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On the omputation of eigenvetors of a symmetri tridiagonalmatrix: omparison of auray improvements of Givens andinverse iteration methodsSt�ephane BalaLaboratoire de Math�ematiques Appliqu�ees de LyonINSA de Lyon, 69621 Villeurbanne edex, Franestephane.bala�insa-lyon.frMiloud SadkaneLaboratoire de Math�ematiquesUniversit�e de Bretagne Oidentale, 29000 Brest, Franemiloud.sadkane�univ-brest.frKeywords: eigenvalue problem, Sturm sequene, Givens method, inverse iteration methodAbstratThe aim of this paper is the omparison of the reent improvements of two methods toompute eigenvetors of a symmetri tridiagonal matrix one the eigenvalues are omputed.The �rst one is the Givens method whih is based on the use of Sturm sequenes. This methodsu�ers from a lak of auray for the omputation of the eigenvetor when an approximatevalue (even a very aurate one) of the eigenvalue is used in the omputational proess. In[3℄ the authors introdue a modi�ation of Givens method to ensure the omputation ofan aurate eigenvetor from a good approximation of the orresponding eigenvalue. Theseond improvement onerns the inverse iteration method. In [8℄ the authors present away to determine the best initial vetor to start the iterations. Although the two methodsand their improvements seem to be very di�erent from a omputational point of view, thereexists some striking analogies. For instane, in the two methods we look for an optimalindex, we have to minimize a residual, et. In the paper we briey present the two methodsand investigate the onnetions between them.1 IntrodutionThis paper is onerned with the omputation of the eigenvetors of a real symmetri tridiagonalmatrix T one the eigenvalues � are omputed. Inverse iteration method is the most widely usedmethod and is implemented in software libraries like lapak, see [1℄. A ritial problem in theinverse iteration method is the hoie of the initial vetor to start the iterations. It an be proved,see [11℄, that the best hoie for the initial vetor is the rth olumn of the identity matrix, wherer is the largest omponent of the wanted eigenvetor. Unfortunately, this information is not veryuseful for numerial purposes and for instane in the lapak library, a random vetor is taken.In 1997, B. Parlett and I. Dhillon devised a way to ompute this optimal index r using an LDUand UDL deompositions of the matrix T � �I, see [8℄.Another well known method for the omputation of an eigenvetor from an eigenvalue is theGivens method, see [11, p. 299℄. This method is a very eÆient for omputing the eigenvaluesof a real tridiagonal matrix using Sturm sequenes and a bisetion. This method an also beused to derive in a very simple way from the Sturm sequene the eigenvetor assoiated to the1



omputed eigenvalue. Unfortunately the omputation of the eigenvetor in that method su�ersfrom numerial instability. In [3℄ the authors present a way to irumvent this instability andto ompute the eigenvetor with auray from a good approximation of its eigenvalue.This paper briey desribes the two methods and their improvements. In setion 2 we �rstpresent Godunov and oworkers improvement of the Givens method. Then in setion 3 wepresent Parlett and Dhillon improvement of the inverse iteration method. Although, from aomputational point of view, the two methods seem to be very di�erent, there exists somestriking analogies between them. For instane, in the two methods we look for an optimalindex, we have to minimize a residual, et. We fous in setion 4 on the onnetions betweenthe two methods, and briey ompare their eÆieny. We have implemented the improvementsof the two methods under the software matlab. The ode soure an be obtained from theauthors.Let us introdue some notations. LetT = 0BBBBB�d1 b2b2 d2 b3. . . . . . . . .bN�1 dN�1 bNbN dN
1CCCCCA (1)where dn; n = 1; : : : ; N and bn; n = 2; : : : ; N are given real numbers, with the onventionb1 = bN+1 = 1. We an assume that T is unredued, i.e., bi 6= 0; i = 1; : : : ; N . Otherwise, theeigenvalue problem an be deated. Let us deompose T asT = U�U t; � = diag(�1; � � � ; �N ); U = (U1; � � � ; UN ) (2)where U is orthogonal. The eigenvalues of T are real, distint and the �rst or last omponentof any eigenvetor of T annot be zero.2 Godunov and oworkers improvement of Givens methodGivens method is a very eÆient method to ompute the eigenvalues of a real symmetri tridi-agonal matrix using Sturm sequenes and the bisetion method. Let � be a real. The left Sturmsequene of �rst kind is de�ned from P+0 (�) = 0 by the reurrene8k 2 J1; NK; P+k (�) = 8>>>>>><>>>>>>: +1 if P+k�1(�) = (dk � �)=jbkj;0 if P+k�1(�) = +1;jbk+1jdk � �� jbkjP+k�1(�) otherwise, (3)whereas the right Sturm sequene of �rst kind is de�ned by P�N (�) = +1 and8k 2 J1; NK; P�k�1(�) = 8>>>>>><>>>>>>:

