
HAL Id: hal-00137149
https://hal.science/hal-00137149

Preprint submitted on 16 Mar 2007

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

On the computation of eigenvectors of a symmetric
tridiagonal matrix: comparison of accuracy

improvements of Givens and inverse iteration methods
Stéphane Balac, Miloud Sadkane

To cite this version:
Stéphane Balac, Miloud Sadkane. On the computation of eigenvectors of a symmetric tridiagonal
matrix: comparison of accuracy improvements of Givens and inverse iteration methods. 2003. �hal-
00137149�

https://hal.science/hal-00137149
https://hal.archives-ouvertes.fr


On the 
omputation of eigenve
tors of a symmetri
 tridiagonalmatrix: 
omparison of a

ura
y improvements of Givens andinverse iteration methodsSt�ephane Bala
Laboratoire de Math�ematiques Appliqu�ees de LyonINSA de Lyon, 69621 Villeurbanne 
edex, Fran
estephane.bala
�insa-lyon.frMiloud SadkaneLaboratoire de Math�ematiquesUniversit�e de Bretagne O

identale, 29000 Brest, Fran
emiloud.sadkane�univ-brest.frKeywords: eigenvalue problem, Sturm sequen
e, Givens method, inverse iteration methodAbstra
tThe aim of this paper is the 
omparison of the re
ent improvements of two methods to
ompute eigenve
tors of a symmetri
 tridiagonal matrix on
e the eigenvalues are 
omputed.The �rst one is the Givens method whi
h is based on the use of Sturm sequen
es. This methodsu�ers from a la
k of a

ura
y for the 
omputation of the eigenve
tor when an approximatevalue (even a very a

urate one) of the eigenvalue is used in the 
omputational pro
ess. In[3℄ the authors introdu
e a modi�
ation of Givens method to ensure the 
omputation ofan a

urate eigenve
tor from a good approximation of the 
orresponding eigenvalue. These
ond improvement 
on
erns the inverse iteration method. In [8℄ the authors present away to determine the best initial ve
tor to start the iterations. Although the two methodsand their improvements seem to be very di�erent from a 
omputational point of view, thereexists some striking analogies. For instan
e, in the two methods we look for an optimalindex, we have to minimize a residual, et
. In the paper we brie
y present the two methodsand investigate the 
onne
tions between them.1 Introdu
tionThis paper is 
on
erned with the 
omputation of the eigenve
tors of a real symmetri
 tridiagonalmatrix T on
e the eigenvalues � are 
omputed. Inverse iteration method is the most widely usedmethod and is implemented in software libraries like lapa
k, see [1℄. A 
riti
al problem in theinverse iteration method is the 
hoi
e of the initial ve
tor to start the iterations. It 
an be proved,see [11℄, that the best 
hoi
e for the initial ve
tor is the rth 
olumn of the identity matrix, wherer is the largest 
omponent of the wanted eigenve
tor. Unfortunately, this information is not veryuseful for numeri
al purposes and for instan
e in the lapa
k library, a random ve
tor is taken.In 1997, B. Parlett and I. Dhillon devised a way to 
ompute this optimal index r using an LDUand UDL de
ompositions of the matrix T � �I, see [8℄.Another well known method for the 
omputation of an eigenve
tor from an eigenvalue is theGivens method, see [11, p. 299℄. This method is a very eÆ
ient for 
omputing the eigenvaluesof a real tridiagonal matrix using Sturm sequen
es and a bise
tion. This method 
an also beused to derive in a very simple way from the Sturm sequen
e the eigenve
tor asso
iated to the1




omputed eigenvalue. Unfortunately the 
omputation of the eigenve
tor in that method su�ersfrom numeri
al instability. In [3℄ the authors present a way to 
ir
umvent this instability andto 
ompute the eigenve
tor with a

ura
y from a good approximation of its eigenvalue.This paper brie
y des
ribes the two methods and their improvements. In se
tion 2 we �rstpresent Godunov and 
oworkers improvement of the Givens method. Then in se
tion 3 wepresent Parlett and Dhillon improvement of the inverse iteration method. Although, from a
omputational point of view, the two methods seem to be very di�erent, there exists somestriking analogies between them. For instan
e, in the two methods we look for an optimalindex, we have to minimize a residual, et
. We fo
us in se
tion 4 on the 
onne
tions betweenthe two methods, and brie
y 
ompare their eÆ
ien
y. We have implemented the improvementsof the two methods under the software matlab. The 
ode sour
e 
an be obtained from theauthors.Let us introdu
e some notations. LetT = 0BBBBB�d1 b2b2 d2 b3. . . . . . . . .bN�1 dN�1 bNbN dN
1CCCCCA (1)where dn; n = 1; : : : ; N and bn; n = 2; : : : ; N are given real numbers, with the 
onventionb1 = bN+1 = 1. We 
an assume that T is unredu
ed, i.e., bi 6= 0; i = 1; : : : ; N . Otherwise, theeigenvalue problem 
an be de
ated. Let us de
ompose T asT = U�U t; � = diag(�1; � � � ; �N ); U = (U1; � � � ; UN ) (2)where U is orthogonal. The eigenvalues of T are real, distin
t and the �rst or last 
omponentof any eigenve
tor of T 
annot be zero.2 Godunov and 
oworkers improvement of Givens methodGivens method is a very eÆ
ient method to 
ompute the eigenvalues of a real symmetri
 tridi-agonal matrix using Sturm sequen
es and the bise
tion method. Let � be a real. The left Sturmsequen
e of �rst kind is de�ned from P+0 (�) = 0 by the re
urren
e8k 2 J1; NK; P+k (�) = 8>>>>>><>>>>>>: +1 if P+k�1(�) = (dk � �)=jbkj;0 if P+k�1(�) = +1;jbk+1jdk � �� jbkjP+k�1(�) otherwise, (3)whereas the right Sturm sequen
e of �rst kind is de�ned by P�N (�) = +1 and8k 2 J1; NK; P�k�1(�) = 8>>>>>><>>>>>>:

