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Abstract

The aim of this paper is the comparison of the recent improvements of two methods to
compute eigenvectors of a symmetric tridiagonal matrix once the eigenvalues are computed.
The first one is the Givens method which is based on the use of Sturm sequences. This method
suffers from a lack of accuracy for the computation of the eigenvector when an approximate
value (even a very accurate one) of the eigenvalue is used in the computational process. In
[3] the authors introduce a modification of Givens method to ensure the computation of
an accurate eigenvector from a good approximation of the corresponding eigenvalue. The
second improvement concerns the inverse iteration method. In [8] the authors present a
way to determine the best initial vector to start the iterations. Although the two methods
and their improvements seem to be very different from a computational point of view, there
exists some striking analogies. For instance, in the two methods we look for an optimal
index, we have to minimize a residual, etc. In the paper we briefly present the two methods
and investigate the connections between them.

1 Introduction

This paper is concerned with the computation of the eigenvectors of a real symmetric tridiagonal
matrix T once the eigenvalues A are computed. Inverse iteration method is the most widely used
method and is implemented in software libraries like LAPACK, see [1]. A critical problem in the
inverse iteration method is the choice of the initial vector to start the iterations. It can be proved,
see [11], that the best choice for the initial vector is the rth column of the identity matrix, where
r is the largest component of the wanted eigenvector. Unfortunately, this information is not very
useful for numerical purposes and for instance in the LAPACK library, a random vector is taken.
In 1997, B. Parlett and I. Dhillon devised a way to compute this optimal index r using an LDU
and UDL decompositions of the matrix T — A1, see [8].

Another well known method for the computation of an eigenvector from an eigenvalue is the
Givens method, see [11, p. 299]. This method is a very efficient for computing the eigenvalues
of a real tridiagonal matrix using Sturm sequences and a bisection. This method can also be
used to derive in a very simple way from the Sturm sequence the eigenvector associated to the



computed eigenvalue. Unfortunately the computation of the eigenvector in that method suffers
from numerical instability. In [3] the authors present a way to circumvent this instability and
to compute the eigenvector with accuracy from a good approximation of its eigenvalue.

This paper briefly describes the two methods and their improvements. In section 2 we first
present Godunov and coworkers improvement of the Givens method. Then in section 3 we
present Parlett and Dhillon improvement of the inverse iteration method. Although, from a
computational point of view, the two methods seem to be very different, there exists some
striking analogies between them. For instance, in the two methods we look for an optimal
index, we have to minimize a residual, etc. We focus in section 4 on the connections between
the two methods, and briefly compare their efficiency. We have implemented the improvements
of the two methods under the software MATLAB. The code source can be obtained from the
authors.

Let us introduce some notations. Let

di by
by do b3
T=| .o (1)
bv-1 dn-1 by
by  dn
where d,,n = 1,... ,N and b,,n = 2,...,N are given real numbers, with the convention

b1 = by+1 = 1. We can assume that T is unreduced, i.e., b; # 0, i = 1,... , N. Otherwise, the
eigenvalue problem can be deflated. Let us decompose T as

T = UAU', A = diag(A1, -+, AN), U= (Ui, - ,Uy) (2)
where U is orthogonal. The eigenvalues of T' are real, distinct and the first or last component
of any eigenvector of T' cannot be zero.

2 Godunov and coworkers improvement of Givens method

Givens method is a very efficient method to compute the eigenvalues of a real symmetric tridi-
agonal matrix using Sturm sequences and the bisection method. Let y be a real. The left Sturm
sequence of first kind is defined from Py (1) = 0 by the recurrence

[ +o0 if P (k) = (de — p)/|bxl,
0 if P =
ke [LN  P(u) = i L () = oo, 3)
b
i - otherwise,
[ de — p = bk P (1)

whereas the right Sturm sequence of first kind is defined by P, (u) = +o0c and

d —
r (kllTu) if P (1) = oo,
Vke[1,N], P (=4 T if P (p) =0, (4)
1 bk 41 .
L @ <(dk — ) — P (M)) otherwise.