(dk � �)jbkj if P�k (�) = +1;+1 if P�k (�) = 0;1jbkj �(dk � �)� jbk+1jP�k (�)� otherwise. (4)
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It is well known that the Sturm sequenes of �rst kind are related to the leading prinipal minorsof T , see [11℄. Here the subsript + indiates that the minors are taken with rows in inreasingorder whereas the subsript � indiates that the minors are with rows in dereasing order. Boththe right and left Sturm sequenes satisfy the same indution relations8k 2 J1; N � 1K; 8>>>>>><>>>>>>: P�k (�) = +1 if P�k�1(�) = (dk � �)=jbkj;P�k (�) = 0 if P�k�1(�) = +1;(dk � �)� jbkj P�k�1(�)� jbk+1jP�k (�) = 0 otherwise, (5)and di�er only in the boundary ondition for k = 0 and k = N . A Sturm sequene is termedtwo-sided when it satis�es the two boundary onditions P�0 (�) = 0 and P�N (�) = +1. Astraightforward alulation shows that the sequene (P�k (�n))k2J0;NK is a two-sided Sturm se-quene.Using Givens theorem along with a bisetion allow the omputation of the eigenvalue of T inan aurate and stable way, see [11, p. 298℄. Indeed, let the quantities P+1 (�); : : : ; P+N (�) beevaluated for some value �; then the number of agreements in sign of onseutive numbers ofthis sequene is the number of eigenvalues of T whih are stritly greater than � (if P+k (�) = 0then P+k (�) is taken to have the opposite sign to that of P+k�1(�), no two onseutive terms anbe zero). Furthermore an eigenvetor Un = (u1; � � � ; uN )t assoiated with the eigenvalue �n anbe omputed from the Sturm sequene P�k (�n) through the relations: u1 = 1,8k 2 J2; NK; 8>>>><>>>>: uk = 0 if P�k�1(�n) = +1;uk = �bk�1bk uk�2 if P�k�1(�n) = 0;uk = �sign(bk) uk�1P�k�1(�n) otherwise. (6)Although the P�k (�n) determine the eigenvalue in a stable way, the expliit use of expressions(6) to ompute omponents of the eigenvetor does not neessarily lead to a good approximationof the eigenvetor, see [3℄ for some examples. The reason for this lak of auray is that even ifthe eigenvalue �n is omputed with a very good auray, the Sturm sequenes (P+k (e�n))k2J0;NKor (P�k (e�n))k2J0;NK where e�n is an approximation of �n, may not be a two-sided Sturm sequene.In pratie, a two-sided Sturm sequene is extremely unlikely to our even when e�n is the losetmahine number to the eigenvalue �n.The idea of Godunov and oworkers to irumvent this drawbak is to enfore the Sturm sequenein e�n to be two-sided. This is obtained by joining the left Sturm sequene (P+k (e�n))k2J0;NK to theright Sturm sequene (P�k (e�n))k2J0;NK at a well hosen integer k0 2 J0; NK. The new sequene(Qk(e�n))k2J0;NK automatially satis�es the boundary onditions Q0(�) = 0 and QN (�) = +1.The sequene (Qk(e�n))k2J0;NK is generally not a two-sided Sturm sequene for the matrix T.However, it an be proved (see proposition 1 below) that it is a two-sided Sturm sequene for amatrix eT lose to T and that the eigenvetor eUn omputed using relations (6) with the sequene(Qk(e�n))k2J0;NK is a good approximation of the eigenvetor Un.In order to prove the orretness of their approah, Godunov and oworkers introdue two moresequenes, alled \Sturm sequenes of seond kind". For � 2 R, the left Sturm sequene of3



