

Another approach is used in [START_REF] Alter | A characterization of convex calibrable sets in R N[END_REF], [START_REF] Alter | Evolution of convex sets in the plane by the minimizing total variation flow[END_REF], where the authors use the concept of Cheeger sets [START_REF] Cheeger | A lower bound for the smallesteigenvalue of the Laplacian in Problems in Analysis[END_REF]. In these papers, the authors present a remarkable construction of eigensets for 2-dimensional convex sets Ω. Among their results, there is the uniqueness of eigensets in the case N = 2.

Our aim in the present article is to propose an approach of the first eigenvalue and the first eigenfunction of the 1-Laplacian operator, using a penalization method, which consists in replacing the condition 

Survey on known results about the space BV (Ω)

We begin to recall the definition of the space of functions with bounded variation. Let Ω be an open regular domain in R N , N > 1, and let M 1 (Ω) be the space of bounded measures in Ω. We define

BV (Ω) = u ∈ L 1 (Ω), ∇u ∈ M 1 (Ω) .
Endowed with the norm

Ω |∇u| + Ω |u|, the space BV (Ω) is a Banach space.
More useful is the weak topology for variational technics : We define the weak topology with the aid of sequences, as follows: we say that a sequence u n ⇀ u weakly in BV (Ω) if the following two conditions are fullfilled:

• Ω |u n -u| -→ 0 in L 1 (Ω) when n -→ ∞, • Ω ∂ i u n φ -→ Ω ∂ i u φ, ∀i = 1, 2, ..., N ∀φ ∈ C c (Ω) when n -→ ∞.
Let us note that the second convergence is also denoted as the vague convergence of ∇u n towards ∇u.

We shall also use the concept of tight convergence in BV (Ω): we say that a sequence u n converges tightly to u in BV (Ω) if the following two conditions are fullfilled:

• u n ⇀ u, weakly in BV (Ω) when n -→ ∞, • Ω |∇u n | -→ Ω |∇u| when n -→ ∞.
Let us note that the last assertion is equivalent to say that, for all φ ∈ C( Ω, R N ),

Ω ∇u n • φ -→ Ω ∇u • φ, when n -→ ∞.
We now recall some facts about embedding and compact embedding from BV (Ω) to other L q spaces :

• If Ω is an open C 1 set, then BV (Ω) is continuously embedded in L p (Ω)
for all p ≤ N N -1 . • If Ω is also bounded and smooth, the embedding is compact in L p (Ω) for every p < N N -1 . Finally we recall the existence of a map, called trace map, defined on BV (Ω), which co ïncides with the restriction on ∂Ω of u when u belongs to C( Ω)∩BV (Ω) or less classically when u ∈ W 1,1 (Ω). This map is continuous for the strong topology, and is not continuous under the weak topology. However the following property holds: if

u n → u tightly in BV (Ω), then ∂Ω |u n -u| -→ 0 for n → ∞.
We end this section by enouncing a generalization of the Green's formula : this will allow us to give sense to the product σ • ∇u when σ is in L ∞ (Ω, R N ), div σ ∈ L N (Ω) and u ∈ BV (Ω), and will be useful to give sense to the partial differential equation associated to the eigenvalue.

Let us recall that D(Ω) is the space of C ∞ -functions, with support on Ω.

Proposition 2.1. Let σ ∈ L ∞ (Ω, R N ), divσ ∈ L N (Ω) and u ∈ BV (Ω).
Define the distribution σ • ∇u by the following formula : for any ϕ ∈ D(Ω),

σ • ∇u, ϕ = - Ω (divσ)uϕ - Ω (σ • ∇ϕ) u.
(2.1)

Then | σ • ∇u, ϕ | ≤ σ ∞ |∇u|, |ϕ| .
In particular, σ • ∇u is a bounded measure which satisfies:

|σ • ∇u| ≤ σ ∞ |∇u|.
In addition, if ϕ ∈ C(Ω) ∩ C 1 (Ω), the following Green's Formula holds:

σ • ∇u, ϕ = - Ω (divσ)uϕ - Ω (σ • ∇ϕ) u + ∂Ω σ • -→ n u ϕ, (2.2) 
where -→ n is the unit outer normal to ∂Ω. Suppose that U ∈ BV (R N \ Ω), that u ∈ BV (Ω) and define the function u as:

u = u in Ω, U in R N \ Ω.
Then u ∈ BV (R N ) and

∇ u = ∇u χ Ω + ∇U χ (R N \Ω) + (U -u) δ ∂Ω ,
where in the last term, U and u denote the trace of U and u on ∂Ω and δ ∂Ω denotes the uniform Dirac measure on ∂Ω. Finally, we introduce the measure σ • ∇ u on Ω by the formula

(σ • ∇ u) = (σ • ∇u)χ Ω + σ • -→ n (U -u) δ ∂Ω
where (σ • ∇u)χ Ω has been defined in 2.1. Then σ • ∇ u is absolutely continuous with respect to |∇ u|, with the inequality

|σ • ∇ u| ≤ σ ∞ |∇ u|.
For a proof the reader can consult [START_REF] Demengel | Some compactness result for some spaces of functions with bounded derivatives[END_REF], [START_REF] Kohn | Dual spaces of stress and strains with applications to Hencky plasticity[END_REF], [START_REF] Strang | Functions with bounded derivatives[END_REF].

Presentation of the results

We now describe the approximation result here enclosed. For n ∈ N * , let us consider the following minimization problem:

λ 1,n = inf u∈W 1,1 0 (Ω) Ω |∇u| + n Ω |u| -1 2 . (3.1)
As it is done for analogous problem in [], let us introduce the relaxed formulation associated :

λ 1,n = inf u∈BV (Ω) Ω |∇u| + ∂Ω |u| + n Ω |u| -1 2 . (3.2)
We shall prove in the following section the result :

Theorem 3.1. Let Ω be a piecewise C 1 bounded domain in R N , N > 1.
For every n ∈ N * , the problem (3.2) possesses a solution u n in BV (Ω) which can be chozen nonnegative. Moreover, u n satisfies the following partial differential equation:

             -div σ n + 2n Ω u n -1 sign + (u n ) = 0 in Ω, σ n ∈ L ∞ (Ω, R N ), σ n ∞ ≤ 1, σ n • ∇u n = |∇u n | in Ω, u n is not identically zero, -σ n • -→ n (u n ) = u n on ∂Ω, (3.3) 
where -→ n denotes the unit outer normal to ∂Ω, σ n • ∇u n is the measure defined in Proposition 2.1 and sign

+ (u n ) is some function in L ∞ (Ω) such that sign + (u n )u n = u n in Ω.
Moreover λ 1,n converges towards λ 1 and u n converges towards the first eigenfunction u.

Remark 3.1. Clearly, u n is not identically zero for n large enough as soon as n > λ 1 .

Remark 3.2. From Proposition 2.1 (with U = 0), the conditions

σ n • ∇u n = |∇u n | in Ω , -σ n • -→ n (u n ) = u n on ∂Ω, are equivalent to σ n • ∇ u n = |∇ u n | on Ω ∪ ∂Ω. Remark 3.3. The identity σ n • ∇u n = |∇u n | makes sense since -div σ n = -2n Ω u n -1 sign + (u n ),
which implies that divσ n ∈ L ∞ (Ω), therefore σ n •∇u n is well-defined by Proposition 2.1.

We subdivide the proof of Theorem 3.1 into several steps :

• First step: We use some kind of regularization of the minimization problem by introducing for some ε > 0 and small inf

u∈W 1,1+ε 0 (Ω) Ω |∇u| 1+ε + n Ω |u| 1+ε -1 2 .
We prove that for n large enough, this problem possesses a solution which can be chozen nonnegative and denoted by u n,ε , which satisfies

-div(|∇u n,ε | ε-1 ∇u n,ε ) + 2n Ω u 1+ε n,ε -1 u ε n,ε = 0, in Ω,
• Second step: We extend u n,ε by zero outside of Ω and observe that the sequence still denoted (u n,ε ) is uniformly bounded in BV (R N ), more precisely

R N |∇u n,ε | 1+ε ≤ C.
Then we can extract from u n,ε a subsequence, such that u n,ε ⇀ u n weakly in BV (R N ). The limit function belongs to BV (R N ) and is zero outside of Ω.

