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CLUSTER CHARACTERS FOR TRIANGULATED

2-CALABI–YAU CATEGORIES

YANN PALU

Abstract. Starting from an arbitrary cluster-tilting object T in a 2-Calabi–
Yau category over an algebraically closed field, as in the setting of Keller
and Reiten, we define, for each object L, a fraction X(T, L) using a formula
proposed by Caldero and Keller. We show that the map taking L to X(T, L)
is a cluster character, i.e. that it satisfies a certain multiplication formula. We
deduce that it induces a bijection, in the finite and the acyclic case, between the

indecomposable rigid objects of the cluster category and the cluster variables,
which confirms a conjecture of Caldero and Keller.

Introduction

Cluster algebras were invented and studied by S. Fomin and A. Zelevinsky in
[12], [13], [11] and in collaboration with A. Berenstein in [1]. They are commutative
algebras endowed with a distinguished set of generators called the cluster variables.
These generators are gathered into overlapping sets of fixed finite cardinality, called
clusters, which are defined recursively from an initial one via an operation called
mutation. A cluster algebra is said to be of finite type if it only has a finite number
of cluster variables. The finite type cluster algebras were classified in [13].

It was recognized in [26] that the combinatorics of cluster mutation are closely
related to those of tilting theory in the representation theory of quivers and finite
dimensional algebras. This discovery was the main motivation for the invention of
cluster categories (in [7] for the An-case and in [4] for the general case). These are
certain triangulated categories [20] which, in many cases, allow one to ‘categorify’
cluster algebras: In the categorical setting, the cluster-tilting objects play the role
of the clusters, and their indecomposable direct summands the one of the cluster
variables.

In [17], [16], [15], the authors study another setting for the categorification of
cluster algebras: The module categories of preprojective algebras of Dynkin type.
They succeed in categorifying a different class of cluster algebras, which also con-
tains many cluster algebras of infinite type.

Both cluster categories and module categories of preprojective algebras of Dynkin
type are 2-Calabi–Yau categories in the sense that we have bifunctorial isomor-
phisms

Ext1(X, Y ) ≃ D Ext1(Y, X),

which are highly relevant in establishing the link with cluster algebras. This mo-
tivates the study of more general 2-Calabi–Yau categories in [23], [22], [27], [24],
[18], [19], [3]. In order to show that a given 2-Calabi–Yau category ‘categorifies’ a
given cluster algebra, a crucial point is

a) to construct an explicit map from the set of indecomposable factors of
cluster-tilting objects to the set of cluster variables, and

b) to show that it is bijective.

Such a map was constructed for module categories of preprojective algebras of
Dynkin type in [17] using Lusztig’s work [25]. For cluster categories, it was defined
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by P. Caldero and F. Chapoton in [8]. More generally, for each object M of the
cluster category, they defined a fraction XM in Q(x1, . . . , xn). The bijectivity
property of the Caldero–Chapoton map was proved in [8] for finite type and in [10],
cf. also [2], for acyclic type.

A crucial property of the Caldero–Chapoton map is the following. For any pair
of indecomposable objects L and M of C whose extension space C(L, ΣM) is one-
dimensional, we have

XLXM = XB + XB′ ,

where Σ denotes the suspension in C and where B and B′ are the middle terms of
‘the’ two non-split triangles with outer terms L and M . We define, in defintion 2 a
cluster character to be a map satisfying this multiplication formula.

This property has been proved in [9] in the finite case, in [15] for the analogue
of the Caldero–Chapoton map in the preprojective case, and in [10] in the acyclic
case.

The main result of this article is a generalisation of this multiplication formula.
Starting from an arbitrary cluster-tilting object T and an arbitrary 2-Calabi–Yau
category C over an algebraically closed field (as in the setting of [23]), we define,
for each object L of C, a fraction XT

L using a formula proposed in [9, 6.1]. We show
that the map L 7→ XT

L is a cluster character. We deduce that it has the bijectivity
property in the finite and the acyclic case, which confirms conjecture 2 of [9].
Here, it yields a new way of expressing cluster variables as Laurent polynomials in
the variables of a fixed cluster. Our theorem also applies to stable categories of
preprojective algebras of Dynkin type and their Calabi–Yau reductions studied in
[14] and [3].

Let k be an algebraically closed field, and let C be a 2-Calabi–Yau Hom-finite
triangulated k-category with a cluster-tilting object T (see section 1).

The article is organised as follows: In the first section, the notations are given
and the main result is stated. In the next two sections, we investigate the exponents
appearing in the definition of XT

L . In section 2, we define the index and the coindex
of an object of C and show how they are related to the exponents. Section 3 is
devoted to the study of the antisymmetric bilinear form

〈M, L〉a = dim C(M, L)− dim C(M, ΣL)− dim C(L, M) + dim C(L, ΣM)

on mod EndCT . We show that this form descends to the Grothendieck group
K0(mod EndCT ), confirming conjecture 1 of [9, 6.1]. In section 4, we prove that
the same phenomenon of dichotomy as in [10, section 3] (see also [15]) still holds
in our setting. The results of the first sections are used in section 5 to prove the
multiplication formula. We draw some consequences in section 5.2. Two examples
are given in section 6.
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1. Main result

Let k be an algebraically closed field, and let C be a k-linear triangulated category
with split idempotents. Denote by Σ its suspension functor. Assume moreover that
the category C

a) is Hom-finite: For any two objects X and Y in C, the space of morphisms
C(X, Y ) is finite-dimensional,

b) is 2-Calabi–Yau: There exist bifunctorial isomorphisms

C(X, ΣY ) ≃ DC(Y, ΣX),

where D denotes the duality functor Homk(?, k), and
c) admits a cluster-tilting object T , which means that

i) C(T, ΣT ) = 0 and
ii) for any X in C, if C(X, ΣT ) = 0, then X belongs to the full subcategory

addT formed by the direct summands of sums of copies of T .

