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Inhomogeneous and Euclidean spectra of number
fields with unit rank strictly greater than 1

Jean-Paul Cerri

Abstract

Let K be a number field with unit rank r > 1. In this article we show
that the inhomogeneous minimum M (K) of K is attained by at least one
rational point. In particular, if M(K) is the Fuclidean minimum of K,
we have M(K) = M(K) € Q. This phenomenon has consequences on the
decidability of the Euclidean nature of such a field. Moreover, in case K
is not a CM-field, we prove that 1\4(?) is attained, isolated, and that the
inhomogeneous minimum function takes discrete rational values.

Mathematics Subject Classification: Primary 11R04, Secondary 13F07,
37B05.

1 Introduction

The Euclidean minimum M (K) of a number field K and the inhomogeneous
minimum M (K) of the lattice associated to its ring of integers have been, until
today, the object of many conjectures. For instance, it has been showed that
M(K) = M(K) if the unit rank r of K verifies r < 1, but nothing was known
for r > 1. In this paper we prove that the equality holds in all cases, and we
establish a more powerful property relative to the rationality of M (K), which
corresponds, for the case r > 1, to a conjecture made by Barnes and Swinnerton-
Dyer in the real quadratic case. Since the case r = 0 is obvious, it only leaves
open the problem for r = 1.

In the same way, we prove other conjectures (e.g. M (K) is attained and isolated)
when 7 > 1 and K is not a CM-field. The different problems are introduced in
section 3.

Our approach rests on important results of ergodic theory and topological dy-
namics, which have been established by Berend and which give information
on the closed subsets of the torus, invariant under the action of a semigroup
of endomorphisms, according to some properties of this semigroup. Here, the
semigroup that we use is defined thanks to the unit group of K, which plays a
fundamental part in the different proofs.

2 Berend’s results

Let n be a positive integer. From now on, we denote the n-dimensional torus
R"/Z™ by T,. It is an additive group which is compact for the topology in-
duced by the metric topology of R™. Continuous endomorphisms of T,, can be
represented by n x n matrices with integer entries. Points and endomorphisms
of T, can be lifted to points and to linear transformations of R”, respectively.
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Let f be an endomorphism of T,. We shall indifferently denote by f its ma-
trix, its lift to IR™ whose matrix is the same, and when we shall speak of the
eigenvalues and eigenvectors of f, it will be in the ordinary sense for f as an
endomorphism of C* (extended to C" by linearity so that the matrix of f is the
same).

Let £ be a set of continuous endomorphisms of T,,.

A subset F' of T, will be said £-invariant if for all f € £ we have f(F) C F.

A nonempty closed &-invariant set F' will be said £-minimal if it contains no
nonempty closed £-invariant proper subset.

Using Zorn’s lemma, it is easy to see that every nonempty closed £-invariant
subset of T, contains a £&-minimal set (see for instance [9] or [4]).

Assume that ¥ is a commutative semigroup of endomorphisms of T,,. The set
of common eigenvectors of ¥ lying in C” is denoted by evecX. If v € evecX then
spec, X is the set of eigenvalues corresponding to v of all the elements of X.

Definition 1. ¥ is called hyperbolic if for each v € evecX, spec, ¥ € C;, where
C; 1s the unit circle in C.

Definition 2. X is called multi-parameter if for each v € evecX, spec, X con-
tains two rationally independent elements.

We can now give the results which have been established by Berend (see [2]
and [3]).

Theorem 1. Let ¥ be a commutative semigroup of epimorphisms of T,,. The
following conditions are equivalent:

(1) Any T-minimal set of T, is composed of torsion elements.

(2) T is hyperbolic and multiparameter.

Theorem 2. Let ¥ be a commutative semigroup of endomorphisms of T,.
Then the only infinite closed Y-invariant subset of T, is T, itself if and only if
the following conditions are satisfied:

(1) there exists o € X such that the characteristic polynomial of o? is irreductible
over Z for every positive integer p.

