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Jocelyn Étienne1,3, Emil Hopfinger2 & Pierre Saramito1

1 Laboratoire de Modélisation et Calcul (IMAG) et 2 Laboratoire des Écoulements Géophysiques et Industriels,
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Résumé :

Des écoulements gravitaires de mélanges binaires de fluides miscibles sont simulés par éléments finis couplés à

la méthode des caractéristiques (Lagrange-Galerkin), avec adaptation dynamique de maillage. Les simulations

d’écoulements d’échange sont en excellent accord avec les experiences (rapports de densité inférieurs a 20) et

sont conduites jusqu’à des rapports de 100.

Abstract :

Gravity currents of binary mixtures of miscible fluids are simulated by a finite elements method, coupled to the

method of characteristics (Lagrange-Galerkin), with dynamic mesh adaptation. Simulations of lock-exchange flows

are in excellent agreement with experiments (density ratios lower than 20) and are conducted up to density ratios

of 100.

Mots-clefs :

Éléments finis, maillage adaptatif, mélanges de fluides, écoulements géophysiques.

Numerical simulations of gravity driven flows are relatively rare compared with the number

of experiments which considered various aspects of gravity currents and of density intrusions

[1]. Numerical simulation [2, 3] of gravity currents are limited to small density differences

where the Boussinesq approximation is applicable, and very recent ones [4] are limited to den-

sity ratio of 6. In certain geophysical flows, such as avalanches or pyroclastic flows, and in

industrial applications related with heavy gases, the density change across the current fronts

can be, however, much larger. Since theoretical models or experimental results which hold for

small density ratios can, in general, not be extrapolated to these flows, large density ratio flows

need specific attention.

Lock-exchange flows (see Fig. 1) are a good test for direct numerical simulations of flows

of miscible, large density difference fluids. Numerical simulations can reach larger values of the

density ratio than accessible in experiments, except for the limit-case of non-miscible liquid-gas

exchange flows where density ratios of order 103 are reached, and can give additional informa-

tion about the variation of the Froude number and the structure of the intrusion fronts. Howe-

ver, the existence of a solution of the Navier-Stokes equations in these conditions is subject to

a condition either on the density ratio compared with Schmidt number, or on the form of the

viscous and diffusion terms. Furthermore, due to the unusual condition of a finite, non-uniform

divergence of the mass-averaged velocity field, a specific technique is needed in order to pre-

serve this existence result when the equations are discretized. Finally, dynamic mesh adaptation

is necessary when the density ratio is large. The main purpose of this paper is to derive the ap-

propriate equations and develop a suitable numerical algorithm for treating the non-Boussinesq
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17 ème Congrès Français de Mécanique Troyes, – septembre 2005

10h20h

Lock-gate

2h
ey

̺ℓ̺d

ex

FIG. 1 – Lock-exchange flow set-up used by Gr öbelbauer et al.[5], h = 0.15 m.

lock-exchange problem, which allows density ratios up to 100 in order to establish more defini-

tely the Froude number dependency on density ratio.

1 Governing equations

For a perfect mixture of two incompressible fluids, of density ̺d (the heavier one) and of

density ̺ℓ (the lighter one), the local density is ̺ = ̺dΦ + ̺ℓ(1 − Φ) where Φ and 1 − Φ are

the volumic fraction of respectively the dense and light constituents, and both, ̺d and ̺ℓ, are

constants. The characteristic density ratio is α = (̺d − ̺ℓ)/̺ℓ.

The mutual diffusion between the constituents introduces a diffusive flux, which is governed

by Fick’s law and gives the constituent evolution equation :

DΦ

Dt
+ Φ∇ · u =

1

ScRe
∇ · [F (Φ)∇Φ], (1)

which, combined with the mass conservation equation

D̺

Dt
+ ̺∇ · u = 0,

yields a nonzero divergence condition for the velocity:

∇ · u = − α

1 + αΦ

DΦ

Dt
(2)

Here ReSc = Uh/D is the product of the Reynolds and Schmidt numbers, with U =
√

αgh the

terminal velocity of a dense fluid parcel in the light fluid and D a reference diffusivity of the pair

of fluids. The variables are non-dimensionalized by x = x̃/h, u = ũ/U and t = t̃U/h. Equation

(2), ∇·u 6= 0, is unusual. It arises because of the diffusion between the two species. It is readily

seen from equations (2, 1) that when Sc tends to infinity, ∇·u goes to zero. Otherwise, diffusion

will result in equal and opposite mass fluxes of constituents d and ℓ across the boundary of

any small volume V(t) entrained by the flow velocity. As a result, since both constituents are

incompressible and of different densities, the volume V(t) will vary; giving ∇ · u 6= 0. Note

that diffusion effects are obviously negligible for Boussinesq conditions, α ≪ 1.