For two objects X and Y of C, we often write (X, Y ) for the space of morphisms
C(X, Y ) and we denote its dimension by [X, Y ]. Similarly, we write 1(X, Y ) for
C(X, ΣY ) and 1[X, Y ] for its dimension. Let B be the endomorphism algebra of
T in C, and let modB be the category of finite-dimensional right B-modules. As
shown in [6], cf. also [23], the functor

F : C −→ mod B , X 7−→ C(T, X),

induces an equivalence of categories

C/(ΣT )
≃
−→ mod B,

where (ΣT ) denotes the ideal of morphisms of C which factor through a direct sum
of copies of ΣT .

The following useful proposition is proved in [23] and [24]:

Proposition 1. Let X
f
→ Y

g
→ Z → ΣX be a triangle in C. Then

. The morphism g induces a monomorphism in mod B if and only if f ∈ (ΣT ).

. The morphism f induces an epimorphism in mod B if and only if g ∈ (ΣT )

Moreover, if X has no direct summands in addΣT , then FX is projective (resp.
injective) if and only if X lies in add (T ) (resp. in add (Σ2T ) ).

Definition 2. A cluster character on C with values in a commutative ring A is a
map

χ : obj(C) −→ A

such that
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. for all objects L and M of C, we have χ(L⊕M) = χ(L)χ(M),

. for all objects L and M of C such that dimExt1C(L, M) = 1, we have

χ(L)χ(M) = χ(B) + χ(B′),

where B and B′ are the middle terms of ‘the’ non-split triangles

L→ B →M → ΣL and M → B′ → L→ ΣM

with end terms L and M .

Let N be a finite-dimensional B-module and e an element of K0(mod B). We
write Gre(N) for the variety of submodules N ′ of N whose class in K0(mod B)
is e. It is a closed, hence projective, subvariety of the classical Grassmannian
of subspaces of N . Let χ(Gre N) denote its Euler–Poincaré characteristic with
respect to the étale cohomology with proper support. Let Ksp

0 (mod B) denote the
‘split’ Grothendieck group of modB, i.e. the quotient of the free abelian group on
the set of isomorphism classes [N ] of finite-dimensional B-modules N , modulo the
subgroup generated by all elements

[N1 ⊕N2]− [N1]− [N2].

We define a bilinear form

〈 , 〉 : Ksp
0 (mod B)×Ksp

0 (mod B) −→ Z

by setting

〈N, N ′〉 = [N, N ′] − 1[N, N ′]

for all finite-dimensional B-modules N and N ′. We define an antisymmetric bilinear
form on Ksp

0 (mod B) by setting

〈N, N ′〉a = 〈N, N ′〉 − 〈N ′, N〉

for all finite-dimensional B-modules N and N ′. Let T1, . . . , Tn be the pairwise non-
isomorphic indecomposable direct summands of T and, for i = 1, . . . , n, let Si be
the top of the projective B-module Pi = FTi. The set {Si, i = 1, . . . , n} is a set of
representatives for the isoclasses of simple B-modules.

We need a lemma, the proof of which will be given in part 2.

Lemma 3. For any i = 1, . . . , n, the linear form 〈Si, ?〉a : Ksp

0 (mod B) → Z

induces a well-defined form

〈Si, ?〉a : K0(mod B)→ Z.

Let ind C be a set of representatives for the isoclasses of indecomposable objects
of C. Define, as in [9, 6.1], a Caldero–Chapoton map, XT

? : ind C → Q(x1, . . . , xn)
by

XT
M =

{

xi if M ≃ ΣTi
∑

e χ(Gre FM)
∏n

i=1 x
〈Si,e〉a−〈Si,FM〉
i else.

Extend it to a map XT
? : C → Q(x1, . . . , xn) by requiring that XT

M⊕N = XT
MXT

N .

When there are no possible confusions, we often denote XT
M by XM . The main

result of this article is the following

Theorem 4. The map XT
? : C → Q(x1, . . . , xn) is a cluster character.

We will prove the theorem in section 5.1, illustrate it by examples in section 6
and draw some consequences in section 5.2.
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2. Index, coindex and Euler form

In the next two sections, our aim is to understand the exponents appearing in
the definition of XM . More precisely, for two objects L and M of C, we want to
know how the exponents in XB depend on the choice of the middle term B of a
triangle with outer terms L and M .

2.1. Index and coindex. Let X be an object of C. Define its index
indX ∈ K0(projB) as follows. There exists a triangle (see [KR1])

T X
1 → T X

0 → X → ΣT X
1

with T X
0 and T X

1 in addT . Define indX to be the class [FT X
0 ] − [FT X

1 ] in
K0(projB). Similarly, define the coindex of X , denoted by coindX , to be the
class [FT 0

X ]− [FT 1
X ] in K0(projB), where

X → Σ2T 0
X → Σ2T 1

X → ΣX

is a triangle in C with T 0
X , T 1

X ∈ addT .

Lemma 5. We have the following properties:

(1) The index and coindex are well defined.
(2) indX = − coindΣX.
(3) indTi = [Pi] and ind ΣTi = −[Pi] where Pi = FTi.
(4) indX − coindX only depends on FX ∈ modB.

Proof. An addT -right approximation of an object X of C is a morphism T ′ f
−→ X

with T ′ ∈ addT such that any morphism T ′′ −→ X with T ′′ ∈ addT factors through

f . It is called minimal if, moreover, any morphism X
g
−→ X such that gf = f is

an isomorphism. A minimal approximation is unique up to isomorphism.
Assertions (2) and (3) are left to the reader.

(1) In any triangle of the form

T X
1 → T X

0
f
→ X → ΣT X

1 ,

the morphism f is an addT -right approximation. Therefore, any such triangle is
obtained from one where f is minimal by adding a trivial triangle

T ′ → T ′ → 0→ ΣT ′

with T ′ ∈ addT . The index is thus well-defined. Dually, one can define left approx-
imations and show that the coindex is well-defined.