seond kind (�+k (�))k2J0;NK is de�ned from the left Sturm sequene of �rst kind by the relation�+j (�) = artan(P+j (�)) + �+j �; (7)where �+j is the number of non positive terms in the sequene P+1 (�); : : : ; P+j (�). Similarly for� 2 R and m 2 N, the right Sturm sequene of seond kind (��k (�))k2J0;NK is de�ned from theright Sturm sequene of �rst kind by the relation��j (�) = artan(P�j (�)) + (m� 1� ��j+1)�; (8)where ��j+1 is the number of non positive terms in the sequene P�j+1(�); : : : ; P�N�1(�), and��N = 0. Sturm sequenes of seond kind are entral in Godunov and o-workers improvement ofGivens method. We briey summarize their main properties, in order to understand the resultgiven in proposition 2 below and the onnetions between the two methods disussed in setion4.First, we have for all j 2 J0; NK, P+j (�) = tan(�+j (�)) and P�j (�) = tan(��j (�)). Eah funtion�+j inreases ontinuously and monotonially from 0 to j� whereas eah funtion ��j dereasesontinuously and monotonially. For a �xed �, the sequenes (�+k (�))k2J0;NK and (��k (�))k2J0;NKare not neessarily monotone. However, they an vary only in the following way:if �+k (�) 2℄�+k � � �=2; �+k �[ then 8<: �+k�1(�) 2℄(�+k � 1)�; �+k � � �=2[;�+k+1(�) 2℄�+k �; �+k � + �=2[;and if �+k (�) 2℄�+k �; �+k � + �=2[ then 8<: �+k�1(�) 2℄(�+k � 1)�; �+k � � �=2[;�+k+1(�) 2℄�+k �; �+k � + �=2[:If ��k (�) 2℄p�k � � �=2; p�k �[ then 8<: ��k�1(�) 2℄(p�k � 1)� � 3�=2; ��k � � �=2[;��k+1(�) 2℄p�k �; p�k � + �[;and if ��k (�) 2℄(p�k � 1)�; p�k � � �=2[ then 8<: ��k�1(�) 2℄p�k � � 3�=2; p�k � � �=2[;��k+1(�) 2℄(p�k � 1)�; p�k �[:>From the relations (3) and (4) for the Sturm sequenes of �rst kind, we an dedue relationsfor the Sturm sequenes of seond kind. We have�+j (�) = !(�+j�1(�); jbj j; dj � �; jbj+1j) j 2 J1; NK (9)where for 1; 3 2 R�+ and 2 2 R, the real funtion b! : x 2 R 7�! !(x; 1; 2; 3) is ontinuouslydi�erentiable and stritly inreasing. In the same way, we have��j�1(�) = (��j (�); jbj j; dj � �; jbj+1j) j 2 J1; NK; (10)where for 1; 3 2 R�+ and 2 2 R, the real funtion b : x 2 R 7�! (x; 1; 2; 3) is the inverse ofb!.Godunov's method, whih onsists in joining a left Strum sequene to a right Sturm sequeneat a well hosen index k0 to obtain the required two-sided Sturm sequene to ompute theeigenvetor, is justi�ed by the following proposition given in [3℄.4



Proposition 1 Let �n be the nth eigenvalue of T and xn; yn 2 R be the upper and lower boundof the last interval in the bisetion method used to ompute the approximate eigenvalue (so thatxn � �n � yn and e�n = xn+yn2 is the approximation of �n). Then the two following statementshold.- There exists an integer k0 2 J1; NK suh that�+k0�1(yn) � ��k0�1(xn); and �+k0(yn) � ��k0(xn): (11)- There exists a real number � 2 [0; 1℄ suh that the sequene ( k)k2J0;NK de�ned by k = �+k (yn); 8k = 0; : : : ; k0 � 1; k = ��k (xn); 8k = k0; : : : ; N; (12)is the two-sided Sturm sequene of seond kind with parameters (n; e�n) for the tridiagonal matrixeT de�ned by eT = 0BBBBBB�ed1 b2b2 ed2 b3. . . . . . . . .bN�1 edN�1 bNbN edN
1CCCCCCA (13)whereedk = 8>>><>>>: dk � 12(yn � xn) if k = 1; : : : ; k0 � 1;(1� �)(dk0+1 � 12 (yn � xn)) + �(dk0+1 + 12(yn � xn)) if k = k0;dk + 12(yn � xn) if k = k0 + 1; : : : ; N: (14)Proposition 1 guarantees that the two sequenes (�+k (yn))k2J0;NK and (��k (xn))k2J0;NK ross sothat the sequene ( k)k2J0;NK is always de�ned. It expresses that e�n is the nth eigenvalue of eTand that: kT � eTkp = 12 jyn � xnj; p = 1; 2;1: (15)Proposition 1 also gives the way to ompute an approximation of the eigenvetor Un assoi-ated with the eigenvalue �n. We reall that relations (6) are unsuited for the omputation ofapproximation to Un beause the Sturm sequene of the �rst kind P+k (e�n) is not two-sided.Now, the sequene ( k)k2J0;NK is a two-sided Sturm sequene of seond kind for the matrix eTwhih, aording to (15), is losed to T . We an obtain a two-sided Sturm sequene of �rst kind(Qk(e�n))k2J0;NK for ( k)k2J0;NK by the relations:Qk(e�n) = tan k; 8k 2 J0; NK: (16)It is then possible to use relations (6) with the two-sided Sturm sequene (Qk(e�n))k2J0;NK toompute an eigenvetor eUn of eT assoiated with e�n in an aurate and stable way. The eigenpair(e�n; eUn) of eT is a good approximation of (�n; Un) if e�n is well separated from all eigenvalues5