It is well known that the Sturm sequences of first kind are related to the leading principal minors
of T', see [11]. Here the subscript + indicates that the minors are taken with rows in increasing
order whereas the subscript — indicates that the minors are with rows in decreasing order. Both
the right and left Sturm sequences satisfy the same induction relations

[ P (n) = +00 if P (n) = (di — ) /|brl,
PE(u) =0 if PE . (n) =+
Vke[l,N-1], ({ “*W=T B k-1 W)= oe, (5)
bgt1] )
(diy — ) — |br| PE () — =0 otherwise,
\ kot P (p)

and differ only in the boundary condition for £k = 0 and K = N. A Sturm sequence is termed
two-sided when it satisfies the two boundary conditions Poi(u) = 0 and Pﬁ(,u) = 4+o00. A
straightforward calculation shows that the sequence (P;(An))keﬂ:o’]v]] is a two-sided Sturm se-
quence.

Using Givens theorem along with a bisection allow the computation of the eigenvalue of T' in
an accurate and stable way, see [11, p. 298]. Indeed, let the quantities P, (u),... ,P]J\?(u) be
evaluated for some value p; then the number of agreements in sign of consecutive numbers of
this sequence is the number of eigenvalues of T' which are strictly greater than p (if P, (1) = 0
then P, (1) is taken to have the opposite sign to that of P;" (1), no two consecutive terms can
be zero). Furthermore an eigenvector U,, = (uq,- -+ ,uy)! associated with the eigenvalue ), can
be computed from the Sturm sequence P,;t()\n) through the relations: u; =1,

up, =0 if PE (\) = +o0,
by .
Vk € [2, N] up = ———uj_s if PE (M) =0, (6)
3 ) bk "
. k—1 .
up = —sign(by) ——————  otherwise.
)Pz )

Although the Pki()\n) determine the eigenvalue in a stable way, the explicit use of expressions
(6) to compute components of the eigenvector does not necessarily lead to a good approximation
of the eigenvector, see [3] for some examples. The reason for this lack of accuracy is that even if

the eigenvalue A, is computed with a very good accuracy, the Sturm sequences (P,j()\n))ke[[o’N]]
or (Pk_o\n))ke[[o,N]] where )\, is an approximation of A,, may not be a two-sided Sturm sequence.

In practice, a two-sided Sturm sequence is extremely unlikely to occur even when Xn is the closet
machine number to the eigenvalue A,.

The idea of Godunov and coworkers to circumvent this drawback is to enforce the Sturm sequence

in A, to be two-sided. This is obtained by joining the left Sturm sequence (P]j()‘n))ke[[o,N]] to the
right Sturm sequence (P, (An))kefo,n] at a well chosen integer kg € [0, N]. The new sequence
(Qk(Xn))ke[[o,N]] automatically satisfies the boundary conditions Qo(A) = 0 and Qx () = +oc.
The sequence (Qr(An))kejo,n] 18 generally not a two-sided Sturm sequence for the matrix T.
However, it can be proved (see proposition 1 below) that it is a two-sided Sturm sequence for a
matrix T close to T and that the eigenvector U, computed using relations (6) with the sequence
(Qk(An))refo,n] is a good approximation of the eigenvector Up,.

In order to prove the correctness of their approach, Godunov and coworkers introduce two more
sequences, called “Sturm sequences of second kind”. For A € R, the left Sturm sequence of



second kind (¢Z_(>\))ke[[0,N]] is defined from the left Sturm sequence of first kind by the relation
() — + +
¢; (A) = arctan(P;" (X)) + 7", (7)

where 7']7" is the number of non positive terms in the sequence P;"(}),... ,Pj‘"()\). Similarly for
A € R and m € N, the right Sturm sequence of second kind (¢, (A))xejo,n] is defined from the

right Sturm sequence of first kind by the relation

¢; (A) = arctan(P; (A)) + (m — 1 —7,,4)m, (8)

where Tt

7y = 0. Sturm sequences of second kind are central in Godunov and co-workers improvement of
Givens method. We briefly summarize their main properties, in order to understand the result
given in proposition 2 below and the connections between the two methods discussed in section
4.