(4) Let T ′ be an object in addT . Take two triangles

T X
1 → T X

0 → X → ΣT X
1 and

X → Σ2T 0
X → Σ2T 1

X → ΣX

with T X
0 , T X

1 , T 0
X and T 1

X in addT . Then, we have two triangles

T X
1 ⊕ T ′ → T X

0 → X ⊕ ΣT ′ → Σ(T X
1 ⊕ T ′) and

X ⊕ ΣT ′ → Σ2T 0
X → Σ2(T 1

X ⊕ T ′)→ ΣX ⊕ Σ2T ′.

We thus have the equality:

ind(X ⊕ ΣT ′)− coind(X ⊕ ΣT ′) = indX − coindX.

�
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Proposition 6. Let X
f
→ Z

g
→ Y

ε
→ ΣX be a triangle in C. Take C ∈ C (resp.

K ∈ C) to be any lift of CokerFg (resp. KerFf). Then

ind Z = indX + indY − indC − ind Σ−1C and
coindZ = coindX + coindY − coindK − coind ΣK.

Proof. Let us begin with the equality for the indices. First, consider the case where
FC = 0. This means that the morphism ε belongs to the ideal (ΣT ). Take two
triangles

T X
1 −→ T X

0 −→ X −→ ΣT X
1 and T Y

1 −→ T Y
0 −→ Y −→ ΣT Y

1

in C, where the objects T X
0 , T X

1 , T Y
0 , T Y

1 belong to the subcategory addT . Since
the morphism ε belongs to the ideal (ΣT ), the morphism T Y

0 → Y factors through
g. This gives a commutative square

T X
0 ⊕ T Y

0
//

��

T Y
0

��
Z // Y.

Fit it into a nine-diagram

T X
1

//

��

Z ′ //

��

T Y
1

//

��

ΣT X
1

T X
0

//

��

T X
0 ⊕ T Y

0
//

��

T Y
0

0 //

��

ΣT X
0

X //

��

Z //

��

Y //

��

ΣX

ΣT X
1 ΣZ ′ ΣT Y

1 ,

whose rows and columns are triangles. Since the morphism T Y
1 → ΣT X

1 vanishes,
the triangle in the first row splits, so that we have

Z ′ ≃ T X
1 ⊕ T Y

1 and indZ = ind X + ind Y.

Now, let us prove the formula in the general case. There exists a lift C of CokerFg
in C such that the following diagram is commutative

Y
ε //

��@
@@

@@
@@

ΣX.

C

==zzzzzzzz

The octahedral axiom yields a commutative diagram
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U

��

U

��
X // Z //

��

Y
ε //

��

ΣX

X // V
β //

γ

��

C //

α

��

ΣX

ΣU ΣU,

whose two central rows and columns are triangles. Due to the choice of C, the
morphisms α, β, hence γ belong to the ideal (ΣT ). We thus have the equalities:

indY = indC + indU,

indX = indV + ind Σ−1C,

indZ = indV + indU,

giving the desired formula. Moreover, as seen in lemma 5 (4), the sum indC +
ind Σ−1C = indC − coindC does not depend on the particular choice of C. Apply
this formula to the triangle

Σ−1X −→ Σ−1Y −→ Σ−1Z −→ X

and use lemma 5(2) to obtain the formula for the coindices. �

2.2. Exponents. We now compute the index and coindex in terms of the Euler
form.

Lemma 7. Let X ∈ C be indecomposable. Then

indX =







−[Pi] if X ≃ ΣTi

∑n
i=1〈FX, Si〉[Pi] else,

coindX =







−[Pi] if X ≃ ΣTi

∑n
i=1〈Si, FX〉[Pi] else.

Proof. Let X be an indecomposable object in C, non-isomorphic to any of the ΣTi’s.
Take a triangle

T X
1

f
−→ T X

0
g
−→ X

ε
−→ ΣT X

1

with the morphism g being a minimal right addT -approximation, as defined in the
proof of lemma 5. We thus get a minimal projective presentation

PX
1 −→ PX

0 −→ FX −→ 0

where PX
i = FT X

i , i = 0, 1. For any i, the differential in the complex

0 −→ (PX
0 , Si) −→ (PX

1 , Si) −→ · · ·

vanishes. Therefore, we have

[FX, Si] = [PX
0 , Si] = [PX

0 : Pi],
1[FX, Si] = [PX

1 , Si] = [PX
1 : Pi],

〈FX, Si〉 = [indX : Pi].
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The proof for the coindex is analogous: We use a minimal injective copresentation
of FX induced by a triangle

X −→ Σ2T 0
X −→ Σ2T 1

X −→ ΣX.

�

Let us write xe for
∏n

i=1 x
[e:Pi]
i where e ∈ K0(projB) and [e : Pi] is the ith coefficient

of e in the basis [P1], . . . , [Pn]. Then, by lemma 7, for any indecomposable object
M in C, we have

XM = x− coindM
∑

e

χ(Gre FM)

n
∏

i=1

x<Si,e>a

i .

3. The antisymmetric bilinear form

In this part, we give a positive answer to the first conjecture of [9, 6.1] and
prove that the exponents in XM are well defined. The first lemma is sufficient
for this latter purpose, but is not very enlightening, whereas the second proof
of theorem 11 gives us a better understanding of the antisymetric bilinear form.
When the category C is algebraic, this form is, in fact, the usual Euler form on the
Grothendieck group of a triangulated category together with a t-structure whose
heart is the abelian category modB itself.

3.1. The map XT is well defined. Let us first show that any short exact sequence
in modB can be lifted to a triangle in C.

Lemma 8. Let 0 → x → y → z → 0 be a short exact sequence in mod B. Then
there exists a triangle in C

X −→ Y −→ Z −→ ΣX

whose image under F is isomorphic to the given short exact sequence.

Proof. Let

0 −→ x
i
−→ y

p
−→ z −→ 0

be a short exact sequence in mod B. Let X
f
−→ Y be a lift of the monomorphism

x
i
−→ y in C. Fix a triangle

T X
1 −→ T X

0 −→ X −→ ΣT X
1

and form a triangle

X −→ Y ⊕ ΣT X
1 −→ Z

ε
−→ ΣX .