We can assume that the mixture behaves like a Newtonian fluid, with a dynamic viscosity µ
that may depend on the local composition of the mixture Φ. Therefore, we write µ(Φ) = ηλ(Φ),
where η is a constant reference dynamic viscosity, and λ a non-dimensional function of the

composition of the mixture. Denoting Du = (∇u + ∇u
T)/2, the momentum equation is:

(1 + αΦ)
Du

Dt
= −∇p +

1

Re
∇ ·

[

λ(Φ)

(

2Du − 2

3
∇ · u I

)]

− 1 + αΦ

α
ey (3)
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17 ème Congrès Français de Mécanique Troyes, – septembre 2005

and here Re = ̺ℓUh/η. For lock-exchange flows and most gravity-driven flows, the boundary

condition for u is either u |∂Ω = 0 (no inflow, no slip condition) or u · n = 0 and a zero wall

friction σ · n − [(σ · n) · n]n = 0, where n is the wall normal and σ = 2Du − 2
3
∇ · u I

(no inflow, slip condition). Then, for both mechanical and mathematical reasons, the boundary

condition for Φ will be ∇Φ · n = 0.

For gas pairs, we know that λ(Φ) ∼= 1. However, in this case, proofs of existence of a global

weak solution [6] are subject to the condition that 2Sc > α, which means that as far as we know

the model may be ill-posed in other situations. There is no physical reason for the Schmidt

number to behave this way when α varies; indeed, its value remains of order 1 for common

gases. In practice, a blow-up of the numerical solution occured within the relevant time-range

for lock-exchange flows for α & 60.

Bresch et al. [7], on the contrary, show that if the relation

∇λ(Φ) =
α

2Sc
(1 + αΦ)F (Φ)∇Φ (4)

holds, then the unconditional existence of global weak solutions can be proved. This condition

is never satisfied if we choose λ(Φ) = 1. If we take a constant kinematic viscosity ν = µ/̺,

that is, if λ(Φ) = 1+αΦ, then the relation is matched for Sc = 1/2, which is close to the actual

Schmidt number for gas mixtures, and a diffusivity of the form F (Φ) = 1/(1 + αΦ). This form

of the mass diffusivity is a common choice, and can be shown to correspond to the case when

the molecular diffusivity of species are equal and independent of the local composition of the

mixture[8].

Note also that numerical simulations can be found in literature (e.g. [9]) which are based

on the volume-averaged velocity v = u + (α/ReSc)F (Φ)∇Φ, because this vector field is

solenoidal: ∇·v = 0. Nevertheless, this choice introduces additional inertial terms[8] of higher

order in the transformed momentum equation, which cannot be neglected when α is large. The

problem is not simplified in doing this.

2 Numerical approach

The large density difference flows considered are composed of intrusion fronts, where den-

sity and velocity gradients are locally steep, and of large areas away from these fronts which

(a) (b)
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FIG. 2 – Local zoom in domain Ω showing (a) the non-dimensional vorticity and (b) the mesh

used for its calculation ; dense intruding front for α = 1.99 at non-dimensional time t = 6.
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FIG. 3 – Froude number of, (a) the light front Frℓ and, (b) the dense front Frd versus ̺∗ in ex-

periments and numerical simulations for two viscosity models. +, experimental values; ◦, nu-

merical simulations with constant dynamic viscosity model (λ = 1) and Re = ̺airh
√

αgh/µair;

�, numerical simulations with constant kinematic viscosity model (λ = 1 + αΦ) and Re =
̺airh

√
αgh/µair; △, numerical simulations with constant dynamic viscosity model (λ = 1) and

Re = ̺Heh
√

αgh/µHe. Error bars for the experimental values represent the discrepancies found

between Figures 2 and 6 in the article by Gröbelbauer et al. [5] In (a) −·−, joins the theoretical

limits for ̺∗ = 0 and ̺∗ = 1 according to Frℓ = ̺∗
√

2
; in (b) − · −, 2

√
2 (1 − (1 − ̺∗)0.3); - - -,

1.8
√

2 (1 − (1 − ̺∗)0.3).