| is the number of non positive terms in the sequence PJZFI(A),...,P]QA()\), and

First, we have for all j € [0, N, P;r()\) = tan(¢;r()\)) and P; (A) = tan(¢; (A)). Each function

¢;-" increases continuously and monotonically from 0 to jm whereas each function qu_ decreases

continuously and monotonically. For a fixed X, the sequences (¢} (X)) reqo,n and (6 (X)) keqo,n]
are not necessarily monotone. However, they can vary only in the following way:

(]5;:71()\) 6](7-]:— - 1)71-77-];1_71- - 71-/2[7
if ¢\ €lrym—7/2,7 7] then
¢k++1()\) E]T,:%r, T,:“W + /2],

and
¢;r71(>‘) 6](le - 1)71',7',?71’ - 71-/2[7
if ¢\ €lrfmrfr+ /2] then
¢k+_|_1()\) E]’leﬂ', T,jw + m/2[.
$r_1(A) €llpy, — V) = 3m/2, 777 — 7/2],
If ¢, (A €lp,m—m/2,p, 7] then
¢];+1(>‘) G]p,;ﬂ',p,;ﬂ' + 71—[7
and

¢];_1(>‘) G]p];ﬂ' - 37"/2717]:71- - 7T/2[7
if ¢, (N €]lp, —)m,p,m—m/2[ then
¢]€+1(>‘) 6](1)]; - 1)71',]),;7'([-

;From the relations (3) and (4) for the Sturm sequences of first kind, we can deduce relations
for the Sturm sequences of second kind. We have

¢y (\) = w($j_1(N), [bjl dj = A, bjal) €1, N] (9)

where for ci,c3 € Ry and ¢y € R, the real function @ : 2 € R — w(x, ¢1, ¢2, ¢3) is continuously
differentiable and strictly increasing. In the same way, we have

¢j—1(A) = (5 (A [bjl, dj = A, [bjal) € 1, N, (10)

where for ¢i,c3 € R and ¢y € R, the real function 5 : € R — 7(x, ¢, ¢2,¢3) is the inverse of

w.

Godunov’s method, which consists in joining a left Strum sequence to a right Sturm sequence
at a well chosen index kg to obtain the required two-sided Sturm sequence to compute the
eigenvector, is justified by the following proposition given in [3].



Proposition 1 Let A\, be the nth eigenvalue of T and xy,y, € R be the upper and lower bound
of the last interval in the bisection method used to compute the approzimate eigenvalue (so that
Tp < Ap < yp and Ay = % is the approzimation of A\, ). Then the two following statements
hold.

- There ezists an integer ko € [1, N] such that

¢]—:071(yn) < ¢1;071($n)a and ¢2—0(yn) > ¢/;0(xn) (11)
- There exists a real number T € [0,1] such that the sequence (Y)refo,n] defined by

¢k = ¢]-:(yn)a szoa"'ako_la

b = ¢ (zn), Vk = kg, ..., N, (12)

is the two-sided Sturm sequence of second kind with parameters (n, Xn) for the tridiagonal matriz
T defined by

dy by
by do b3

M.
I
=
=

by 1 dy 1 by

by dy
where
di — 5(yn — Tn) ifk=1,....hk — 1,
dp = { (1= 7)(dror1 = 5(yn = zn)) + T(dkgs1 + 5(Yn — 20))  if k = ko, (14)
di + 5 (yn — zn) ifk=ko+1,...,N.

Proposition 1 guarantees that the two sequences (ngk (Yn))kefo,n) and (dy (Tn))kefo,n] CTOSS SO

that the sequence ('[/)k)ke[[g ~] is always defined. It expresses that )\n is the nth eigenvalue of T
and that:

~ 1
T —T|, = §|yn —Znl, p=1,2,00. (15)

Proposition 1 also gives the way to compute an approximation of the eigenvector U, associ-
ated with the eigenvalue \,. We recall that relations (6) are unsuited for the computation of
approximation to U, because the Sturm sequence of the first kind P,:r()\n) is not two-sided.