The commutative left square extends to a morphism of triangles

X // Y ⊕ ΣT X
1

[0 1]

��

// Z

���
�

�
ε // ΣX

X // ΣT X
1

// ΣT X
0

// ΣX.

so that the morphism ε lies in the ideal (ΣT ). Therefore, the sequence

0 −→ x
i
−→ y −→ FZ −→ 0

is exact, and the modules FZ and z are isomorphic. �
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Proof of lemma 3.
Let X be an object of the category C. Using section 2.2 we have

coindX − indX =

n
∑

i=1

〈Si, FX〉a [Pi] .

Therefore, it is sufficient to show that the form

K0(mod B) −→ Z

[FX ] 7−→ coindX − ind X

is well defined. Thanks to lemma 5(4), we already know that coindX − indX only
depends on FX . Take 0→ x→ y → z → 0 to be a short exact sequence in mod B.
Lift it, as in lemma 8, to a triangle

X −→ Y −→ Z −→ ΣX in C.

By proposition 6, we have

indY − coindY = (indX + indZ)− (coindX + coindZ)

which is the required equality. �

Corollary 9. The map

XT
? : C −→ Q(x1, . . . , xn)

is well defined.

3.2. The antisymmetric bilinear form descends to the Grothendieck group.

In this subsection, we prove a stronger result than in the previous one. This gives
a positive answer to the first conjecture in [9, 6.1].

Lemma 10. Let T ′ be any cluster-tilting object in C. We have bifunctorial isomor-
phisms

C/(T ′)(Σ
−1X, Y ) ≃ (T ′)(Σ−1Y, X).

Proof. Let X and Y be two objects of C, and let T ′
1 −→ T ′

0 −→ X
η
−→ ΣT ′

1 be a
triangle in C, with T ′

0 and T ′
1 in addT ′. Consider the morphism

α : (T ′
1, Y ) −→ (Σ−1X, Y )

f 7−→ f ◦ Σ−1η.

We have

(T ′)(Σ−1X, Y ) ≃ Im α ≃ Im Dα.

Since the category C is 2-Calabi–Yau, the dual of α, Dα, is isomorphic to

α′ : (Σ−1Y, X) −→ (Σ−1Y, T ′
1)

g 7−→ η ◦ g.

We thus have isomorphisms

(T ′)(Σ−1X, Y ) ≃ Im α′

≃ (Σ−1Y, X)/ Kerα′

≃ C/(T ′)(Σ
−1Y, X).

�

Theorem 11. The antisymmetric bilinear form 〈 , 〉a descends to the Grothendieck
group K0(mod B).
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Proof. Let X and Y be two objects in the category C. In order to compute
〈FX, FY 〉 = [FX, FY ] − 1[FX, FY ], let us construct a projective presentation
in the following way. Let

Σ−1X
g
−→ T X

1
f
−→ T X

0 −→ X

be a triangle in C with T X
0 and T X

1 being two objects in the subcategory addT .
This triangle induces an exact sequence in modB

FΣ−1X
Fg
−→ FT X

1
Ff
−→ FT X

0 −→ FX −→ 0,

where FT X
0 and FT X

1 are finite-dimensional projective B-modules. Form the com-
plex

(∗) 0 −→ HomB(FT X
0 , FY ) −→ HomB(FT X

1 , FY ) −→ HomB(FΣ−1X, FY ).

Since the object T is cluster-tilting in C, there are no morphisms from any object in
addT to any object in add ΣT . The complex (∗) is thus isomorphic to the following
one :

0 −→ C(T X
0 , Y )

f∗

−→ C(T X
1 , Y )

g∗

−→ C/(ΣT )(Σ
−1X, Y ),

where f∗ (resp. g∗) denotes the composition by f (resp. g). Therefore, we have

HomB(FX, FY ) ≃ Ker f∗

Ext1B(FX, FY ) ≃ Ker g∗/ Im f∗.

We can now express the bilinear form as

〈FX, FY 〉 = dimKer f∗ − dimKer g∗ + rg f∗

= [T X
0 , Y ]− [T X

1 , Y ] + rg g∗,

with the image of the morphism g∗ being the quotient by the ideal (ΣT ) of the
space of morphisms from Σ−1X to Y , in C, which belong to the ideal (T ):

Im g∗ = (T )/(ΣT )(Σ
−1X, Y ).

Similarily, using an injective copresentation given by a triangle of the form

X −→ Σ2T 0
X −→ Σ2T 1

X

β
−→ ΣX,

we obtain

〈FY, FX〉 = [Y, Σ2T 0
X ]− [Y, Σ2T 1

X ] + rg β∗,

and Imβ∗ = (Σ2T )/(ΣT )(Y, ΣX). By lemma 10, we have bifunctorial isomorphisms

(T )/(ΣT )(Σ
−1X, Y ) ≃ D(ΣT )/(T )(Σ

−1Y, X) ≃ D(Σ2T )/(ΣT )(Y, ΣX).

Therefore, we have the equality

〈FX, FY 〉a = [T X
0 , Y ]− [T X

1 , Y ]− [Y, Σ2T 0
X ] + [Y, Σ2T 1

X ]

= [FT X
0 , FY ]− [FT X

1 , FY ]− [FY, FΣ2T 0
X ] + [FY, FΣ2T 1

X ].

Since FT is projective and FΣ2T in injective, this formula shows that 〈 , 〉a de-
scends to a bilinear form on the Grothendieck group K0(mod B). �
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3.3. The antisymmetric bilinear form and the Euler form. In this subsec-
tion, assume moreover that the category C is algebraic, as in [23, section 4]: There
exists a k-linear Frobenius category with split idempotents E whose stable cate-
gory is C. Denote by M the preimage, in E , of addT via the canonical projection
functor. The category M thus contains the full subcategory P of E whose ob-
jects are the projective objects in E , and we have M = addT . Let ModM be
the category of M-modules, i.e. of k-linear contravariant functors from M to the
category of k-vector spaces. The category modM of finitely presentedM-modules
is identified with the full subcategory of ModM of finitely presented M-modules
vanishing on P . This last category is equivalent to the abelian category mod B of
finitely generated B-modules. Recall that the perfect derived category perM is
the full triangulated subcategory of the derived category of DModM generated
by the finitely generated projective M-modules. Define perMM to be the full
subcategory of perM whose objects X satisfy the following conditions:

. for each integer n, the finitely presentedM-module HnX belongs to modM,

. the module HnX vanishes for all but finitely many n ∈ Z.