�j 6= �n sine from standard perturbation theory (Davis and Kahan theorem), see [9℄, andrelation (15) we havej sin\(Un; eUn)j � kT eUn � e�n eUnk2gap(e�n) � jyn � xnj2 gap(e�n) ; (17)j�n � e�nj � kT eUn � e�n eUnk22gap(e�n) � jyn � xnj24 gap(e�n) ; (18)where gap(e�n) = minfje�n��j j; j 6= ng. However the method does not guarantee that for losedeigenvalues, the orresponding omputed vetors are orthogonal.Of ourse the method seems very tedious from a omputational point of view beause of theuse of Sturm sequenes of seond kind. In fat there is no need to ompute them. The indexk0 for whih the left and right Sturm sequenes of �rst kind join an be haraterized using thesequenes (P�k (xn))J0;NK and (P+k (yn))J0;NK as stated in the following proposition given in [3℄.Proposition 2 For k 2 f1; : : : ; Ng let us onsider the integer p+k and p�k de�ned respe-tively by p+k = �+k and p�k = n � 1 � ��k+1 where �+k is the number of non positive terms inthe sequene P+1 (yn); : : : ; P+k (yn) and ��k is the number of non positive terms in the sequeneP�k (xn); : : : ; P�N�1(xn). LetK = �k 2 f1; � � � ; Ng j �p+k�1 < p�k�1� or �p+k�1 = p�k�1 and P+k�1(yn) � P�k�1(xn)�	 : (19)Then, the set K is not empty and ` = maxfk 2 Kg satis�es:�+̀�1(yn) � ��̀�1(xn) and �+̀(yn) � ��̀(xn):Therefore the index k0 oinides with ` = maxfk 2 Kg. This means that k0 is the greatestinteger k satisfying p+k�1 < p�k�1 or p+k�1 = p�k�1 and P+k�1(yn) � P�k�1(xn).We summarize the method to ompute the eigenvetors of a symmetri tridiagonal matrix Tin the following algorithm. It assumes that the eigenvalues �n; n 2 J1; NK have been omputedwith auray by the bisetion method and that xn; yn 2 R are the upper and lower bound ofthe last interval.ompute the left Sturm sequene of �rst kind in yn: P+0 (yn); : : : ; P+N (yn)ompute the right Sturm sequene of �rst kind in xn: P�0 (xn); : : : ; P�N (xn)for k = 1 to N doompute �+k the number of non positive numbers in the sequene P+1 (yn); : : : ; P+k (yn)ompute ��k the number of non positive numbers in the sequene P�k (xn); : : : ; P�N�1(xn)end-doompute the greatest index k0 for whih�+k0�1 < n� 1� ��k0or�+k0�1 = n� 1� ��k0 and P+k0�1(yn) � P�k0�1(xn)Form the sequene (Pk)k2J0;NK = P+0 (yn); � � � ; P+k0�1(yn), P�k0(xn), � � � ; P�N (xn)Set Un(1) = 1for j = 1 to N � 1 do 6