Now, the sequence (¢k)ke[[0,N]] is a two-sided Sturm sequence of second kind for the matrix T
which, according to (15), is closed to T. We can obtain a two-sided Sturm sequence of first kind

(Qk(An))kego,ny for (vr)kefo,n by the relations:
Qr(An) = tanyyy,, Vk € [0, N]. (16)

It is then possible to use relations (6) with the two-sided Sturm sequence (Qy(An An))kefo,n] tO

compute an eigenvector U, of T associated with )\n in an accurate and stable way. The eigenpair
()\n, U, ) of T is a good approximation of (A,,U,) if Ao is well separated from all eigenvalues



Aj # A since from standard perturbation theory (Davis and Kahan theorem), see [9], and
relation (15) we have

||T ﬁn - Xn ﬁnH2 |yn - $n|

[sin Z(Un, Uy)| < = < - (17)
e gap(An) 2 gap(An)
_ TN 7T 112 _ 2
gap(An) 4 gap(\p)

where gap(X,) = min{|X, — Ajl, 7 # n}. However the method does not guarantee that for closed
eigenvalues, the corresponding computed vectors are orthogonal.

Of course the method seems very tedious from a computational point of view because of the
use of Sturm sequences of second kind. In fact there is no need to compute them. The index
ko for which the left and right Sturm sequences of first kind join can be characterized using the
sequences (P, (z,))[o,n] and (P (yn))[o,n] as stated in the following proposition given in [3].

Proposition 2 For k € {1,...,N} let us consider the integer p;' and p,, defined respec-

tively by p]:r = T,:“ and p, = mn —1— 7, where T,:“ is the number of non positive terms in
the sequence P; (yn), ... ,P,;"(yn) and T, 1is the number of non positive terms in the sequence

P (2n),...,Py_y(zy). Let

K= {k e{l,---,N}| (karfl <pi;1) or (karfl =P, ond Pqu(yn) < Pkil(fpn))}‘ (19)

Then, the set K is not empty and £ = max{k € K} satisfies:

¢2—71(yn) < ¢e_71(xn) and ‘ﬁ—(yn) > ¢g_(xn)

Therefore the index kg coincides with £ = max{k € K}. This means that ko is the greatest
integer k satisfying p,:ll < pj_, Or p,:ll =p,_, and Pktl(yn) < P (zg).

We summarize the method to compute the eigenvectors of a symmetric tridiagonal matrix T
in the following algorithm. It assumes that the eigenvalues \,,n € [1, N] have been computed
with accuracy by the bisection method and that x,,y, € R are the upper and lower bound of
the last interval.

compute the left Sturm sequence of first kind in yn: Py (yn), ..., Py (yn)
compute the right Sturm sequence of first kind in z,: Py (@), ..., Py (zy)

fork=1 to N do

compute 7',;" the number of non positive numbers in the sequence P;" (yy,), . .. ,P]j'(yn)
compute 7, the number of non positive numbers in the sequence P, (z,,),...,Py_;(2n)
end-do
compute the greatest index kg for which
+ —
Tho—1 < T — 1- Tho
or
T]:;_l =n-1-7, and P];E_l(yn) < k_o_l(xn)
Form the sequence (Py)peqo,N] = Py (yn),- - ,P,:g_l(yn), Py (zn), -, Py (zn)
Set U, (1) =1

forj=1to N —1 do



Un(j +1) = —sign(Tjt1,5) —5—~
J
end-do

end-do

Un(4)
P

All the relations mentioned so far hold in exact arithmetic. Godunov and coworkers show that
the method guarantees accuracy even in finite precision arithmetic and that no overflow occurs
if the data are normalized in a prescribed manner, see [3, chp. 5. We have implemented the
algorithm under MATLAB software in both cases.