• Third step: we prove that σ n,ε = |∇u n,ε | ε-1 ∇u n,ε is uniformly bounded in L q (Ω) ∀ q < ∞. Then we can extract from σ n,ε a subsequence, such that σ n,ε ⇀ σ n weakly in L q (Ω) ∀ q < ∞, such that σ ∞ ≤ 1 and

σ n • ∇u n = |∇u n | in Ω ∪ ∂Ω.
• Fourth step: we prove that u n is a solution of the minimizing problems (3.2) and (3.3). We also prove that σ n satisfies the problem (3.3).

• Fifth step: we establish that λ 1,n converges strongly to λ 1 when n goes to ∞ and that u n converges strongly to the first eingenfunction associated to λ 1 .

Proof of the main result

We provide here the proof of Theorem 3.1, outlined as above.

Step 1: We prove here the existence and uniqueness of a positive solution for the following approximation problem

λ 1+ε,n = inf u∈W 1,1+ε 0 (Ω) I 1+ε,n (u), (4.1) 
where I 1+ε,n is the following functional

I 1+ε,n (u) = Ω |∇u| 1+ε + n Ω |u| 1+ε -1 2 , (4.2) 
for some positive ε given. We first prove that λ 1+ε,n is achieved, using standard variational technics: Let (u i ) i be a minimizing sequence for λ 1+ε,n . Without loss of generality, up to replace u i by |u i |, one may assume that u i is nonnegative. Since I 1+ε,n is coercive, (u i ) is bounded in W 1,1+ε 0 (Ω). As a consequence, we may extract from it a subsequence, still denoted (u i ) i , which converges weakly in W 1,1+ε 0 (Ω) to some function u n,ε ∈ W 1,1+ε 0 (Ω). Furthermore, by the Rellich-Kondrakov Theorem [START_REF] Aubin | Some Nonlinear Problems in Riemannian Geometry[END_REF], [START_REF] Aubin | Problèmes isoperimetriques et espaces de Sobolev[END_REF], [START_REF] Adams | Sobolev spaces[END_REF]

, (u i ) i converges to u n,ε in L 1+ε (Ω).
Using the weak lower semicontinuity of the semi-norm Ω |∇u| 1+ε for the weak topology of W 1,1+ε 0 (Ω), one has:

λ 1+ε,n ≤ Ω |∇u n,ε | 1+ε + n Ω |u n,ε | 1+ε -1 2 ≤ lim inf i→+∞ Ω |∇u i | 1+ε + n Ω |u i | 1+ε -1 2 = λ 1+ε,n .
Hence, u n,ε is a solution of the minimization problem (4.1).

We now prove that this weak solution solves the following partial differential equation:

       -divσ n,ε + 2n Ω u 1+ε n,ε -1 u ε n,ε = 0 in Ω, σ n,ε • ∇u n,ε = |∇u n,ε | 1+ε in Ω, u n,ε > 0 in Ω, u n,ε = 0 on ∂Ω. (4.3)
Indeed, for every h ∈ D(Ω), we have:

DI 1+ε,n (u n,ε ) • h = (1 + ε) Ω |∇u n,ε | ε-1 ∇u n,ε • ∇h + 2n Ω u 1+ε n,ε -1 Ω u ε n,ε h = (1 + ε) Ω -div |∇u n,ε | ε-1 ∇u n,ε + 2n Ω u 1+ε n,ε -1 u ε n,ε h = 0.
Thus, we get:

-div |∇u n,ε | ε-1 ∇u n,ε + 2n Ω u 1+ε n,ε -1 u ε n,ε = 0, (4.4) 
in a distribution sense. Since u n,ε is a weak solution of equation (4.4), by regularity results (as developped by Guedda-Veron [START_REF] Guedda | Quasilinear elliptic equations involving critical sobolev exponents[END_REF], see also Tolksdorf [START_REF] Tolksdorf | Regularity for a more general class of quasilinear elliptic equations[END_REF]), one gets that u n,ε ∈ C 1,α ( Ω) ∀ α ∈ (0, 1). Moreover, since u n,ε is a nonnegative weak solution of the equation (4.4), by the strict maximum principle of Vazquez (see [START_REF] Vazquez | A Strong maximum principle for some quasilinear elliptic equations[END_REF]), u n,ε is positive everywhere. Hence, setting σ n,ε = |∇u n,ε | ε-1 ∇u n,ε , we have shown that u n,ε ∈ C 1,α ( Ω) ∩ W 1,1+ε 0 (Ω) is a positive solution of (4.3). -

div [σ n,ε (u) -σ n,ε (v)] + 2n [α(u) -α(v)] u ε + 2n α(v) (u ε -v ε ) = 0, (4.5) where α(u) = Ω u 1+ε -1. Case 1: u 1+ε ≥ v 1+ε . Let us multiply (4.5) by (u -v) + then integrate. It is clear that 2n [α(u) -α(v)] Ω u ε (u -v) + ≥ 0.
So we get that:

Ω [σ n,ε (u) -σ n,ε (v)] • ∇(u -v) + + 2n α(v) Ω (u ε -v ε ) (u -v) + ≤ 0. (4.6)
We know that

Ω [σ n,ε (u) -σ n,ε (v)] • ∇(u -v) ≥ 0. (4.7)
On the other hand it is clear that

Ω (u ε -v ε ) (u -v) ≥ 0. (4.8)
So, we can conclude that:

Ω [σ n,ε (u) -σ n,ε (v)] • ∇(u -v) + + 2n α(v) Ω (u ε -v ε ) (u -v) + ≥ 0. (4.9)
So from (4.6) and (4.9), we obtain that

Ω [σ n,ε (u) -σ n,ε (v)] • ∇(u -v) + + 2n α(v) Ω (u ε -v ε ) (u -v) + = 0.
Then

Ω (u ε -v ε ) (u -v) + = 0, which implies (u -v) + = 0, i.e. u ≤ v. Using u 1+ε ≥ v 1+ε , one finally gets u = v a.e.
Case 2: u 1+ε ≤ v 1+ε . We use the same arguments as in the Case 1, just replacing (uv) + by (vu) + . Thus, we have proved the existence and uniqueness of a positive solution to the problem (4.1).

Step 2: We prove here that lim 

I 1,n (ϕ) = Ω |∇ϕ| + n Ω |ϕ| -1 2 ≤ λ 1,n + δ. But lim ε→0 I 1+ε,n (ϕ) = I 1,n (ϕ), hence, lim sup ε→0 λ 1+ε,n ≤ λ 1,n + δ.
δ being arbitrary, we get lim sup ε→0 λ 1+ε,n ≤ λ 1,n .

Let now u n,ε be the positive solution of the minimizing problem (4.1). Using Poincaré's and Hölder's inequalities, we get

Ω u n,ε dx ≤ C Ω |∇u n,ε |dx ≤ C Ω |∇u n,ε | 1+ε dx 1 1+ε |Ω| ε 1+ε ≤ C ′ λ 1+ε,n .
These inequalities show that (u n,ε ) ε>0 and (∇u n,ε ) ε>0 are both bounded in L 1 (Ω). This means that (u n,ε ) ε>0 is bounded in BV (Ω). We denote by u n the limit of some subsequence in BV for the weak topology.

In step 4 we shall precise this limit. In particular we shall obtain u n as the restriction to Ω of some limit of extended functions u n,ε by zero outside of Ω.

Step 3: we obtain σ n = "∇un" |∇un| as the weak limit of

σ n,ε = |∇u n,ε | ε-1 ∇u n,ε . Let σ n,ε = |∇u n,ε | ε-1 ∇u n,ε , one sees that σ n,ε is uniformly bounded in L 1+ε ε (Ω).
Let us prove that σ n,ε is uniformly bounded in every L q (Ω), for all q < ∞. Indeed, let q > 1 be given and let ε be such that q < 1+ε ε .

Then

Ω |σ n,ε | q 1 q ≤ Ω |σ n,ε | 1+ε ε ε 1+ε |Ω| 1+ε(1-q) (1+ε)q ≤ C.
Then we may extract from it a subsequence, still denoted by σ n,ε , such that σ n,ε tends to some σ n weakly in L q (Ω), for all q < ∞ and σ n,ε tends to σ n a.e., when ε tends to 0.

We observe now that σ n ∞ ≤ 1. For that aim, let η be in D(Ω, R N ). Then

Ω σ n • η ≤ lim inf ε→0 Ω σ n,ε • η ≤ lim inf ε→0 Ω |∇u n,ε | ε |η| ≤ lim inf ε→0 Ω |∇u n,ε | 1+ε ε 1+ε Ω |η| 1+ε 1 1+ε ≤ lim inf ε→0 (λ 1+ε,n ) ε 1+ε Ω |η| 1+ε 1 1+ε ≤ Ω |η|.
This implies that σ n ∞ ≤ 1.