It can easily be shown that perMM is a triangulated subcategory of perM. More-

over, as shown in [27], the canonical t-structure on DModM induces a t-structure
on perMM, whose heart is the abelian category modM.
The following lemma shows that the Euler form

K0

(

perMM
)

× K0

(

perMM
)

−→ Z

([X ], [Y ]) 7−→ 〈[X ], [Y ]〉 =
∑

i∈Z

(−1)i dim perMM
(

X, ΣiY
)

is well defined.

Lemma 12. Let X and Y belong to perMM. Then the vector spaces perMM
(

X, ΣiY
)

are finite dimensional and only finitely many of them are non-zero.

Proof. Since X belongs to perM, we may assume that it is representable: There
exists M in M such that X = M .̂ Moreover, the module HnY vanishes for all
but finitely many n ∈ Z. We thus may assume Y to be concentrated in degree
0. Therefore, the space perMM

(

X, ΣiY
)

= perMM(M ,̂ ΣiH0Y ) vanishes for all
non-zero i. For i = 0, it equals

HomM

(

M ,̂ H0Y
)

= H0Y (M)

= HomM

(

M(?, M), H0Y
)

.

this last space being finite dimensional.
�

This enables us to give another proof of theorem 11. This proof is less general
than the previous one, but is nevertheless much more enlightening.
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Proof of theorem 11. Let X and Y be two finitely presented M-modules, lying in
the heart of the t-structure on perMM. We have:

〈[X ], [Y ]〉 =
∑

i∈Z

(−1)i dim perMM
(

X, ΣiY
)

=

3
∑

i=0

(−1)i dim perMM
(

X, ΣiY
)

(1)

= dim perMM(X, Y )− dim perMM(X, ΣY )

+ dimperMM(X, Σ2Y )− dimperMM(X, Σ3Y )

= dim perMM(X, Y )− dim perMM(X, ΣY )(2)

+ dimperMM(Y, X)− dim perMM(Y, ΣX)

= dim HomM(X, Y )− dimHomM(X, ΣY )

+ dimHomM(Y, X)− dimHomM(Y, ΣX)

= 〈[X ], [Y ]〉a

where the classes are now taken in K0(mod B). Equalities (1) and (2) are conse-
quences of the 3-Calabi–Yau property of the category perMM, cf. [23]. �

4. Dichotomy

Our aim in this part is to study the coefficients appearing in the definition of
XM . In particular, we will prove that the phenomenon of dichotomy proved in [10]
(see also [15]) remains true in this more general setting.

Recall that we write xe for
∏n

i=1 x
[e:Pi]
i where e ∈ K0(projB) and [e : Pi] is the

ith coefficient of e in the basis [P1], . . . , [Pn].

Lemma 13. For any M ∈ C, we have

XM = x− coindM
∑

e

χ(Gre FM)

n
∏

i=1

x
〈Si,e〉a

i .

Proof. We already know that this formula holds for indecomposable objects of C, cf.
section 2.2. Let us prove that it still holds for decomposable objects, by recursion
on the number of indecomposable direct summands.

Let M and N be two objects in C. As shown in [8], we have

χ (Grg F (M ⊕N)) =
∑

e+f=g

χ (Gre FM)χ (Grf FN) .

Therefore, we have XM⊕N = XMXN =
(

x− coindM
∑

e

χ(Gre FM)
n
∏

i=1

x<Si,e>a

i

)



x− coindN
∑

f

χ(Gre FN)
n
∏

i=1

x<Si,f>a

i





= x−(coindM+coindN)
∑

g

∑

e+f=g

χ (Gre FM)χ (Grf FN)

n
∏

i=1

x<Si,e+f>a

i

= x− coind(M⊕N)
∑

g

χ (Grg F (M ⊕N))

n
∏

i=1

x<Si,g>a

i

�

Lemma 14. Let M
i
−→ B

p
−→ L

ε
−→ ΣM be a triangle in C, and let U

iU−→ M

and V
iV−→ L be two morphisms whose images under F are monomorphisms. Then

the following conditions are equivalent:



CLUSTER CHARACTERS 13

i) There exists a submodule E ⊂ FB such that
FV = (Fp)E and FU = (Fi)−1E,

ii) There exist two morphisms e : Σ−1V −→ U and f : Σ−1L −→ U such that
a) (Σ−1ε)(Σ−1iV ) = iUe
b) e ∈ (T )
c) iUf − Σ−1ε ∈ (ΣT ).

iii) Condition ii) where, moreover, e = fΣ−1iV .

The following diagrams will help the reader parse the conditions:

FΣ−1L
FΣ−1ε // FM

Fi // FB
Fp // FL

FU
?�

OO

// E
?�

OO

// FV
?�

OO

// 0,

Σ−1L
Σ−1ε //

f

""F
FF

FF
FF

FF
M

Σ−1V

Σ−1iV

OO

e
// U.

iU

OO

Proof. Assume condition ii) holds. Then, by a), there exists a morphism of triangles

Σ−1L
Σ−1ε // M

i // B
p // L

Σ−1V

Σ−1iV

OO

e // U

iU

OO

//___ W //___

j

OO�
�

�

V

iV

OO

Take E to be the image of the morphism Fj. The morphism e factors through
addT , so that we have FΣe = 0 and the functor F induces a commutative diagram

FΣ−1L
FΣ−1ε //

Ff

��7
77

77
77

77
77

77
77

7 FM
Fi // FB

Fp // FL
Fε // FΣM

E
?�

OO

## ##F
F

F
F

F

FU
?�

FiU

OO

//

;;wwwwwwwww
FW //

OOOO

FV
?�

FiV

OO

// 0

whose rows are exact sequences. It remains to show that FU = (Fi)−1E.
We have FU ⊂ (Fi)−1E since (Fi)(FiU ) factors through the monomorphism

E → FB. The existence of the morphism Ff shows, via diagram chasing, the
converse inclusion.