3 Parlett and Dhillon improvement of the inverse iteration method

The basic idea of inverse iteration method to compute an eigenvector associated to a given
eigenvalue. The eigenvector U, associated with ), is defined as the solution to the linear system
(T =M I)Up = 0. As the matrix (T'— A, I) is singular, N —1 equations from the system determine
the eigenvector up to a scalar multiple. However, in practice we have a good approximation A,
of the eigenvalue A,, which is often close to, but different from, A,. This implies that the
matrix 7' — A\, I is nonsingular and the only solution to the linear system (7" — A\, [)X = 0
is the null vector. A way to get an approximation U, of the eigenvector is to select N — 1
equations from the linear system (7' — A\,I)X = 0 (discarding say the rth) and to solve the
resulting under-determined system. The discarded equation produces a residual (T' — A, 1 )ﬁn
whose all components are zero except the rth. The central point in the process is to determine
the best choice for the equation to discard and control the accuracy of the approximation U,.
As presented in [11], let us consider the linear system:

(T = XD)X =b (20)
where b is an arbitrary normalized vector. If b is expressed in the form
N
b= U
j=1
then the solution Xg to the system is
N
Xo=Y v (21)
j=1 Aj = An

It follows that if Xn is close to A, but not to any other A\; then

T W vita
An — An Aj— A

This means that X is much richer in U,, than b is. We can repeat the process taking X as
right side term for the linear system. The solution X will be even richer than X in the vector
U,. This iterative process to approximate eigenvectors is known as the inverse iteration method.
Thus the best choice for the equation to be omitted is the rth equation with r corresponding to
the largest component of U,,. This means that the best starting vector in the inverse iteration
method is e,. The result is instructive but not useful at all since the index of the largest
component of the eigenvector to be computed is not known a priori. In [8], Parlett and Dhillon
give a practical way to determine the index r. Their approach is valid for normal triangular
matrices that permit LDU and UDL factorizations. We summarize it as it is although we are
only interested in the the symmetric case.



Proposition 3 Assume that for all X in a neighborhood of A\, the matrices Jy = T — A\l are
normal and permit triangular factorization Jy = LYDYUY and Jy = U"D~ L™ where DT =
diag(D{,--- ,D};) and D~ = diag(Dy,--- ,Dy) are diagonal matrices, Lt and L~ are lower
triangular matrices, U and U~ are upper triangular matrices (all these last four with 1’s on
the diagonal). For j =1,--- N the solution (ZE\J),5E\9)) € RY x R to the system

J,\ Z)(\j) = (5&” €;

() (22)
Z)G) =1
satisfies 6E\j) = D;r + D; — Jj;. Moreover we have
)
. _ . 2
Jim A (23)

> ()

=1

Thus to determine the largest component of U, it suffices to determine the index j for which
5(])

X, s minimum. As the exact value of the eigenvalue A, is unknown, we look for the index j

for which (5% ) is minimum where Xn is an accurate approximation of A,. Each (5% )

from the relgtion

is computed

6%3 =D} + D7 — J;; (24)

where the matrices D+ and D~ come from the triangular factorizations of an =T -\, 1.

4 Connections between the two methods

Although the methods appear at first sight to be very different, there exist various connections
between them. Some of these connections were already mentioned by Parlett and Dhillon in [8].
We point out some others.

4.1 Connections concerning the computed terms

Godunov and coworkers method is based on the computation of Sturm sequences whereas Par-
lett and Dhillon method is based on the LDU decomposition of 7. As mentioned in [8] the
Sturm sequences can be obtained in a very straight manner from the LDU decomposition. In-
deed, let Jy = T — M with T tridiagonal symmetric with decomposition Jy = L*D*(LT)T =
L=D~(L7)T. The matrices L* and D* can be computed explicitly. In particular, we obtain

the following expression for the diagonal matrix D = diag(D;",- - - ,D]"\',),
Df = di— ),
b7 (25)
Df = dy—Xx— £ k € [2, N].
Dy,

On the other hand, the left Sturm sequence of first kind (P]:r(}\))ke[[U,N]] is defined, see relation
(3), by

PEO) = —— |b’“b+1p+ 5= bkb;” : (26)
k | k‘ k*l( ) dk_A_ﬁP]:;l(A)
k



It follows from (25) and (26) that P, (\) and D, are connected by the relation

br41]

POy = el 27
Similarly, we show that the following relation between the right sequence of first kind (P, ())xefo,n]
and the diagonal matrix D~ holds

D
Pr(N) = L vk e 1, N (28)
|bk41]

Thus the basic tools in the two methods (Sturm sequences in Godunov method, and LDU
decomposition of Parlett and Dhillon) are connected through the relations (27) and (28).