(dk � �)jbkj if P�k (�) = +1;+1 if P�k (�) = 0;1jbkj �(dk � �)� jbk+1jP�k (�)� otherwise. (4)
2



It is well known that the Sturm sequen
es of �rst kind are related to the leading prin
ipal minorsof T , see [11℄. Here the subs
ript + indi
ates that the minors are taken with rows in in
reasingorder whereas the subs
ript � indi
ates that the minors are with rows in de
reasing order. Boththe right and left Sturm sequen
es satisfy the same indu
tion relations8k 2 J1; N � 1K; 8>>>>>><>>>>>>: P�k (�) = +1 if P�k�1(�) = (dk � �)=jbkj;P�k (�) = 0 if P�k�1(�) = +1;(dk � �)� jbkj P�k�1(�)� jbk+1jP�k (�) = 0 otherwise, (5)and di�er only in the boundary 
ondition for k = 0 and k = N . A Sturm sequen
e is termedtwo-sided when it satis�es the two boundary 
onditions P�0 (�) = 0 and P�N (�) = +1. Astraightforward 
al
ulation shows that the sequen
e (P�k (�n))k2J0;NK is a two-sided Sturm se-quen
e.Using Givens theorem along with a bise
tion allow the 
omputation of the eigenvalue of T inan a

urate and stable way, see [11, p. 298℄. Indeed, let the quantities P+1 (�); : : : ; P+N (�) beevaluated for some value �; then the number of agreements in sign of 
onse
utive numbers ofthis sequen
e is the number of eigenvalues of T whi
h are stri
tly greater than � (if P+k (�) = 0then P+k (�) is taken to have the opposite sign to that of P+k�1(�), no two 
onse
utive terms 
anbe zero). Furthermore an eigenve
tor Un = (u1; � � � ; uN )t asso
iated with the eigenvalue �n 
anbe 
omputed from the Sturm sequen
e P�k (�n) through the relations: u1 = 1,8k 2 J2; NK; 8>>>><>>>>: uk = 0 if P�k�1(�n) = +1;uk = �bk�1bk uk�2 if P�k�1(�n) = 0;uk = �sign(bk) uk�1P�k�1(�n) otherwise. (6)Although the P�k (�n) determine the eigenvalue in a stable way, the expli
it use of expressions(6) to 
ompute 
omponents of the eigenve
tor does not ne
essarily lead to a good approximationof the eigenve
tor, see [3℄ for some examples. The reason for this la
k of a

ura
y is that even ifthe eigenvalue �n is 
omputed with a very good a

ura
y, the Sturm sequen
es (P+k (e�n))k2J0;NKor (P�k (e�n))k2J0;NK where e�n is an approximation of �n, may not be a two-sided Sturm sequen
e.In pra
ti
e, a two-sided Sturm sequen
e is extremely unlikely to o

ur even when e�n is the 
losetma
hine number to the eigenvalue �n.The idea of Godunov and 
oworkers to 
ir
umvent this drawba
k is to enfor
e the Sturm sequen
ein e�n to be two-sided. This is obtained by joining the left Sturm sequen
e (P+k (e�n))k2J0;NK to theright Sturm sequen
e (P�k (e�n))k2J0;NK at a well 
hosen integer k0 2 J0; NK. The new sequen
e(Qk(e�n))k2J0;NK automati
ally satis�es the boundary 
onditions Q0(�) = 0 and QN (�) = +1.The sequen
e (Qk(e�n))k2J0;NK is generally not a two-sided Sturm sequen
e for the matrix T.However, it 
an be proved (see proposition 1 below) that it is a two-sided Sturm sequen
e for amatrix eT 
lose to T and that the eigenve
tor eUn 
omputed using relations (6) with the sequen
e(Qk(e�n))k2J0;NK is a good approximation of the eigenve
tor Un.In order to prove the 
orre
tness of their approa
h, Godunov and 
oworkers introdu
e two moresequen
es, 
alled \Sturm sequen
es of se
ond kind". For � 2 R, the left Sturm sequen
e of3