Conversely, let E ⊂ FB be such that FV = (Fp)E and FU = (Fi)−1E. In
particular, FU contains KerFi = Im FΣ−1ε so that FΣ−1ε factors through FiU .
This gives us the morphism f , satisfying condition c). Define the morphism e as
follows. There exists a triangle

T1 −→ T0 −→ V −→ ΣT1,

where T1, T0 belong to addT . Applying the functor F to this triangle, we get
an epimorphism FT0 → FV with FT0 projective. This epimorphism thus fac-
tors through the surjection E → FV , and composing it with E → FB gives a
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commutative square

FT0
//

��

FV

��
FB // FL.

Since C(T, ΣT ) = 0, this commutative square lifts to a morphism of triangles

Σ−1V

��

// T1

��

// T0

��

// V

��
Σ−1L // M // B // L.

The morphism T1 → M thus induced, factors through the morphism U → M .
Indeed, we have FU = (Fi)−1E and the following diagram commutes :

FM // FB

FT1

;;xxxxxxxx
// FT0

<<yyyyyyyy

""E
EE

EE
EE

E

FU //?�

OO

E.
?�

OO

The morphism e is then given by the composition Σ−1V −→ T1 −→ U .

Let us show that condition ii) implies condition iii). By hypothesis, we have

iUe = (Σ−1ε)(Σ−1iV )

and

iUfΣ−1iV ≡ (Σ−1ε)(Σ−1iV ) mod (ΣT ).

Therefore, the morphism iU
(

fΣ−1iV − e
)

belongs to the ideal (ΣT ). The mor-

phism FiU is a monomorphism, so that the morphism h := fΣ−1iV − e lies in

(ΣT ). There exists a morphism Σ−1L
l
−→ U such that h = lΣ−1iV :

Σ−1C
∈(T ) //

0
$$J

JJ
JJ

JJ
JJJ

Σ−1V
Σ−1iV //

h ∈(ΣT )

��

Σ−1L
c //

l
zzu

u
u

u
u

C

U .

Since the morphism Σ−1C → Σ−1V lies in the ideal (T ), there exists a morphism
of triangles

Σ−1C //

��

Σ−1V // Σ−1L
c //

v

��

C

��
T 1

V

u // Σ−1V // ΣT 0
V

// ΣT 1
V .

The composition lΣ−1iV belongs to the ideal (ΣT ), so that the composition l(Σ−1iV )u
vanishes. We thus have a morphism of triangles

T 1
V

u //

��

Σ−1V //

Σ−1iV

��

ΣT 0
V

//

w

��

ΣT 1
V

��
Σ−1C′ // Σ−1L

l // U // C′.
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Therefore, we have (Σ−1iV )(l − wv) = 0, and there exists a morphism C
l′

−→ U
such that l − wv = l′c. The morphism l0 = l − l′c thus factors through ΣT1. Put
f0 = f − l0. We have

f0Σ
−1iV = fΣ−1iV − lΣ−1iV + l′cΣ−1iV = e

and

iUf0 = iUf − iU l0

≡ iUf mod (ΣT )

≡ Σ−1ε mod (ΣT ).

�

Proposition 15. Let L, M ∈ C be such that dim C(L, ΣM) = 1. Let

∆ : M
i
−→ B

p
−→ L

ε
−→ ΣM

and ∆′ : L
i′

−→ B′ p′

−→M
ε′

−→ ΣL

be non-split triangles. Then conditions i) to iii) hold for the triangle ∆ if and only
if they do not for the triangle ∆′.

Proof. Define maps

(Σ−1L, U)⊕ (Σ−1L, M)
α
−→ C/(T )

(

Σ−1V, U
)

⊕ (Σ−1V, M)⊕ C/(ΣT )
(

Σ−1L, M
)

(f, η) 7−→ (fΣ−1iV , iUfΣ−1iV − ηΣ−1iV , iUf − η)

and

(Σ−1U, L)⊕ (Σ−1M, L)
α′

←− (T )(Σ−1U, V )⊕ (Σ−1M, V )⊕ (ΣT )(Σ−1M, L)

(iV e′ + g′Σ−1iU + iV f ′Σ−1iU ,−g′ − iV f ′) ←− [ (e′, f ′, g′).

Since the morphism space C(L, ΣM) is one-dimensional, the morphism ε satisfies
condition iii) if and only if the composition

β : Kerα � � // (Σ−1L, U)⊕ (Σ−1L, M) // // (Σ−1L, M)

does not vanish. Assume condition iii) to be false for the triangle ∆. This happens
if and only if the morphism β vanishes, if and only if its dual Dβ vanishes. Since the
category C is 2-Calabi–Yau, lemma 10 implies that the morphism Dβ is isomorphic
to the morphism:

β′ : (Σ−1M, L)
� � // (Σ−1U, L)⊕ (Σ−1M, L) // // Cokerα′.

Therefore, β′(Σ−1ε) = 0 is equivalent to Σ−1ε being in Imα′, which is equivalent
to the existence of three mophisms e′, f ′, g′ as in the diagram

Σ−1M
g′

//

f ′

""F
FF

FF
FF

FF
L

Σ−1U

Σ−1iU

OO

e′

// V

iV

OO

such that














e′ ∈ (T )
g′ ∈ (ΣT )
Σ−1ε′ = iV f ′ + g′

iV e′ = (Σ−1ε′)(Σ−1iU ).

We have thus shown that condition iii) does not hold for the triangle ∆ if and only
if condition ii) holds for the triangle ∆′. �
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5. The multiplication formula

We use sections 2 and 4 to prove the multiplication formula, and apply it to
prove conjecture 2 in [9].