4.2 Connections between the optimal indices

Both methods look for a particular integer termed the optimal index. In one hand, in Parlett

and Dhillon approach we look for an integer jo € [1, N] such that |§U0)] = nﬂlir}lv]] 6| where
]E 17

for all j € [1, N], (Z\9), ) is the solution of the system

T —XI) 20 = §0) ¢,
{ ( 1) ! (29)

Z(j)(j) = 1

On the other hand, in Godunov and coworkers approach we join together a left and right Sturm
sequences at a well chosen index ky € [1,N] to obtain a two-sided Sturm sequence. The
question is then: are these two indices the same? To answer, let us first take an example (a
random tridiagonal matrix) and determine the optimal indices j; and kg. The result is depicted
in figure 1. One can see that for approximatively half of the eigenvectors the two indices are the
same. For the other ones even if the optimal index kq differs from jy (the index of the maximal
component of the eigenvector under consideration) it is always (except in one case) among the
25% greatest components of this eigenvector. In the sequel, we will try to explain where this
phenomenon originate from.

The linear system (29) has the following full expression (with an obvious modification when
j=1andj=N),

( (1= 2)2? 4 bz = o0,
bkz,(cjzl + (dy — Xn)z,(cj) + bk+1z](€2 = 0, fork=2,...,5—1,
bz + (dj = )2 + b2, = 00,
V0 + (o= 7)o@ bz, = 0, fork=j+1...N—1, OV
b2 |+ (dy — An) 2t = 0,
{ z](-j) =1

First assume for convenience that z,(gj) # 0,Vk € [1, N] (the general case use the same ideas but
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Figure 1: Position of indices jo (o), ko (¢) and j (-) such that |u;| is among the 25% greatest
components of the eigenvector u, for a random tridiagonal matrix of size 25.

is much more cumbersome to handle). We have,

( _ ()
(di —An) + b2zQT = 0
zlj)
zl(gy)l B Zl(cj)l
b=y + (dk = M) +bei—5 = 0, k=2,...,j-1,
biz) + (dj — ) + bjaasl), = 60, (31)
e B o)
bk—k(;)l + (dy — Ap) + bk+1—k(;r)1 = 0 k=j+1,....N—-1,
z 2k
()
AN-1 3
by — + (dN - )\n) =0
\ L)
N

Then introduce the sequence (Qk(Xn))ke[[o,N]] defined by Qo(Mn) = 0, Qn(X,) = +oo and for
ke[l,N—1],

- L)
Qk(An) = —Sign(ka) ﬁ
Zk+1

(32)

10



It follows from (31) that the sequence (Qk(xn))ke[[l,]v_l]] satisfies

(-3 — 2l
(1 n) Ql(An) ) ‘b |
i — ) — o] Qe1O) — 2L — 0, ke[2,5- 1],
(d ) — |bx| Qr—1(An) 0 Ou) 0 €f2,5-1]
Y 5y 1bj41] _ ()
dj — An) — |bj Q'— An _7~—(5], (33)
( J ) | J‘ J 1( ) Qj(An)
3 5y bg 1 1] .
di =) — bp] Qp1 () — 2L — g g N —1].
(dy, )N\lek 1( ~) 0100) 0 elj+1,N—1]
L bN|Qn-1(An) — (dnv — An) = 0.

Now, for k € [[0,j — 1] we consider

oi(An) = arctan(Qx (An)) + 7l m, (34)
where 7',;" is the number of non positive terms in the sequence Ql(Xn), e, Qk(xn) Clearly
©0(An)s - s pj—1(An) are the jth first terms of the left Sturm sequence of second kind (¢} (M)
In a similar way, for k = j,--- , N — 1 we consider

or(An) = arctan(Qx(An)) + (n — 1 — 77, )7 (35)
where 7'k++1 is the number of non positives terms in the sequence Qgii(An),--., Qni1(An).