se
ond kind (�+k (�))k2J0;NK is de�ned from the left Sturm sequen
e of �rst kind by the relation�+j (�) = ar
tan(P+j (�)) + �+j �; (7)where �+j is the number of non positive terms in the sequen
e P+1 (�); : : : ; P+j (�). Similarly for� 2 R and m 2 N, the right Sturm sequen
e of se
ond kind (��k (�))k2J0;NK is de�ned from theright Sturm sequen
e of �rst kind by the relation��j (�) = ar
tan(P�j (�)) + (m� 1� ��j+1)�; (8)where ��j+1 is the number of non positive terms in the sequen
e P�j+1(�); : : : ; P�N�1(�), and��N = 0. Sturm sequen
es of se
ond kind are 
entral in Godunov and 
o-workers improvement ofGivens method. We brie
y summarize their main properties, in order to understand the resultgiven in proposition 2 below and the 
onne
tions between the two methods dis
ussed in se
tion4.First, we have for all j 2 J0; NK, P+j (�) = tan(�+j (�)) and P�j (�) = tan(��j (�)). Ea
h fun
tion�+j in
reases 
ontinuously and monotoni
ally from 0 to j� whereas ea
h fun
tion ��j de
reases
ontinuously and monotoni
ally. For a �xed �, the sequen
es (�+k (�))k2J0;NK and (��k (�))k2J0;NKare not ne
essarily monotone. However, they 
an vary only in the following way:if �+k (�) 2℄�+k � � �=2; �+k �[ then 8<: �+k�1(�) 2℄(�+k � 1)�; �+k � � �=2[;�+k+1(�) 2℄�+k �; �+k � + �=2[;and if �+k (�) 2℄�+k �; �+k � + �=2[ then 8<: �+k�1(�) 2℄(�+k � 1)�; �+k � � �=2[;�+k+1(�) 2℄�+k �; �+k � + �=2[:If ��k (�) 2℄p�k � � �=2; p�k �[ then 8<: ��k�1(�) 2℄(p�k � 1)� � 3�=2; ��k � � �=2[;��k+1(�) 2℄p�k �; p�k � + �[;and if ��k (�) 2℄(p�k � 1)�; p�k � � �=2[ then 8<: ��k�1(�) 2℄p�k � � 3�=2; p�k � � �=2[;��k+1(�) 2℄(p�k � 1)�; p�k �[:>From the relations (3) and (4) for the Sturm sequen
es of �rst kind, we 
an dedu
e relationsfor the Sturm sequen
es of se
ond kind. We have�+j (�) = !(�+j�1(�); jbj j; dj � �; jbj+1j) j 2 J1; NK (9)where for 
1; 
3 2 R�+ and 
2 2 R, the real fun
tion b! : x 2 R 7�! !(x; 
1; 
2; 
3) is 
ontinuouslydi�erentiable and stri
tly in
reasing. In the same way, we have��j�1(�) = 
(��j (�); jbj j; dj � �; jbj+1j) j 2 J1; NK; (10)where for 
1; 
3 2 R�+ and 
2 2 R, the real fun
tion b
 : x 2 R 7�! 
(x; 
1; 
2; 
3) is the inverse ofb!.Godunov's method, whi
h 
onsists in joining a left Strum sequen
e to a right Sturm sequen
eat a well 
hosen index k0 to obtain the required two-sided Sturm sequen
e to 
ompute theeigenve
tor, is justi�ed by the following proposition given in [3℄.4



Proposition 1 Let �n be the nth eigenvalue of T and xn; yn 2 R be the upper and lower boundof the last interval in the bise
tion method used to 
ompute the approximate eigenvalue (so thatxn � �n � yn and e�n = xn+yn2 is the approximation of �n). Then the two following statementshold.- There exists an integer k0 2 J1; NK su
h that�+k0�1(yn) � ��k0�1(xn); and �+k0(yn) � ��k0(xn): (11)- There exists a real number � 2 [0; 1℄ su
h that the sequen
e ( k)k2J0;NK de�ned by k = �+k (yn); 8k = 0; : : : ; k0 � 1; k = ��k (xn); 8k = k0; : : : ; N; (12)is the two-sided Sturm sequen
e of se
ond kind with parameters (n; e�n) for the tridiagonal matrixeT de�ned by eT = 0BBBBBB�ed1 b2b2 ed2 b3. . . . . . . . .bN�1 edN�1 bNbN edN
1CCCCCCA (13)whereedk = 8>>><>>>: dk � 12(yn � xn) if k = 1; : : : ; k0 � 1;(1� �)(dk0+1 � 12 (yn � xn)) + �(dk0+1 + 12(yn � xn)) if k = k0;dk + 12(yn � xn) if k = k0 + 1; : : : ; N: (14)Proposition 1 guarantees that the two sequen
es (�+k (yn))k2J0;NK and (��k (xn))k2J0;NK 
ross sothat the sequen
e ( k)k2J0;NK is always de�ned. It expresses that e�n is the nth eigenvalue of eTand that: kT � eTkp = 12 jyn � xnj; p = 1; 2;1: (15)Proposition 1 also gives the way to 
ompute an approximation of the eigenve
tor Un asso
i-ated with the eigenvalue �n. We re
all that relations (6) are unsuited for the 
omputation ofapproximation to Un be
ause the Sturm sequen
e of the �rst kind P+k (e�n) is not two-sided.Now, the sequen
e ( k)k2J0;NK is a two-sided Sturm sequen
e of se
ond kind for the matrix eTwhi
h, a