Un(j + 1) = �sign(Tj+1;j) Un(j)Pjend-doend-doAll the relations mentioned so far hold in exat arithmeti. Godunov and oworkers show thatthe method guarantees auray even in �nite preision arithmeti and that no overow oursif the data are normalized in a presribed manner, see [3, hp. 5℄. We have implemented thealgorithm under matlab software in both ases.3 Parlett and Dhillon improvement of the inverse iteration methodThe basi idea of inverse iteration method to ompute an eigenvetor assoiated to a giveneigenvalue. The eigenvetor Un assoiated with �n is de�ned as the solution to the linear system(T��nI)Un = 0. As the matrix (T��nI) is singular, N�1 equations from the system determinethe eigenvetor up to a salar multiple. However, in pratie we have a good approximation e�nof the eigenvalue �n, whih is often lose to, but di�erent from, �n. This implies that thematrix T � e�nI is nonsingular and the only solution to the linear system (T � e�nI)X = 0is the null vetor. A way to get an approximation eUn of the eigenvetor is to selet N � 1equations from the linear system (T � e�nI)X = 0 (disarding say the rth) and to solve theresulting under-determined system. The disarded equation produes a residual (T � e�nI)eUnwhose all omponents are zero exept the rth. The entral point in the proess is to determinethe best hoie for the equation to disard and ontrol the auray of the approximation eUn.As presented in [11℄, let us onsider the linear system:(T � e�nI)X = b (20)where b is an arbitrary normalized vetor. If b is expressed in the formb = NXj=1 jUjthen the solution X0 to the system isX0 = NXj=1 j�j � e�nUj: (21)It follows that if e�n is lose to �n but not to any other �j thenn�n � e�n o j�j � e�n 8j 6= n:This means that X0 is muh riher in Un than b is. We an repeat the proess taking X0 asright side term for the linear system. The solution X1 will be even riher than X0 in the vetorUn. This iterative proess to approximate eigenvetors is known as the inverse iteration method.Thus the best hoie for the equation to be omitted is the rth equation with r orresponding tothe largest omponent of Un. This means that the best starting vetor in the inverse iterationmethod is er. The result is instrutive but not useful at all sine the index of the largestomponent of the eigenvetor to be omputed is not known a priori. In [8℄, Parlett and Dhillongive a pratial way to determine the index r. Their approah is valid for normal triangularmatries that permit LDU and UDL fatorizations. We summarize it as it is although we areonly interested in the the symmetri ase. 7



Proposition 3 Assume that for all � in a neighborhood of �n the matries J� = T � �I arenormal and permit triangular fatorization J� = L+D+U+ and J� = U�D�L� where D+ =diag(D+1 ; � � � ;D+N ) and D� = diag(D�1 ; � � � ;D�N ) are diagonal matries, L+ and L� are lowertriangular matries, U+ and U� are upper triangular matries (all these last four with 1's onthe diagonal). For j = 1; � � � ; N the solution (Z(j)� ; Æ(j)� ) 2 RN � R to the system8<: J� Z(j)� = Æ(j)� ejZ(j)� (j) = 1 (22)satis�es Æ(j)� = D+j +D�j � Jj;j. Moreover we havelim�!�n �Æ(j)� ��1NXl=1 �Æ(l)� ��1 = juj j2: (23)Thus to determine the largest omponent of Un it suÆes to determine the index j for whihÆ(j)�n is minimum. As the exat value of the eigenvalue �n is unknown, we look for the index jfor whih Æ(j)e�n is minimum where e�n is an aurate approximation of �n. Eah Æ(j)e�n is omputedfrom the relation Æ(j)e�n = eD+j + eD�j � eJj;j (24)where the matries eD+ and eD� ome from the triangular fatorizations of Je�n = T � e�nI.4 Connetions between the two methodsAlthough the methods appear at �rst sight to be very di�erent, there exist various onnetionsbetween them. Some of these onnetions were already mentioned by Parlett and Dhillon in [8℄.We point out some others.4.1 Connetions onerning the omputed termsGodunov and oworkers method is based on the omputation of Sturm sequenes whereas Par-lett and Dhillon method is based on the LDU deomposition of T . As mentioned in [8℄ theSturm sequenes an be obtained in a very straight manner from the LDU deomposition. In-deed, let J� = T � �I with T tridiagonal symmetri with deomposition J� = L+D+(L+)T =L�D�(L�)T . The matries L� and D� an be omputed expliitly. In partiular, we obtainthe following expression for the diagonal matrix D = diag(D+1 ; � � � ;D+N ),8><>: D+1 = d1 � �;D+k = dk � �� b2kD+k�1 k 2 J2; NK: (25)On the other hand, the left Sturm sequene of �rst kind (P+k (�))k2J0;NK is de�ned, see relation(3), by P+k (�) = jbk+1jdk � �� jbkjP+k�1(�) = jbk+1jdk � �� b2kjbkj P+k�1(�) : (26)8