5.1. Proof of theorem 4. We use the same notations as in the statement of
theorem 4.
Define, for any classes e, f, g in the Grothendieck group K0(mod B), the following
varieties

Xe,f = {E ⊂ FB s.t. [(Fi)−1E] = e and [(Fp)E] = f}
Ye,f = {E ⊂ FB′ s.t. [(Fi′)−1E] = e and [(Fp′)E] = f}
Xg

e,f = Xe,f ∩Grg(FB)

Y g
e,f = Ye,f ∩Grg(FB′).

We thus have

Grg(FB) =
∐

e,f

Xg
e,f and Grg(FB′) =

∐

e,f

Y g
e,f .

Moreover, we have

χ (Gre(FM)×Grf (FL)) = χ (Xe,f ⊔ Ye,f )

= χ (Xe,f ) + χ (Ye,f )

=
∑

g

(

χ
(

Xg
e,f

)

+ χ
(

Y g
e,f

))

.

where the first equality is a consequence of the dichotomy phenomenon as follows:
Consider the map

Xe,f ⊔ Ye,f −→ Gre(FM)×Grf (FL)

which sends a submodule E of FB to the pair of submodules
(

(Fi)−1E, (Fp)E
)

.
By proposition 15, it is surjective, and, as shown in [8], its fibers are affine spaces.

Lemma 16. Let e, f and g be classes in K0(mod B). Assume that Xg
e,f is non-

empty. Then, we have
∑

〈Si, g〉a[Pi]− coindB =
∑

〈Si, e + f〉a − coindM − coindL.

Proof. Let E be a submodule of FB in Xg
e,f . Let U

iU−→ M and V
iV−→ L be two

morphisms in the category C such that FU ≃ (Fi)−1E, FV ≃ (Fp)E and the
images of iU and iV in modB are isomorphic to the inclusions of FU in FM and
FV in FL respectively. Let K ∈ C be a lift of the kernel of Fi. By proposition 6,
the following equality holds:

(1) coindB = coindM + coindL− coindK − coind(ΣK).

By diagram chasing, the kernel of Fi is also a kernel of the induced morphism from
FU to E. Therefore, in K0(mod B), we have

(2) g = e + f − [FK].

We have the following equalities:
∑

〈Si, FK〉a[Pi] = coindK − ind K (by lemma 7)

= coindK + coind(ΣK) (by lemma 5).

Equality (2) thus yields

(3)
∑

〈Si, g〉a[Pi] =
∑

〈Si, e + f〉a[Pi]− coindK − coind(ΣK).

It only remains to sum equalities (1) and (3) to finish the proof. �
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Proof of theorem 4.
Using lemma 13, we have

XMXL = x− coindM−coindL
∑

e,f

χ(Gre FM)χ(Grf FL)

n
∏

i=1

x
〈Si,e+f〉a

i ,

XB = x− coindB
∑

g

χ(Grg FB)
n
∏

i=1

x
〈Si,g〉a

i and

XB′ = x− coindB′
∑

g

χ(Grg FB′)

n
∏

i=1

x
〈Si,g〉a

i .

Therefore

XMXL = x− coindM−coind L
∑

e,f

χ (Gre(FM))χ (Grf (FL))
∏

x
〈Si,e+f〉a

i

= x− coindM−coind L
∑

e,f,g

(

χ
(

Xg
e,f

)

+ χ
(

Y g
e,f

))

∏

x
〈Si,e+f〉a

i

= x− coindB
∑

e,f,g

χ
(

Xg
e,f

)

∏

x
〈Si,g〉a

i

+x− coindB′
∑

e,f,g

χ
(

Xg
e,f

)

∏

x
〈Si,g〉a

i

= x− coindB
∑

g

χ (Grg(FB))
∏

x
〈Si,g〉a

i

+x− coindB′
∑

g

χ (Grg(FB′))
∏

x
〈Si,g〉a

i

= XB + XB′ .

�

5.2. Consequences. Let Q be an acyclic connected quiver, and let C be the cluster
category associated to Q.

An object of C without self-extensions is called rigid. An object of C is called
basic if its indecomposable direct summands are pairwise non-isomorphic. For a
basic cluster-tilting object T of C, let QT denote the quiver of End (T ), and AQT

the associated cluster algebra.

Proposition 17. A cluster character χ on C with values in Q(x1, . . . , xn) which
sends a basic cluster-tilting object T of C to a cluster of AQT

sends any cluster-
tilting object T ′ of C to a cluster of AQT

, and any rigid indecomposable object to a
cluster variable.

Proof. Since the tilting graph of C is connected, cf. [4, proposition 3.5], we can prove
the first part of the proposition by recursion on the minimal number of mutations
linking T ′ to T . Let T ′′ = T ′′

1 ⊕· · ·⊕T ′′
n be a basic cluster-tilting object, whose image

under χ is a cluster of AQT
. Assume that T ′ = T ′

1⊕ T ′′
2 ⊕ · · · ⊕ T ′′

n is the mutation
in direction 1 of T ′′. Since χ is a cluster character, it satisfies the multiplication
formula, and theorem 6.1 of [5] shows that the mutation, in direction 1, of the
cluster (χ(T ′′

1 ), . . . , χ(T ′′
n )) is the cluster (χ(T ′

1), χ(T ′′
2 ), . . . , χ(T ′′

n )). We have thus
proved that the image under χ of any cluster-tilting object is a cluster. It is
proved in [4, proposition 3.2] that any rigid indecomposable object of C is a direct
summand of a basic cluster-tilting object. Therefore, the image under χ of any
rigid indecomposable object is a cluster variable of AQT

. �
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Remark: As a corollary of the proof of proposition 17, a cluster character is char-
acterised by the image of each direct summand of any given cluster-tilting object.