have a uniform density and small velocity gradients away from the walls. This calls for a me-

thod capable of automatic and unconstrained mesh adaptation, since the location of the inter-

face between dense and light parts of the flow is unknown. However, refining the mesh in areas

of steep density gradients makes it difficult to control numerical stability conditions such as

‖u‖∆t < ∆x, where ∆t and ∆x are the time-step and a local mesh-resolution indicator. Thus

we use the method of characteristics for the time-discretisation of the convective part of the

equations, which is not subject to such a condition [10]. For the space discretisation, we have

used a finite elements method, for which mesh adaptation based on the error control is well de-

velopped and which allows to use the method of characteritics because the approximation of the

velocity is a continuous function. A classical choice for solving the Stokes problem is obtained

with the Taylor-Hood finite element [11], which is a piecewise quadratic approximation of the

velocity and a piecewise linear one for the pressure. The volume fraction Φ is also discretised

in a piecewise quadratic functional space.

The discretisation we have used is given in more detail in [12], but one technical difficulty

specific to high-density ratio Navier-Stokes equations needs to be pointed out here. The conti-

nuity equation (2) is ∇ · u = −χ for some function χ which is one of the unknowns of the

problem. Now if there is no inflow at the boundary, it is clear from the divergence theorem that

−
∫

Ω
χ dx =

∫

Ω
∇ · u dx = 0. In general, this is not true anymore for the numerical approxi-

mation χh of χ (where h denotes the diameter of the largest element in the mesh), and we have
∫

Ω
χh dx of the same order like the numerical error. This is not sufficiently small to guarantee

that an approximation uh of u exists such that ∇ · uh = −χh, and thus the numerical method
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FIG. 4 – (a, b and c), non-dimensional vorticity maps: (a), α = 0.11, Re = 4.80 · 103 at

non-dimensional time t = 8 ; (b,c), α = 20.6, Re = 5.47 · 104 at non-dimensional time (b)

t = 8, and (c) t = 46 ; (d), non-dimensional density iso-lines, α = 20.6, Re = 5.47 · 104 at

non-dimensional time t = 46.

will break down. In [12] we propose an additional projection step which resolves this problem

without reducing the quality of approximation, and we show [13] that this is optimal in the

sense of a finite elements approximation.

The mesh adaptation is an iterative process : a first guess of the solution at time tn+1 is

calculated on a uniform coarse mesh, and is used to generate a new mesh on which a better

approximation of the solution can be calculated. When iterated, this procedure reaches a fixed

point corresponding to the best approximation space of a given dimension for the solution [14].

This process is handled by the mesh generator BAMG [15] for both Φ and u, using refinement

ratios of order 103 between the coarsest triangle size and the finest one. Figure 2 shows the mesh

refined around the vorticity-sheets of a dense intruding front. The whole of the finite elements

resolution is embedded in the open-source C++ environment rheolef [16].

3 Results and conclusions

The results concerning front velocities and the related Froude number variation with density

ratio are shown in Fig. 3 in terms of the density parameter ̺∗ =
√

(̺d − ̺ℓ)/(̺d + ̺ℓ), and

for Reynolds numbers taken accordingly to the density ratio, Re = (̺ℓ

√
gh/µℓ)

√
α, ranging

from 5 · 103 (α = 0.11) to 1.2 · 105 (α = 100). These results are in good agreement with the

experiments by Gröbelbauer et al. [5] which covered density ratios ̺d/̺ℓ ≤ 21.6 (for a more

detailed discussion, see [12]). In addition, the numerical simulations were extended to density

ratios of 100 and allowed to establish more definitely the dependency of the Froude numbers

Frd and Frℓ on the density parameter ̺∗. A new, empirical law for the variation of the Froude

number of the dense front with the density parameter is proposed.

Because of wall friction and interfacial instability the intrusions are strictly speaking always

dissipative. Nevertheless, Figure 4 indicates that when α is small (α ≤ 0.5), both currents

would be loss free in the sense of Benjamin[17] and of Keller and Chyou[18]; the current depth

is equal to h (half the channel height). At large values of α, the light current continues to occupy

close to half the channel depth (Figure 4c) and when the Reynolds number is sufficiently large

the loss-free Benjamin limit Fr∞ℓ is approached; the interfacial instability is inhibited and the

friction in the boundary layer is negligible. On the other hand, the dense current decreases in
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height and approaches the loss free Stoker solution Fr∞d = 2
√

2. This means that when the

Reynolds number is large the losses due to boundary layer friction and interfacial instability are

also negligibly small in the dense current.
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Smagulov : modèles de propagation de polluants et de combustion à faible nombre de
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