Clearly ¢;(An),...,¢on(Ap) are the N — j + 1th last terms of the right Sturm sequence of
second kind (¢, (An))k-
JFrom (7), (8) and (9) we deduce that the sequence (@i (A,))x satisfies

k() = wlor_1 (), bl di — An, by ) k=1,...,5-1,
(P](Xn) = w((p]—l(}‘n)ﬂ‘bjhd]_5(])_Xn7‘b]+l|)a (36)
or(n) = w(or—1 (), [0kl di — Xn, [br11]) k=j+1,...,N.

The sequence (¢ (Ay))k is not a Sturm sequence of second kind for T' but is the linkage between
the left and right Sturm sequences (¢2’(An))k€[[0’N]] and (¢ (An))keqo,n7- We have

= (.d( I (Xn)a‘bj|adj_5(j)_xna‘bj+1|)

j—1

_w(qs;;l()‘n)i ‘b]‘a d] - >‘n7 ‘b]-l-l‘) (37)

Using Taylor formula we deduce that

_~ ~ ; ~ ~ 32
07 () = ¢ (n) = =090 (971 On). b5 dj = A, by ]) + OB, (38)
Therefore looking for the integer j such that 160)| is minimum amounts to finding j such that
65 (An) —(;S;r()\n)\ is minimum. As ¢, is increasing and ¢, is decreasing we have for k = 1,..., N
{ bi(an) < BECn) < (), )
b lyn) < ¢ ) < g (2a),

11



and therefore

i (yn) — B (yn) < 05 ) — & n) < 85 (n) — ¢ (), (40)

and

< max (|¢y (yn) = b5, (W), [6F (zn) — @5 (2a)]) - (41)
The optimal index kg € [1, N] in Godunov and coworkers approach satisfies, see proposition 1,
¢2—071(yn) - (}5,;071(58”) <0, et ¢2—0(yn) - ¢];0 (zn) > 0. (42)

We cannot deduce that |¢; (yn) — ¢} (zn)| becomes minimum for k = ko (indeed the Sturm
sequences (¢, (2))r and (¢, (yn))x can be closer for a given index £ than they are for the index
ko where their values cross) but may explain why we often observe that the two indices jy; and
kg coincide, see figure 1.

If we consider the example of the tridiagonal matrix Wilkinson of size 21, see [11], the index kg
coincide with jy only for two eigenvectors, see figure 2. However, in this example as well, the
index kg is always (except in one case) among the greatest components of the eigenvector.
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Figure 2: Position of indices jo (o), ko (¢) and j (-) such that |u;| is among the 50% greatest
components of the eigenvector u, for the tridiagonal matrix Wilkinson of size 21.

The conclusion is that in general the indices kg and jy are equal even if in some cases they can
differ. However even in this later case |§(0)| is always small compared to the average value of
the |5(F)].
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4.3 Further connections

Let us consider the two-sided Sturm sequence of first kind (Px(\,))r obtained by joining the
left Sturm sequence in y, and the right Sturm sequence in z, at the index ky. It is composed
of the following terms

0= P(;l—(yn)a---aP];;fl(yn):Pk_o(mn)a---aP]G(mn) = +00. (43)

This sequence is the two-sided Sturm sequence corresponding to the eigenvalue Xn of T. We
therefore have the following recurrence for k = 1,..., N (we omit to distinguish the case when
P, =0 or P, = oo for simplicity), see (5),

_ < b
dip, — A\p) — |bg|Pr_1(\p) — ——=— = 0. 44
(dr — An) = |bk|Pe—1(An) o) (44)
Using (14) relation (44) can be written
~ ~ b
r (di = An) = [br| Py () — —£ = 1n, k=1,....k — 1,
Pk(An)
. S b 1
Ay — An) — bgg | Pro1 () — —F0tL 1 g
( ko ) ‘ ko‘ ko 1( ) -Pko()\n) 2 (45)
~ ~ b
(d = An) = b Po1 (M) — —% = —%h,  k=ko+1,...,N,
L Pk(An)

where h = y, — x,. An eigenvector corresponding to Xn, which is an exact eigenvalue for T and
an approximate eigenvalue for T', is computed from the values of the two-sided Sturm sequence
of first kind (Py(\,))k=1,..n by the recurrence: u; =1,