(2) for every v € evecX, there exists A € specy X of modulus strictly greater than
1.

(3) T contains a pair of rationally independent endomorphisms.

Theorem 1 is a part of [3], Thm 2.1, and Theorem 2 is [2], Thm 2.1. The proof
of the implication (2)=(1) of Theorem 1 needs the following Lemma (Lemma
4.2. in [3]) that we shall also use later.

Lemma 1. Let K be a number field and S a subsemigroup of the multiplicative
group K* of K. Suppose that for every s € S there exists a positive integer k
such that Q(s*) is a proper subfield of K. Then there exists a positive integer
N and a proper subfield F of K such that s™ € F for every s € S.

3 Euclidean and inhomogeneous spectra of a num-
ber field

From now on K will be a number field of degree n > 2 and of signature (r1, ra).
Denote by o, 1 <1 < rq, the r1 real embeddings of K in R, and o, 6,4; = 75,
where r1 + 1 < i < r1 4 72, the 2ry complex embeddings of K in C. Let Ng;q
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be the norm defined on K by

n ry ri+ra
V¢ € K, Nijo(€) = [ ei&) =] e:(&) I ‘m(ﬁ)‘z
i=1 i=1 i=ri1+1

Let us denote Z i the ring of integers of K, Ex the multiplicative group of units
of K, r the unit rank of K, r = r1 + r5 — 1, and £ the logarithmic embedding
of K\{0} in R™*"2 defined by

Ve e K\{0}, £(§) = (Ino1(§)], -, In|or, 40, (E)]) -

In this section we give definitions and elementary properties relative to the
notions of Euclidean minimum and inhomogeneous minimum of K. The results
are classical and given without proofs.

Definition 3. Let ¢ € K. The Euclidean minimum of £ is the real number
my (&) defined by

mic (€) = inf{ |Nicjo(€ = T); T € Zic .
It is elementary to see that mg has the following properties.
Proposition 1. We have
1) V(&,T,e) € K X Zg x Ex, mg (£ =) = mg (€).
ii) V¢ € K, 3T € Zg such that mg (§) = |Ng (€ — T)|.
i) V€ € K, mg(£) € Q and mg () =0 < £ € Zk.

Now we can extend mg to K = K ®@ R, the product of the archimedian
completions of K, which is usually identified to R™ x €2 but that we shall
identify here to

H=R"x {Z S (C2r2; Vie{l,...,ra}, 2rpqi = 2}7

which will be more convenient for later computations. Under this identification,
an element ¢ of K is viewed as the n-tuple (0;(&))i=1. n of H.

If (z,y) € H?, we shall denote z.y the element z of H defined by z; = z;y; for
every 7 (extension of the product of K).

Definition 4. Let x € H. The inhomogeneous minimum of x is the real number

mz(z) defined by

mz=(z) = inf{ﬁ|$i —o;(T); T € ZK}.

Of course for £ € K we have mz(£) = mg ().

Proposition 2. mz has the following properties:
i) Y(x,Y,e) € H x Zg x Ex, mgp(x) = mgp(e.xz — T).

ii) myg is upper semi-continuous on H.
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Remark 1. Properties 1.ii) and 1.iii) of mg cannot be extended to H via mg.

Proposition 2.i), with ¢ = 1, shows that mz induces an upper semi-continuous
map on H /Zx which is a compact set (isomorphic to Ty), so that m is bounded
and attains its maximum on H. Thus we can write the following definition.

Definition 5. We call inhomogeneous minimum of K and we denote M(K)
the positive real number defined by

M(K) = sup{mz(z); z € H} < +oo.
As a consequence, we obtain that mg is bounded on K and we can give the
following definition.
Definition 6. We call Fuclidean minimum of K and we denote by M (K) the
positive real number defined by
M(K) = sup{mg (£); £ € K}

By the definitions, it is clear that M(K) < M(K). In the case n = 2 and
K is totally real (the complex case is obvious), it has been proved by Barnes
and Swinnerton-Dyer (see [1]), that, in fact, there is an equality, and they have
conjectured that there is an element ¢ € K such that M(K) = mg(¢). Of
course, if it is true, we have M (K) = M(K) € Q.