It follows from (25) and (26) that P+k (�) and D+k are onneted by the relationP+k (�) = jbk+1jD+k : (27)Similarly, we show that the following relation between the right sequene of �rst kind (P�k (�))k2J0;NKand the diagonal matrix D� holdsP�k (�) = D�k+1jbk+1j 8k 2 J1; NK: (28)Thus the basi tools in the two methods (Sturm sequenes in Godunov method, and LDUdeomposition of Parlett and Dhillon) are onneted through the relations (27) and (28).4.2 Connetions between the optimal indiesBoth methods look for a partiular integer termed the optimal index. In one hand, in Parlettand Dhillon approah we look for an integer j0 2 J1; NK suh that jÆ(j0)j = minj2J1;NK jÆ(j)j wherefor all j 2 J1; NK, (Z(j); Æ(j)) is the solution of the system( (T � e�nI) Z(j) = Æ(j) ejZ(j)(j) = 1 : (29)On the other hand, in Godunov and oworkers approah we join together a left and right Sturmsequenes at a well hosen index k0 2 J1; NK to obtain a two-sided Sturm sequene. Thequestion is then: are these two indies the same? To answer, let us �rst take an example (arandom tridiagonal matrix) and determine the optimal indies j0 and k0. The result is depitedin �gure 1. One an see that for approximatively half of the eigenvetors the two indies are thesame. For the other ones even if the optimal index k0 di�ers from j0 (the index of the maximalomponent of the eigenvetor under onsideration) it is always (exept in one ase) among the25% greatest omponents of this eigenvetor. In the sequel, we will try to explain where thisphenomenon originate from.The linear system (29) has the following full expression (with an obvious modi�ation whenj = 1 and j = N),8>>>>>>>>>>>>>><>>>>>>>>>>>>>>:
(d1 � e�n)z(j)1 + b2z(j)2 = 0;bkz(j)k�1 + (dk � e�n)z(j)k + bk+1z(j)k+1 = 0; for k = 2; : : : ; j � 1;bjz(j)j�1 + (dj � e�n)z(j)j + bj+1z(j)j+1 = Æ(j);bkz(j)k�1 + (dk � e�n)z(j)k + bk+1z(j)k+1 = 0; for k = j + 1; : : : ; N � 1;bNz(j)N�1 + (dN � e�n)z(j)N = 0;z(j)j = 1: (30)

First assume for onveniene that z(j)k 6= 0;8k 2 J1; NK (the general ase use the same ideas but
9
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Figure 1: Position of indies j0 (Æ), k0 (�) and j (�) suh that juj j is among the 25% greatestomponents of the eigenvetor u, for a random tridiagonal matrix of size 25.is muh more umbersome to handle). We have,8>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>:
(d1 � e�n) + b2 z(j)2z(j)1 = 0;bk z(j)k�1z(j)k + (dk � e�n) + bk+1 z(j)k+1z(j)k = 0; k = 2; : : : ; j � 1;bjz(j)j�1 + (dj � e�n) + bj+1z(j)j+1 = Æ(j);bk z(j)k�1z(j)k + (dk � e�n) + bk+1 z(j)k+1z(j)k = 0; k = j + 1; : : : ; N � 1;bN z(j)N�1z(j)N + (dN � e�n) = 0:

(31)
Then introdue the sequene (Qk(e�n))k2J0;NK de�ned by Q0(e�n) = 0, QN (e�n) = +1 and fork 2 J1; N � 1K, Qk(e�n) = �sign(bk+1) z(j)kz(j)k+1 : (32)

10



It follows from (31) that the sequene (Qk(e�n))k2J1;N�1K satis�es8>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>:
(d1 � e�n)� jb2jQ1(e�n) = 0; :(dk � e�n)� jbkj Qk�1(e�n)� jbk+1jQk(e�n) = 0; k 2 J2; j � 1K;(dj � e�n)� jbj j Qj�1(e�n)� jbj+1jQj(e�n) = Æ(j);(dk � e�n)� jbkj Qk�1(e�n)� jbk+1jQk(e�n) = 0; k 2 Jj + 1; N � 1K:jbN jQN�1(e�n)� (dN � e�n) = 0:

(33)
Now, for k 2 J0; j � 1K we onsider'k(e�n) = artan(Qk(e�n)) + �+k �; (34)where �+k is the number of non positive terms in the sequene Q1(e�n), : : : , Qk(e�n). Clearly'0(e�n), : : : , 'j�1(e�n) are the jth �rst terms of the left Sturm sequene of seond kind (�+k (e�n))k.In a similar way, for k = j; � � � ; N � 1 we onsider'k(e�n) = artan(Qk(e�n)) + (n� 1� �+k+1)� (35)where �+k+1 is the number of non positives terms in the sequene Qk+1(e�n); : : : ; QN+1(e�n).Clearly 'j(e�n); : : : ; 'N (e�n) are the N � j + 1th last terms of the right Sturm sequene ofseond kind (��k (e�n))k.>From (7), (8) and (9) we dedue that the sequene ('k(e�n))k satis�es8>><>>: 'k(e�n) = !('k�1(e�n); jbkj; dk � e�n; jbk+1j) k = 1; : : : ; j � 1;'j(e�n) = !('j�1(e�n); jbj j; dj � Æ(j) � e�n; jbj+1j);'k(e�n) = !('k�1(e�n); jbkj; dk � e�n; jbk+1j) k = j + 1; : : : ; N: (36)The sequene ('k(e�n))k is not a Sturm sequene of seond kind for T but is the linkage betweenthe left and right Sturm sequenes (�+k (e�n))k2J0;NK and (��k (e�n))k2J0;NK. We have'j(e�n)� �+j (e�n) = ��j (e�n)� �+j (e�n)= !(�+j�1(e�n); jbj j; dj � Æ(j) � e�n; jbj+1j)�!(�+j�1(e�n); jbj j; dj � e�n; jbj+1j): (37)Using Taylor formula we dedue that��j (e�n)� �+j (e�n) = �Æ(j)�3!(�+j�1(e�n); jbj j; dj � e�n; jbj+1j) +O(Æ(j)2): (38)Therefore looking for the integer j suh that jÆ(j)j is minimum amounts to �nding j suh thatj��j (e�n)��+j (e�n)j is minimum. As �+k is inreasing and ��k is dereasing we have for k = 1; : : : ; N( �+k (xn) � �+k (e�n) � �+k (yn);��k (yn) � ��k (e�n) � ��k (xn); (39)11



and therefore ��k (yn)� �+k (yn) � ��k (e�n)� �+k (e�n) � ��k (xn)� �+k (xn); (40)and �����k (e�n)� �+k (e�n)��� � max �j�+k (yn)� ��k (yn)j; j�+k (xn)� ��k (xn)j� : (41)The optimal index k0 2 J1; NK in Godunov and oworkers approah satis�es, see proposition 1,�+k0�1(yn)� ��k0�1(xn) � 0; et �+k0(yn)� ��k0(xn) � 0: (42)We annot dedue that j�+k (yn) � ��k (xn)j beomes minimum for k = k0 (indeed the Sturmsequenes (��k (xn))k and (��k (yn))k an be loser for a given index k than they are for the indexk0 where their values ross) but may explain why we often observe that the two indies j0 andk0 oinide, see �gure 1.If we onsider the example of the tridiagonal matrix Wilkinson of size 21, see [11℄, the index k0oinide with j0 only for two eigenvetors, see �gure 2. However, in this example as well, theindex k0 is always (exept in one ase) among the greatest omponents of the eigenvetor.
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Figure 2: Position of indies j0 (Æ), k0 (�) and j (�) suh that juj j is among the 50% greatestomponents of the eigenvetor u, for the tridiagonal matrix Wilkinson of size 21.The onlusion is that in general the indies k0 and j0 are equal even if in some ases they andi�er. However even in this later ase jÆ(k0)j is always small ompared to the average value ofthe jÆ(k)j. 12



4.3 Further onnetionsLet us onsider the two-sided Sturm sequene of �rst kind (Pk(e�n))k obtained by joining theleft Sturm sequene in yn and the right Sturm sequene in xn at the index k0. It is omposedof the following terms0 = P+0 (yn); : : : ; P+k0�1(yn); P�k0(xn); : : : ; P�N (xn) = +1: (43)This sequene is the two-sided Sturm sequene orresponding to the eigenvalue e�n of eT . Wetherefore have the following reurrene for k = 1; : : : ; N (we omit to distinguish the ase whenPk = 0 or Pk =1 for simpliity), see (5),(edk � e�n)� jbkjPk�1(e�n)� bk+1Pk(e�n) = 0: (44)Using (14) relation (44) an be written8>>>>>>>><>>>>>>>>:
(dk � e�n)� jbkjPk�1(e�n)� bk+1Pk(e�n) = 12h; k = 1; : : : ; k0 � 1;(dk0 � e�n)� jbk0 jPk0�1(e�n)� bk0+1Pk0(e�n) = 12h� �h;(dk � e�n)� jbkjPk�1(e�n)� bk+1Pk(e�n) = �12h; k = k0 + 1; : : : ; N; (45)