ording to (15), is 
losed to T . We 
an obtain a two-sided Sturm sequen
e of �rst kind(Qk(e�n))k2J0;NK for ( k)k2J0;NK by the relations:Qk(e�n) = tan k; 8k 2 J0; NK: (16)It is then possible to use relations (6) with the two-sided Sturm sequen
e (Qk(e�n))k2J0;NK to
ompute an eigenve
tor eUn of eT asso
iated with e�n in an a

urate and stable way. The eigenpair(e�n; eUn) of eT is a good approximation of (�n; Un) if e�n is well separated from all eigenvalues5



�j 6= �n sin
e from standard perturbation theory (Davis and Kahan theorem), see [9℄, andrelation (15) we havej sin\(Un; eUn)j � kT eUn � e�n eUnk2gap(e�n) � jyn � xnj2 gap(e�n) ; (17)j�n � e�nj � kT eUn � e�n eUnk22gap(e�n) � jyn � xnj24 gap(e�n) ; (18)where gap(e�n) = minfje�n��j j; j 6= ng. However the method does not guarantee that for 
losedeigenvalues, the 
orresponding 
omputed ve
tors are orthogonal.Of 
ourse the method seems very tedious from a 
omputational point of view be
ause of theuse of Sturm sequen
es of se
ond kind. In fa
t there is no need to 
ompute them. The indexk0 for whi
h the left and right Sturm sequen
es of �rst kind join 
an be 
hara
terized using thesequen
es (P�k (xn))J0;NK and (P+k (yn))J0;NK as stated in the following proposition given in [3℄.Proposition 2 For k 2 f1; : : : ; Ng let us 
onsider the integer p+k and p�k de�ned respe
-tively by p+k = �+k and p�k = n � 1 � ��k+1 where �+k is the number of non positive terms inthe sequen
e P+1 (yn); : : : ; P+k (yn) and ��k is the number of non positive terms in the sequen
eP�k (xn); : : : ; P�N�1(xn). LetK = �k 2 f1; � � � ; Ng j �p+k�1 < p�k�1� or �p+k�1 = p�k�1 and P+k�1(yn) � P�k�1(xn)�	 : (19)Then, the set K is not empty and ` = maxfk 2 Kg satis�es:�+̀�1(yn) � ��̀�1(xn) and �+̀(yn) � ��̀(xn):Therefore the index k0 
oin
ides with ` = maxfk 2 Kg. This means that k0 is the greatestinteger k satisfying p+k�1 < p�k�1 or p+k�1 = p�k�1 and P+k�1(yn) � P�k�1(xn).We summarize the method to 
ompute the eigenve
tors of a symmetri
 tridiagonal matrix Tin the following algorithm. It assumes that the eigenvalues �n; n 2 J1; NK have been 
omputedwith a

ura
y by the bise
tion method and that xn; yn 2 R are the upper and lower bound ofthe last interval.
ompute the left Sturm sequen
e of �rst kind in yn: P+0 (yn); : : : ; P+N (yn)
ompute the right Sturm sequen
e of �rst kind in xn: P�0 (xn); : : : ; P�N (xn)for k = 1 to N do
ompute �+k the number of non positive numbers in the sequen
e P+1 (yn); : : : ; P+k (yn)
ompute ��k the number of non positive numbers in the sequen
e P�k (xn); : : : ; P�N�1(xn)end-do
ompute the greatest index k0 for whi
h�+k0�1 < n� 1� ��k0or�+k0�1 = n� 1� ��k0 and P+k0�1(yn) � P�k0�1(xn)Form the sequen
e (Pk)k2J0;NK = P+0 (yn); � � � ; P+k0�1(yn), P�k0(xn), � � � ; P�N (xn)Set Un(1) = 1for j = 1 to N � 1 do 6