The following corollary was conjectured for the finite case in [9]:

Corollary 18. Let T be any basic cluster-tilting object in C, and let QT denote
the quiver of End (T ). Denote by T a set of representatives for the isoclasses of
indecomposable rigid objects of C. Then XT induces a bijection from the set T
to the set of cluster variables of the associated cluster algebra AQT

, sending basic
cluster-tilting objects to clusters.

Proof. In view of theorem 4, proposition 17 shows that the map XT sends rigid
indecomposable objects to cluster variables and cluster-tilting objects to clusters.
It remains to show that it induces a bijection. This follows from [10, theorem 4],
where it is proved for the Caldero-Chapoton map XkQ.

As in the proof of proposition 17, we proceed by induction on the minimal
number of mutations linking T to kQ.

Let T ′ be a basic cluster-tilting object such that the map XT ′

induces a bijection
from the set T to the set of cluster variables. Assume that T is the mutation in
direction 1 of T ′. Denote by f the canonical isomorphism from AQ

T ′
to AQT

.

Theorem 6.1 of [5] shows that the two cluster characters XT and f ◦XT ′

coincide
on the indecomposable direct summands of ΣT . Therefore, they coincide on all
objects and the map XT also induces a bijection. �

Remark: We have shown that, for any basic cluster-tilting object T , we have a
commutative diagram

T

~~}}
}}

}}
}}

XT

!!C
CC

CC
CC

C

AQ AQT

≃oo

where the arrow on the left side is the Caldero–Chapoton map.

6. Examples

6.1. The cluster category CA4
. The Auslander–Reiten quiver of CA4

is

ΣT4

""E
EE

EE
76540123T4

""E
EE

EEE ΣT1

##GG
GG

G

""E
EEEEE

<<yyyyyy
M

  B
BB

BB
B

>>}}}}}

##G
GG

GG
GG

G

;;wwwwww ΣT2

��@
@@

@@

ΣT2

""E
EE

EE

<<yyyyyy
76540123T2

""E
EEEEE

<<yyyyy

""E
EE

EE
E

<<yyyyyyy

##G
GG

GG
GG

;;wwwwww

��@
@@

@@

ΣT1

;;wwwww
76540123T1

<<yyyyyy

>>}}}}}}}
ΣT3

;;wwwwww
76540123T3

??~~~~~~
ΣT4

The object T := T1⊕T2⊕T3⊕T4 is cluster-tilting. Indeed, it is obtained from the
image of the kQ-projective module kQ in CA4

by the mutation of the third vertex.
The quiver of B = EndCA4

(T ) is

1 2oo

��

4oo

3

@@�������
.

For i = 1, . . . , n, let Pi be the image of Ti in modB, let Ii be the image of Σ2Ti and
let Si be the simple top of Pi. Let M be the finite-dimensional B-module given by:
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M = k koo

��

0oo

0

@@��������
.

The shape and the relations of the AR–quiver of B are obtained from the ones of
CA4

by deleting the vertices corresponding to the objects ΣTi and all arrows ending
to or starting from these vertices.

S3

��

P3 = I4
oo

S1 = P1
// P2

��

// M

��

// P4 = I1

��
I3

// S2
// I2

��
S4

JJ

Let MC be an indecomposable lift of M in CA4
. The triangles

T3 −→ T2 −→MC −→ ΣT3 and T1 −→ T4 −→ ΣMC −→ ΣT1

allows us to compute the index and coindex of MC:

indMC = [P2]− [P1]

coindMC = [P1]− [P4].

Up to isomorphism, the submodules of M are 0, the simple S1, and M itself. We
thus have

XMC
=

x4x2 + x4 + x3x1

x1x2
.

6.2. The cluster category CD4
. The Auslander–Reiten quiver of CD4

is

76540123T1

��@
@@

@@
@

��;
;;

;;
;;

��@
@@

@@
@@ ΣT1

��@
@@

@@
@

76540123T1

//

??������

��@
@@

@@
@ ΣT0

// //

��;
;;

;;
;;

AA������� 76540123T0
// //

��@
@@

@@
@@

??�������
ΣT3

// //

��@
@@

@@
@

??������ 76540123T3
// //

��@
@@

@@
@

??������
ΣT0

76540123T2

??������

AA�������

??�������
ΣT2

??������
76540123T2

The object T := T1 ⊕ T2 ⊕ T3 ⊕ T4 is cluster-tilting.
The quiver of B = EndCD4

(T ) is

1

��=
==

==
=

0

@@������

��=
==

==
= 3oo

2

@@������

with the following relations: Any composition with the middle arrow vanishes, and
the square is commutative.
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For i = 1, . . . , n, let Pi be the image of Ti in modB, let Ii be the image of
Σ2Ti and let Si be the simple top of Pi. Let M and N be the finite-dimensional
B-modules given by:

k

��=
==

==
= k

��>
>>

>>
>

M : k

��>
>>

>>
>

@@������
0oo N : 0

@@������

��=
==

==
= koo

k

@@������
k

@@������

As in the previous example, one can easily compute the AR-quiver of B.

P3 = I0





P1

  @
@@

@@
@@

@
S2

##G
GGGGGGGG I1

  @
@@

@@
@@

S3

  A
AA

AA
AA

>>}}}}}}}
N //

##G
GGGGGGGG

;;wwwwwwwww
P0 = I3

// M

  @
@@

@@
@@

@

>>~~~~~~~~
S0

qq

P2

>>~~~~~~~~
S1

;;wwwwwwwww
I2

>>~~~~~~~

The submodules of M are, up to isomorphism, 0, S1, S2, S1 ⊕ S2 and M . Let MC

be an indecomposable lift of M in CD4
. Either by using addT -approximations and

add ΣT -approximations or by [21, section 5.2], one can compute the triangles

T3 −→ T0 −→MC −→ ΣT3 and T1 ⊕ T2 −→ T0 −→ Σ−1M −→ ΣT1 ⊕ ΣT2.

We thus have

ind MC = [P0]− [P3], coindMC = [P1] + [P2]− [P0]

and

XMC =
1 + 2x0 + x2

0 + x1x2x3

x0x1x2
.
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