Let us now observe that u ε n,ε is uniformly bounded in every L q (Ω), q < ∞. Indeed, let q be given and let ε be small enough, such that q < 1+ε ε , then

Ω |u ε n,ε | q 1 q ≤ Ω |u n,ε | 1+ε ε 1+ε |Ω| 1+ε(1-q) q(1+ε) ≤ C.
Then w n,ε = u ε n,ε converges weakly, in every L q (Ω), q < ∞, up to a subsequence, to some w n , when ε tends to 0.

Let us prove that 0 ≤ w n ≤ 1 and (w n -1)u n = 0. For the first assertion, let η ∈ D(Ω),

Ω w n • η ≤ Ω |w n | 1+ε ε ε 1+ε Ω |η| 1+ε 1 1+ε ≤ lim inf ε→0 (λ 1+ε,n ) ε 1+ε Ω |η| 1+ε 1 1+ε ≤ Ω |η|. Hence 0 ≤ w n ≤ 1, ∀n ∈ N * .
To prove that (w n -1)u n = 0, let us observe that u n,ε -→ u n in L k (Ω) strongly for all k < N N -1 and w n,ε -→ w n in L N +1 (Ω) weakly, therefore

Ω w n,ε u n,ε -→ Ω w n u n when ε → 0 Finally, Ω w n u n = lim ε→0 Ω w n,ε u n,ε = lim ε→0 Ω u 1+ε n,ε = Ω u n .
Using the fact that 0 ≤ w n ≤ 1, one gets the result.

Passing to the limit in (4.4), one gets:

-divσ n + 2n Ω u n -1 w n = 0. (4.10)
Step 4: Extension of u n,ε outside Ω and convergence towards a solution of (4.3).

Let u n,ε be the extension of u n,ε by 0 in R N \ Ω. Since u n,ε = 0 on ∂Ω, then u n,ε ∈ W 1,1+ε (R N ) and ( u n,ε ) is bounded in BV (R N ). Then one may extract from it a subsequence, still denoted ( u n,ε ), such that

u n,ε -→ v n in L k (R N ), ∀ k < N N -1 when ε -→ 0,
with v n = 0 outside of Ω and

∇ u n,ε ⇀ ∇v n weakly in M 1 (R N ) when ε -→ 0,
We denote by u n the restriction of v n to Ω. We use in the above some limit σ n of σ n,ε = |∇u n,ε | ε-1 ∇u n,ε obtained in the third step.

Multiplying the equation (4.4) by u n,ε ϕ, where ϕ ∈ D(R N ), and integrating by parts, one obtains:

Ω σ n,ε • ∇( u n,ε ϕ) + 2n Ω u 1+ε n,ε -1 Ω u 1+ε n,ε ϕ = 0 , or equivalently R N |∇( u n,ε )| 1+ε ϕ + Ω σ n,ε u n,ε • ∇ϕ + 2n R N u 1+ε n,ε -1 R N u 1+ε n,ε ϕ = 0. ( 4 
.11) Since σ n,ε ⇀ σ n in L q (Ω) for all q < ∞, in particular for any α > 0, σ n,ε tends weakly towards σ n in L N +α (Ω). Since u n,ε tends strongly towards v n in L k (Ω), k < N N -1 , one obtains that:

Ω σ n,ε u n,ε • ∇ϕ -→ Ω σ n u n • ∇ϕ, when ε → 0.
By passing to the limit in the equation (4.11) and defining, up to extracting a subsequence, the measure µ on R N by: lim ε→0 |∇( u n,ε )| 1+ε = µ, one obtains:

µ, ϕ + Ω σ n u n • ∇ϕ + 2n R N v n -1 R N v n ϕ = 0. (4.12)
On the other hand, multiplying equation (4.10) by v n ϕ where ϕ ∈ D(R N ), one gets 

Ω∪∂Ω σ n • (∇v n )ϕ + Ω σ n u n • ∇ϕ + 2n Ω u n -1 Ω u n ϕ = 0. ( 4 
R N |∇( u n,ε )| 1+ε -→ R N |∇v n | when ε → 0.
Finally recalling that according to proposition 2.1 , one has

∇v n • σ n ≤ |∇v n | on Ω ∪ ∂Ω one derives that |∇v n | = σ n • ∇v n in Ω ∪ ∂Ω.
Recall that from Proposition 2.1

∇v n = ∇u n χ Ω -u n δ ∂Ω -→ n , σ n • ∇v n = σ n • ∇u n χ Ω -σ n • -→ n u n δ ∂Ω , we have obtained σ n • ∇u n = |∇u n | in Ω, σ n • -→ n u n = -u n on ∂Ω.
Then u n is a nonnegative solution of (3.3). Moreover, the convergence of |∇ u n,ε | is tight on Ω, i.e. 