Un(j + 1) = �sign(Tj+1;j) Un(j)Pjend-doend-doAll the relations mentioned so far hold in exa
t arithmeti
. Godunov and 
oworkers show thatthe method guarantees a

ura
y even in �nite pre
ision arithmeti
 and that no over
ow o

ursif the data are normalized in a pres
ribed manner, see [3, 
hp. 5℄. We have implemented thealgorithm under matlab software in both 
ases.3 Parlett and Dhillon improvement of the inverse iteration methodThe basi
 idea of inverse iteration method to 
ompute an eigenve
tor asso
iated to a giveneigenvalue. The eigenve
tor Un asso
iated with �n is de�ned as the solution to the linear system(T��nI)Un = 0. As the matrix (T��nI) is singular, N�1 equations from the system determinethe eigenve
tor up to a s
alar multiple. However, in pra
ti
e we have a good approximation e�nof the eigenvalue �n, whi
h is often 
lose to, but di�erent from, �n. This implies that thematrix T � e�nI is nonsingular and the only solution to the linear system (T � e�nI)X = 0is the null ve
tor. A way to get an approximation eUn of the eigenve
tor is to sele
t N � 1equations from the linear system (T � e�nI)X = 0 (dis
arding say the rth) and to solve theresulting under-determined system. The dis
arded equation produ
es a residual (T � e�nI)eUnwhose all 
omponents are zero ex
ept the rth. The 
entral point in the pro
ess is to determinethe best 
hoi
e for the equation to dis
ard and 
ontrol the a

ura
y of the approximation eUn.As presented in [11℄, let us 
onsider the linear system:(T � e�nI)X = b (20)where b is an arbitrary normalized ve
tor. If b is expressed in the formb = NXj=1 
jUjthen the solution X0 to the system isX0 = NXj=1 
j�j � e�nUj: (21)It follows that if e�n is 
lose to �n but not to any other �j then
n�n � e�n o 
j�j � e�n 8j 6= n:This means that X0 is mu
h ri
her in Un than b is. We 
an repeat the pro
ess taking X0 asright side term for the linear system. The solution X1 will be even ri
her than X0 in the ve
torUn. This iterative pro
ess to approximate eigenve
tors is known as the inverse iteration method.Thus the best 
hoi
e for the equation to be omitted is the rth equation with r 
orresponding tothe largest 
omponent of Un. This means that the best starting ve
tor in the inverse iterationmethod is er. The result is instru
tive but not useful at all sin
e the index of the largest
omponent of the eigenve
tor to be 
omputed is not known a priori. In [8℄, Parlett and Dhillongive a pra
ti
al way to determine the index r. Their approa
h is valid for normal triangularmatri
es that permit LDU and UDL fa
torizations. We summarize it as it is although we areonly interested in the the symmetri
 
ase. 7



Proposition 3 Assume that for all � in a neighborhood of �n the matri
es J� = T � �I arenormal and permit triangular fa
torization J� = L+D+U+ and J� = U�D�L� where D+ =diag(D+1 ; � � � ;D+N ) and D� = diag(D�1 ; � � � ;D�N ) are diagonal matri
es, L+ and L� are lowertriangular matri
es, U+ and U� are upper triangular matri
es (all these last four with 1's onthe diagonal). For j = 1; � � � ; N the solution (Z(j)� ; Æ(j)� ) 2 RN � R to the system8<: J� Z(j)� = Æ(j)� ejZ(j)� (j) = 1 (22)satis�es Æ(j)� = D+j +D�j � Jj;j. Moreover we havelim�!�n �Æ(j)� ��1NXl=1 �Æ(l)� ��1 = juj j2: (23)Thus to determine the largest 
omponent of Un it suÆ
es to determine the index j for whi
hÆ(j)�n is minimum. As the exa
t value of the eigenvalue �n is unknown, we look for the index jfor whi
h Æ(j)e�n is minimum where e�n is an a

urate approximation of �n. Ea
h Æ(j)e�n is 
omputedfrom the relation Æ(j)e�n = eD+j + eD�j � eJj;j (24)where the matri
es eD+ and eD� 
ome from the triangular fa
torizations of Je�n = T � e�nI.4 Conne
tions between the two methodsAlthough the methods appear at �rst sight to be very di�erent, there exist various 
onne
tionsbetween them. Some of these 
onne
tions were already mentioned by Parlett and Dhillon in [8℄.We point out some others.4.1 Conne
tions 
on
erning the 
omputed termsGodunov and 
oworkers method is based on the 
omputation of Sturm sequen
es whereas Par-lett and Dhillon method is based on the LDU de
omposition of T . As mentioned in [8℄ theSturm sequen
es 
an be obtained in a very straight manner from the LDU de
omposition. In-deed, let J� = T � �I with T tridiagonal symmetri
 with de
omposition J� = L+D+(L+)T =L�D�(L�)T . The matri
es L� and D� 
an be 
omputed expli
itly. In parti
ular, we obtainthe following expression for the diagonal matrix D = diag(D+1 ; � � � ;D+N ),8><>: D+1 = d1 � �;D+k = dk � �� b2kD+k�1 k 2 J2; NK: (25)On the other hand, the left Sturm sequen
e of �rst kind (P+k (�))k2J0;NK is de�ned, see relation(3), by P+k (�) = jbk+1jdk � �� jbkjP+k�1(�) = jbk+1jdk � �� b2kjbkj P+k�1(�) : (26)8