up =0 if Pk—l(An) = +o0,
b . T\
Vk=2,...,N, ug = = k-2 if Py_1(An) =0, (46)
. Uk—1 .
up = —sign(by) ———=—  otherwise .
Py_1(An)
;From (45) and (46), it follows that the components uy of the eigenvector U, satisfy
(
~ h
(dr — An)ug — bpug_1 — bpp1ug41 = 5k k=1,...,k — 1,
~ 1
(ko — An)ttkg = brotuko—1 = bho+1tho+1 = h(5 — 7)uk, (47)
~ h
(di — An)ug — bpug_1 — bpp1ugiy = Uk k=k +1,...,N.
\

In a matrix form the linear system (47) reads
(T - An)Un = 57 (48)
where § = (%uk, el (% — T)huggy, . . ., —%uk)t.

Thus, the approach of Godunov and coworkers connecting two Sturm sequences of second kind
amounts to minimizing the global residual from the linear system

(T = X)X = 0.
In Parlett and Dhillon approach we look for the index jy for which the residual produced by

discarding equation jg is minimum.
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4.4 Comparison of the computational cost

Let us compare the computational cost to obtain the approximate eigenvector with the two
methods. We assume that the eigenvalue has been computed to machine accuracy, |\, — A,| =
€mach | Anl.

In Godunov and coworkers method, the computation of the eigenvector requires the computation
of the left Sturm sequence of first kind in y,: P (yn), ..., Py (yn) and the computation of the
right Sturm sequence of first kind in z,: Py (2,),..., Py(2,) using relations (3) and (4). Each
term Pki necessitates one multiplication, one division and two additions to be evaluated. This
requires 2N multiplications, 2N divisions et 4N additions. ;From the joined Sturm sequence,
the computation of the eigenvector from relation (6) requires N — 1 divisions. The total cost to
get one eigenvector with Godunov and coworkers method is 2N multiplications, 3N divisions et
4N additions. Moreover, the determination of the index ky requires N? sign tests.

In Parlett and Dhillon variant of the inverse iteration method, the determination of the optimal
index requires the computation of the LDU and ULD decomposition for the matrix (T — A, I).
Since the matrix is tridiagonal, the cost for each decomposition is N — 2 multiplications, 2N —4
divisions and N — 2 additions. Then the solution of the triangular systems Lv = u and Uz = v
necessitate N — 1 multiplications and N — 1 additions for the first one and N — 1 multiplications,
N divisions and N — 1 additions for the second one. The total cost to get one eigenvector with
Parlett and Dhillon variant of the inverse iteration method is therefore 4N multiplications, 3N
divisions and 4N additions.

5 Conclusion

This paper has compared the improvement of two classical methods for computing eigenvectors
of symmetric tridiagonal matrices. Namely, the improvement of Givens method by Godunov
and coworkers, see [3] and the improvement of the inverse iteration method by Parlett and
Dhillon, see [8]. Godunov and coworkers improvement of Givens method ensures that the Sturm
sequence used to compute the eigenvector is two-sided which guarantees a stable and accurate
computation. This is not always the case with the standard Givens method. Moreover the extra-
cost for this modification of Givens method remains low. Parlett’s and Dhillon improvement of
the inverse iteration method consists of establishing the best initial vector to start the iterations.
This guarantees the inverse iteration method to converge to the sought-after eigenvector. With
the standard inverse iteration method, convergence is unlikely to occur if the chosen initial vector
is orthogonal to eigenvector. Although it is interesting to be sure to have an initial vector that
guarantees convergence of inverse iteration, from a practical point of view, the overall cost due
to the determination of the best initial vector is usually dissuasive. We can quote Peters and
Wilkinson, see [10, p. 360]:

the ordinary process of inverse iteration will almost always succeed in one iteration;
if it does not do so one has only to restart with an initial vector orthogonal to the
first. This process can be continued until one reaches an initial vector which gives
success in one iteration. It is rare for the first vector to fail and the average number
of iterations is unlikely to be as high as 1.2.

Thus, it is, perhaps, more economical to use 2 iterations with the standard process than one
iteration with the best initial vector.
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