We shall prove here that this conjecture is verified by any K as soon as r > 1.

From Definition 6 and Proposition 1.ii) we can write
V¢ € K, 3T € Zg such that |[Ng/g(é — T)| < M(K),

which leads to the following definition.
Definition 7. M (K) will be said attained if

n
Ve € H, 3T € Zk such that |H:EZ —oi(1)] < M(K).
i=1
It is known that, for n = 2, this property is not always true. For instance, it is

not verified by Q(+/13) (see [1], [8] or [11]). We shall prove here that M (K) is

attained as soon as r > 1 and K is not a CM-field.

Definition 8. The set of values of mg and my will be respectively called the
Fuclidean spectrum and the inhomogeneous spectrum of K.

Definition 9. The second inhomogeneous minimum and the second Euclidean
mimimum of K are defined by

My(K) = sup (mf(r)) and My(K) = sup (mK(&’))
m?(j)e<P§\/I(?) mE (§)€<AM(K)

Going further we get by induction (with p > 2)

Myy1(K) = sup (mf(:b)) and My (K) = sup (mK(E'))
ceH ek
mae(®) <Mp (K) mp (§)<Mp (K)

Definition 10. M (K) will be said isolated if My(K) < M(K).

These definitions lead to other questions. For instance, it has been conjectured
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that, for n = 2 and K totally real, M(K) is isolated, but this has only been
proved when M (K) is "attained” by a finite number of points of H modulo Z g
(see [1]). We shall prove here that M (K) is isolated as soon as r > 1 and K is
not a CM-field.

Another question could be: like for the inhomogeneous and Euclidean minima,
is there an equality between the second minima? The answer is no when n =
2 (see [10], and for other related questions [11]): if K = Q(+/73), we have
My(K) < Ms(K). Nevertheless, we shall prove that there is an equality for
r > 1if K is not a CM-field, and we shall even generalize this phenomenon to
the successive minima:

Vp>1, MP+1(F) = Mp41(K) < MP(F) = M,y (K),

with liﬂ_n M, (K) = 0. In this case both spectra are identical, included in @Q,
p—+co

and only composed of the successive minima and 0.

Note that if we remove the assumption » > 1, the previous limit does not
necessarily hold, as can show the elementary choice K = Q(\/g) in this case,
the M, (K) form a strictly decreasing sequence and we have pl}inoo M, (K) =

1/(2 + 2v/5), even if it is possible to find ¢ € K with mg (¢) arbitrarily small.

4 Main results

4.1 The link

In view of the link with results of section 2, we fix from now on a Z-basis
(€i)i<i<n of Zg. Thus, K, Zg and H can respectively be identified to Q", Z"
and R™, via @, the isomorphism from R” onto H defined by:

n
V:EER",@:E:( )
( ) Z:EJO-Z(eJ) i=1..n
Jj=1
Putting
Ve € R™, m(z) = my(®(2)),
we obtain a function defined and upper semi-continuous on R”, taking the same
values as mz, which study is equivalent to the study of mz. Clearly m is
defined modulo Z" so that it induces an upper semi-continuous function m on
T, given by:
Ve € R™, m(Z) = m(z),
where T is the class of z modulo Z".

Proposition 2.i) with T = 0 shows that, if ¢ € Ex, m is invariant under the
action of the function f. : R® — R™ defined by

fo(2) = @71 (c.®(x)),

which is the continuous extension to R™ of the function which sends y € Q" on
the coordinates in the basis (e;) of eXy;e;.

The set {f.; ¢ € Ex} is a group of automorphisms of R", isomorphic to the
multiplicative group Ex. Moreover, for every £, the matrix of f. relatively to
the canonical basis, has integer entries, so that f. induces an endomorphism of
T,,, denoted by g. and defined by

9(%) = fe(z).
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Obviously, since for all z € R™ we have m(f:(z)) = m(z), we get
Va € Ty, m(g:(a)) = m(a).