It follows from (25) and (26) that P+k (�) and D+k are 
onne
ted by the relationP+k (�) = jbk+1jD+k : (27)Similarly, we show that the following relation between the right sequen
e of �rst kind (P�k (�))k2J0;NKand the diagonal matrix D� holdsP�k (�) = D�k+1jbk+1j 8k 2 J1; NK: (28)Thus the basi
 tools in the two methods (Sturm sequen
es in Godunov method, and LDUde
omposition of Parlett and Dhillon) are 
onne
ted through the relations (27) and (28).4.2 Conne
tions between the optimal indi
esBoth methods look for a parti
ular integer termed the optimal index. In one hand, in Parlettand Dhillon approa
h we look for an integer j0 2 J1; NK su
h that jÆ(j0)j = minj2J1;NK jÆ(j)j wherefor all j 2 J1; NK, (Z(j); Æ(j)) is the solution of the system( (T � e�nI) Z(j) = Æ(j) ejZ(j)(j) = 1 : (29)On the other hand, in Godunov and 
oworkers approa
h we join together a left and right Sturmsequen
es at a well 
hosen index k0 2 J1; NK to obtain a two-sided Sturm sequen
e. Thequestion is then: are these two indi
es the same? To answer, let us �rst take an example (arandom tridiagonal matrix) and determine the optimal indi
es j0 and k0. The result is depi
tedin �gure 1. One 
an see that for approximatively half of the eigenve
tors the two indi
es are thesame. For the other ones even if the optimal index k0 di�ers from j0 (the index of the maximal
omponent of the eigenve
tor under 
onsideration) it is always (ex
ept in one 
ase) among the25% greatest 
omponents of this eigenve
tor. In the sequel, we will try to explain where thisphenomenon originate from.The linear system (29) has the following full expression (with an obvious modi�
ation whenj = 1 and j = N),8>>>>>>>>>>>>>><>>>>>>>>>>>>>>:
(d1 � e�n)z(j)1 + b2z(j)2 = 0;bkz(j)k�1 + (dk � e�n)z(j)k + bk+1z(j)k+1 = 0; for k = 2; : : : ; j � 1;bjz(j)j�1 + (dj � e�n)z(j)j + bj+1z(j)j+1 = Æ(j);bkz(j)k�1 + (dk � e�n)z(j)k + bk+1z(j)k+1 = 0; for k = j + 1; : : : ; N � 1;bNz(j)N�1 + (dN � e�n)z(j)N = 0;z(j)j = 1: (30)

First assume for 
onvenien
e that z(j)k 6= 0;8k 2 J1; NK (the general 
ase use the same ideas but
9
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Figure 1: Position of indi
es j0 (Æ), k0 (�) and j (�) su
h that juj j is among the 25% greatest
omponents of the eigenve
tor u, for a random tridiagonal matrix of size 25.is mu
h more 
umbersome to handle). We have,8>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>:
(d1 � e�n) + b2 z(j)2z(j)1 = 0;bk z(j)k�1z(j)k + (dk � e�n) + bk+1 z(j)k+1z(j)k = 0; k = 2; : : : ; j � 1;bjz(j)j�1 + (dj � e�n) + bj+1z(j)j+1 = Æ(j);bk z(j)k�1z(j)k + (dk � e�n) + bk+1 z(j)k+1z(j)k = 0; k = j + 1; : : : ; N � 1;bN z(j)N�1z(j)N + (dN � e�n) = 0:

(31)
Then introdu
e the sequen
e (Qk(e�n))k2J0;NK de�ned by Q0(e�n) = 0, QN (e�n) = +1 and fork 2 J1; N � 1K, Qk(e�n) = �sign(bk+1) z(j)kz(j)k+1 : (32)

10



It follows from (31) that the sequen
e (Qk(e�n))k2J1;N�1K satis�es8>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>:
(d1 � e�n)� jb2jQ1(e�n) = 0; :(dk � e�n)� jbkj Qk�1(e�n)� jbk+1jQk(e�n) = 0; k 2 J2; j � 1K;(dj � e�n)� jbj j Qj�1(e�n)� jbj+1jQj(e�n) = Æ(j);(dk � e�n)� jbkj Qk�1(e�n)� jbk+1jQk(e�n) = 0; k 2 Jj + 1; N � 1K:jbN jQN�1(e�n)� (dN � e�n) = 0:

(33)
Now, for k 2 J0; j � 1K we 
onsider'k(e�n) = ar
tan(Qk(e�n)) + �+k �; (34)where �+k is the number of non positive terms in the sequen
e Q1(e�n), : : : , Qk(e�n). Clearly'0(e�n), : : : , 'j�1(e�n) are the jth �rst terms of the left Sturm sequen
e of se
ond kind (�+k (e�n))k.In a similar way, for k = j; � � � ; N � 1 we 
onsider'k(e�n) = ar
tan(Qk(e�n)) + (n� 1� �+k+1)� (35)where �+k+1 is the number of non positives terms in the sequen
e Qk+1(e�n); : : : ; QN+1(e�n).Clearly 'j(e�n); : : : ; 'N (e�n) are the N � j + 1th last terms of the right Sturm sequen
e ofse
ond kind (��k (e�n))k.>From (7), (8) and (9) we dedu
e that the sequen
e ('k(e�n))k satis�es8>><>>: 'k(e�n) = !('k�1(e�n); jbkj; dk � e�n; jbk+1j) k = 1; : : : ; j � 1;'j(e�n) = !('j�1(e�n); jbj j; dj � Æ(j) � e�n; jbj+1j);'k(e�n) = !('k�1(e�n); jbkj; dk � e�n; jbk+1j) k = j + 1; : : : ; N: (36)The sequen
e ('k(e�n))k is not a Sturm sequen
e of se
ond kind for T but is the linkage betweenthe left and right Sturm sequen
es (�+k (e�n))k2J0;NK and (��k (e�n))k2J0;NK. We have'j(e�n)� �+j (e�n) = ��j (e�n)� �+j (e�n)= !(�+j�1(e�n); jbj j; dj � Æ(j) � e�n; jbj+1j)�!(�+j�1(e�n); jbj j; dj � e�n; jbj+1j): (37)Using Taylor formula we dedu
e that��j (e�n)� �+j (e�n) = �Æ(j)�3!(�+j�1(e�n); jbj j; dj � e�n; jbj+1j) +O(Æ(j)2): (38)Therefore looking for the integer j su
h that jÆ(j)j is minimum amounts to �nding j su
h thatj��j (e�n)��+j (e�n)j is minimum. As �+k is in
reasing and ��k is de
reasing we have for k = 1; : : : ; N( �+k (xn) � �+k (e�n) � �+k (yn);��k (yn) � ��k (e�n) � ��k (xn); (39)11



and therefore ��k (yn)� �+k (yn) � ��k (e�n)� �+k (e�n) � ��k (xn)� �+k (xn); (40)and �����k (e�n)� �+k (e�n)��� � max �j�+k (yn)� ��k (yn)j; j�+k (xn)� ��k (xn)j� : (41)The optimal index k0 2 J1; NK in Godunov and 
oworkers approa
h satis�es, see proposition 1,�+k0�1(yn)� ��k0�1(xn) � 0; et �+k0(yn)� ��k0(xn) � 0: (42)We 
annot dedu
e that j�+k (yn) � ��k (xn)j be
omes minimum for k = k0 (indeed the Sturmsequen
es (��k (xn))k and (��k (yn))k 
an be 
loser for a given index k than they are for the indexk0 where their values 
ross) but may explain why we often observe that the two indi
es j0 andk0 
oin
ide, see �gure 1.If we 
onsider the example of the tridiagonal matrix Wilkinson of size 21, see [11℄, the index k0
oin
ide with j0 only for two eigenve
tors, see �gure 2. However, in this example as well, theindex k0 is always (ex
ept in one 
ase) among the greatest 
omponents of the eigenve
tor.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

Figure 2: Position of indi
es j0 (Æ), k0 (�) and j (�) su
h that juj j is among the 50% greatest
omponents of the eigenve
tor u, for the tridiagonal matrix Wilkinson of size 21.The 
on
lusion is that in general the indi
es k0 and j0 are equal even if in some 
ases they 
andi�er. However even in this later 
ase jÆ(k0)j is always small 
ompared to the average value ofthe jÆ(k)j. 12



4.3 Further 
onne
tionsLet us 
onsider the two-sided Sturm sequen
e of �rst kind (Pk(e�n))k obtained by joining theleft Sturm sequen
e in yn and the right Sturm sequen
e in xn at the index k0. It is 
omposedof the following terms0 = P+0 (yn); : : : ; P+k0�1(yn); P�k0(xn); : : : ; P�N (xn) = +1: (43)This sequen
e is the two-sided Sturm sequen
e 
orresponding to the eigenvalue e�n of eT . Wetherefore have the following re
urren
e for k = 1; : : : ; N (we omit to distinguish the 
ase whenPk = 0 or Pk =1 for simpli
ity), see (5),(edk � e�n)� jbkjPk�1(e�n)� bk+1Pk(e�n) = 0: (44)Using (14) relation (44) 
an be written8>>>>>>>><>>>>>>>>:
(dk � e�n)� jbkjPk�1(e�n)� bk+1Pk(e�n) = 12h; k = 1; : : : ; k0 � 1;(dk0 � e�n)� jbk0 jPk0�1(e�n)� bk0+1Pk0(e�n) = 12h� �h;(dk � e�n)� jbkjPk�1(e�n)� bk+1Pk(e�n) = �12h; k = k0 + 1; : : : ; N; (45)