where h = yn� xn. An eigenvetor orresponding to e�n, whih is an exat eigenvalue for eT andan approximate eigenvalue for T , is omputed from the values of the two-sided Sturm sequeneof �rst kind (Pk(e�n))k=1;:::;N by the reurrene: u1 = 1,8k = 2; : : : ; N; 8>>>><>>>>: uk = 0 if Pk�1(�n) = +1;uk = �bk�1bk uk�2 if Pk�1(e�n) = 0;uk = �sign(bk) uk�1Pk�1(e�n) otherwise : (46)>From (45) and (46), it follows that the omponents uk of the eigenvetor Un satisfy8>>>>>>>><>>>>>>>>:
(dk � e�n)uk � bkuk�1 � bk+1uk+1 = h2uk; k = 1; : : : ; k0 � 1;(dk0 � e�n)uk0 � bk0uk0�1 � bk0+1uk0+1 = h(12 � �)uk0 ;(dk � e�n)uk � bkuk�1 � bk+1uk+1 = �h2uk; k = k0 + 1; : : : ; N: (47)In a matrix form the linear system (47) reads(T � e�n)Un = Æ; (48)where Æ = (h2uk; : : : ; (12 � �)huk0 ; : : : ;�h2uk)t.Thus, the approah of Godunov and oworkers onneting two Sturm sequenes of seond kindamounts to minimizing the global residual from the linear system(T � e�n)X = 0:In Parlett and Dhillon approah we look for the index j0 for whih the residual produed bydisarding equation j0 is minimum. 13



4.4 Comparison of the omputational ostLet us ompare the omputational ost to obtain the approximate eigenvetor with the twomethods. We assume that the eigenvalue has been omputed to mahine auray, j�n � e�nj ��mah j�nj.In Godunov and oworkers method, the omputation of the eigenvetor requires the omputationof the left Sturm sequene of �rst kind in yn: P+0 (yn); : : : ; P+N (yn) and the omputation of theright Sturm sequene of �rst kind in xn: P�0 (xn); : : : ; P�N (xn) using relations (3) and (4). Eahterm P�k neessitates one multipliation, one division and two additions to be evaluated. Thisrequires 2N multipliations, 2N divisions et 4N additions. >From the joined Sturm sequene,the omputation of the eigenvetor from relation (6) requires N � 1 divisions. The total ost toget one eigenvetor with Godunov and oworkers method is 2N multipliations, 3N divisions et4N additions. Moreover, the determination of the index k0 requires N2 sign tests.In Parlett and Dhillon variant of the inverse iteration method, the determination of the optimalindex requires the omputation of the LDU and ULD deomposition for the matrix (T � e�nI).Sine the matrix is tridiagonal, the ost for eah deomposition is N � 2 multipliations, 2N � 4divisions and N � 2 additions. Then the solution of the triangular systems Lv = u and Uz = vneessitate N�1 multipliations and N�1 additions for the �rst one and N�1 multipliations,N divisions and N � 1 additions for the seond one. The total ost to get one eigenvetor withParlett and Dhillon variant of the inverse iteration method is therefore 4N multipliations, 3Ndivisions and 4N additions.5 ConlusionThis paper has ompared the improvement of two lassial methods for omputing eigenvetorsof symmetri tridiagonal matries. Namely, the improvement of Givens method by Godunovand oworkers, see [3℄ and the improvement of the inverse iteration method by Parlett andDhillon, see [8℄. Godunov and oworkers improvement of Givens method ensures that the Sturmsequene used to ompute the eigenvetor is two-sided whih guarantees a stable and aurateomputation. This is not always the ase with the standard Givens method. Moreover the extra-ost for this modi�ation of Givens method remains low. Parlett's and Dhillon improvement ofthe inverse iteration method onsists of establishing the best initial vetor to start the iterations.This guarantees the inverse iteration method to onverge to the sought-after eigenvetor. Withthe standard inverse iteration method, onvergene is unlikely to our if the hosen initial vetoris orthogonal to eigenvetor. Although it is interesting to be sure to have an initial vetor thatguarantees onvergene of inverse iteration, from a pratial point of view, the overall ost dueto the determination of the best initial vetor is usually dissuasive. We an quote Peters andWilkinson, see [10, p. 360℄:the ordinary proess of inverse iteration will almost always sueed in one iteration;if it does not do so one has only to restart with an initial vetor orthogonal to the�rst. This proess an be ontinued until one reahes an initial vetor whih givessuess in one iteration. It is rare for the �rst vetor to fail and the average numberof iterations is unlikely to be as high as 1:2.Thus, it is, perhaps, more eonomial to use 2 iterations with the standard proess than oneiteration with the best initial vetor.
14
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