ε→0 Ω |∇u n,ε | 1+ε = Ω |∇u n | + ∂Ω u n ≤ lim inf ε→0 Ω |∇u n,ε | ≤ lim inf ε→0 Ω |∇u n,ε | 1+ε 1 1+ε |Ω| ε 1+ε = lim ε→0 Ω |∇u n,ε | 1+ε
The result is proved.

Step 5: The convergence of λ 1+ε,n towards λ 1

In this step we explicit the relation between the values λ 1+ε,n when n is large, and the first eingenvalue λ 1 defined in the first part. Using once more (4.15), one can conclude that (u n ) n is bounded in BV (Ω).

Then, the extension of each u n by zero outside of Ω is bounded in BV (R N ). One can then extract from it a subsequence, still denoted u n , such that u n ⇀ u weakly in BV (R N ) when n → ∞, obviously u = 0 outside of Ω and u > 0 in Ω. By the compactness of the Sobolev embedding from BV (Ω) into L 1 (Ω), one has u L 1 (Ω) = 1. Using the lower semi continuity of th total variation R N |∇u| with respect to the weak topology, one has (since u n → u in L 1 (Ω))

λ 1 ≤ R N |∇u| ≤ R N |∇u| + n R N u -1 2 ≤ lim inf n→∞ R N |∇u n | + n R N u n -1 2 ≤ lim sup n→∞ λ 1,n ≤ λ 1 .
Then one gets that lim n→∞ λ 1,n = λ 1 .

Since u = 0 outside of Ω, one has on R N ∇u = ∇uχ Ωu -→ n δ ∂Ω and then

R N |∇u| = Ω |∇u| + ∂Ω u.
Moreover, one obtains that: Then, we get the tight convergence of u n to u in BV (Ω).

Let us observe that sign + (u n ) converges to some w, 0 ≤ w ≤ 1 in every L q (Ω), ∀ q < ∞. Using the convergence of u n to u in L q (Ω), ∀ q < N N -1 , one gets This ends the proof of the main result.

The author thanks the referee for its remarks and advices which permit to improve this paper.
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 41 1+ε,n = λ 1,n . For every n ∈ N * , we have: lim sup ε→0 λ 1+ε,n ≤ λ 1,n Proof of Proposition 4.1. Let δ > 0 be given and ϕ ∈ D(Ω) such that

Ω

  |∇u n,ε | -→ Ω |∇u n | + ∂Ω u n , when ε → 0.Indeed, one hasΩ |∇u n,ε | 1+ε -→ Ω |∇u n | + ∂Ω u n when ε -→ 0.Using the lower semicontinuity for the extension u n,ε and Hölder's inequality, we get lim

Theorem 4 . 1 .Ω u n - 1 2is bounded by λ 1

 4111 Let u n be a nonnegative solution of 4.4, then, up to a subsequence, as n → ∞, (u n ) converges to u ∈ BV (Ω), u ≥ 0, u ≡ 0, which realizes the minimum defined in (1.2). Moreoverlim n→∞ λ 1,n = λ 1 .Proof of the Theorem 4.1. For λ 1,n and λ 1 defined as above, it is clear that we have:lim sup n→∞ λ 1,n ≤ λ 1 .(4.15)Let (u n ) n be a sequence of positive solutions of the relaxed problem defined in (3.2). We begin to prove that (u n ) n is bounded in BV (Ω). For that aim let us note that by (4.15), one gets that n u n ) n is bounded in L 1 (Ω).

Ω 1 Ω

 1 u n = Ω u n sign + (u n ) -→ Ω u = 1 when n → ∞. u n -→ λ 1 when n → ∞,and then also-2n Ω u n -1 -→ λ 1 when n → ∞.