where h = yn� xn. An eigenve
tor 
orresponding to e�n, whi
h is an exa
t eigenvalue for eT andan approximate eigenvalue for T , is 
omputed from the values of the two-sided Sturm sequen
eof �rst kind (Pk(e�n))k=1;:::;N by the re
urren
e: u1 = 1,8k = 2; : : : ; N; 8>>>><>>>>: uk = 0 if Pk�1(�n) = +1;uk = �bk�1bk uk�2 if Pk�1(e�n) = 0;uk = �sign(bk) uk�1Pk�1(e�n) otherwise : (46)>From (45) and (46), it follows that the 
omponents uk of the eigenve
tor Un satisfy8>>>>>>>><>>>>>>>>:
(dk � e�n)uk � bkuk�1 � bk+1uk+1 = h2uk; k = 1; : : : ; k0 � 1;(dk0 � e�n)uk0 � bk0uk0�1 � bk0+1uk0+1 = h(12 � �)uk0 ;(dk � e�n)uk � bkuk�1 � bk+1uk+1 = �h2uk; k = k0 + 1; : : : ; N: (47)In a matrix form the linear system (47) reads(T � e�n)Un = Æ; (48)where Æ = (h2uk; : : : ; (12 � �)huk0 ; : : : ;�h2uk)t.Thus, the approa
h of Godunov and 
oworkers 
onne
ting two Sturm sequen
es of se
ond kindamounts to minimizing the global residual from the linear system(T � e�n)X = 0:In Parlett and Dhillon approa
h we look for the index j0 for whi
h the residual produ
ed bydis
arding equation j0 is minimum. 13



4.4 Comparison of the 
omputational 
ostLet us 
ompare the 
omputational 
ost to obtain the approximate eigenve
tor with the twomethods. We assume that the eigenvalue has been 
omputed to ma
hine a

ura
y, j�n � e�nj ��ma
h j�nj.In Godunov and 
oworkers method, the 
omputation of the eigenve
tor requires the 
omputationof the left Sturm sequen
e of �rst kind in yn: P+0 (yn); : : : ; P+N (yn) and the 
omputation of theright Sturm sequen
e of �rst kind in xn: P�0 (xn); : : : ; P�N (xn) using relations (3) and (4). Ea
hterm P�k ne
essitates one multipli
ation, one division and two additions to be evaluated. Thisrequires 2N multipli
ations, 2N divisions et 4N additions. >From the joined Sturm sequen
e,the 
omputation of the eigenve
tor from relation (6) requires N � 1 divisions. The total 
ost toget one eigenve
tor with Godunov and 
oworkers method is 2N multipli
ations, 3N divisions et4N additions. Moreover, the determination of the index k0 requires N2 sign tests.In Parlett and Dhillon variant of the inverse iteration method, the determination of the optimalindex requires the 
omputation of the LDU and ULD de
omposition for the matrix (T � e�nI).Sin
e the matrix is tridiagonal, the 
ost for ea
h de
omposition is N � 2 multipli
ations, 2N � 4divisions and N � 2 additions. Then the solution of the triangular systems Lv = u and Uz = vne
essitate N�1 multipli
ations and N�1 additions for the �rst one and N�1 multipli
ations,N divisions and N � 1 additions for the se
ond one. The total 
ost to get one eigenve
tor withParlett and Dhillon variant of the inverse iteration method is therefore 4N multipli
ations, 3Ndivisions and 4N additions.5 Con
lusionThis paper has 
ompared the improvement of two 
lassi
al methods for 
omputing eigenve
torsof symmetri
 tridiagonal matri
es. Namely, the improvement of Givens method by Godunovand 
oworkers, see [3℄ and the improvement of the inverse iteration method by Parlett andDhillon, see [8℄. Godunov and 
oworkers improvement of Givens method ensures that the Sturmsequen
e used to 
ompute the eigenve
tor is two-sided whi
h guarantees a stable and a

urate
omputation. This is not always the 
ase with the standard Givens method. Moreover the extra-
ost for this modi�
ation of Givens method remains low. Parlett's and Dhillon improvement ofthe inverse iteration method 
onsists of establishing the best initial ve
tor to start the iterations.This guarantees the inverse iteration method to 
onverge to the sought-after eigenve
tor. Withthe standard inverse iteration method, 
onvergen
e is unlikely to o

ur if the 
hosen initial ve
toris orthogonal to eigenve
tor. Although it is interesting to be sure to have an initial ve
tor thatguarantees 
onvergen
e of inverse iteration, from a pra
ti
al point of view, the overall 
ost dueto the determination of the best initial ve
tor is usually dissuasive. We 
an quote Peters andWilkinson, see [10, p. 360℄:the ordinary pro
ess of inverse iteration will almost always su

eed in one iteration;if it does not do so one has only to restart with an initial ve
tor orthogonal to the�rst. This pro
ess 
an be 
ontinued until one rea
hes an initial ve
tor whi
h givessu

ess in one iteration. It is rare for the �rst ve
tor to fail and the average numberof iterations is unlikely to be as high as 1:2.Thus, it is, perhaps, more e
onomi
al to use 2 iterations with the standard pro
ess than oneiteration with the best initial ve
tor.
14
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