Now we put
Y = {gs; €€ EK}

It is easy to see that g. o g.» = g.. and that, in fact, ¥ is a commutative group
of automorphisms of T,,, isomorphic to the multiplicative group Fk.
In view of the determination of the eigenvalues of the f. (or of the g.), it is
necessary to extend ® to C". This is done as follows: if (u,v) € R™ x R™, then
we put & (u + Iv) = ®(u) + IP(v) and ¥’ is an automorphism of C”.
From now on, we denote v; (1 < i < n) the vectors of the canonical basis of R”

(or €") defined by
(vi)j = dij,

where d; ; is the Kronecker symbol, equal to 1 if ¢ = j and to 0 otherwise, and
we put
w; = <I>'_1(vi) e C.

Since ®' is an automorphism of C*, the w; form a basis of C*. Moreover, with
the notations of section 2, we have the following property.

Proposition 3. If u € evecX, there exists 1 € {1,...,n} such that
spec, X = {o;(¢); ¢ € Ex}.

Proof. If we still denote f. the linear function on C* whose restriction to R” is
fe, we have

Vz e C, fg(z) = <I>'_1(6.<I>/(z)),

so that for every ¢
fg(wl') = (I>/_1(E.'UZ') = (I)I_l(O'Z'(E)Ui) = O'Z'(E)wi.

Thus w; is an eigenvector for f., corresponding to the eigenvalue o;(¢), and we
see that w; € evecX.

Now let u be an element of evecX. Since the w; form a basis of C* we can
write u = Y u;w; where for every i, u; € C. Then for every € € Fg, u is an
eigenvector for f. and there exists A. € C which verifies f.(u) = A.u, or, since
for every 1 f.(wi) = oi(e)wi, > ujoi(e)w; = Y. Acujw;. But u # 0 and there

exists ig in {1,...,n} such that u;; # 0. Since the w; are independent, we must
have u; 05, (£) = u;,Ae, s0 that A, = oy, (¢).
This yields spec, X = {\:; ¢ € Ex} = {0,(¢); ¢ € Ex}. O

4.2 Inhomogeneous and Euclidean minima

Now, we can give the first important result.

Theorem 3. Let K be a number field of degree n > 3. If the unit rank r of
K 1is strictly greater than 1, in particular if K s totally real, there exists £ € K
such that

M(K) = mg(£) = mk (£)-

Proof. First of all, since 1t is a group of automorphisms, ¥ is a semigroup of
epimorphisms of T, and we can easily check that it i1s hyperbolic and multi-
parameter.
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The hyperbolic character of ¥ comes from Proposition 3. If ¥ is not hyperbolic,
then there exists an ¢ such that |o;(e)| = 1 for every € of Ex. If i > r1 + rg
the property is still true with ¢ — ry instead of i, and we can suppose i <
r1 + 72, so that £L(Fk) is included in an hyperplane of equation z; = 0 with
t < r1 4+ 72. But it is also included in the hyperplane of equation El<j<r1 xj +
227,1+1<j<r1+r2 z; = 0, which is distinct of the latter, since » > 1. Thus, we
obtain a contradiction to Dirichlet’s theorem, by which £(Ek) is a lattice of
rank r =r; + 79 — 1.

The multi-parameter character of ¥ comes from Proposition 3 and r > 2. Since
r > 2 there are at least two independent units, say £1 and £2. Then, 7 being
given, if o;(g1)! = oy(g2)™ with [ and m integers, by injectivity of o;, we have
ete;™ = 1 which yields I = m = 0.

Thus Theorem 1 can be applied.

Consider the set S defined by

S = {a € T, such that m(a) = M(K)}.

Recall that m is upper semi-continuous so that it attains its upper bound on
T,. In particular S is nonempty. Moreover, by upper semi-continuity of m, S
is a closed subset of T, it is easy to see that if (a,) is a sequence of S, which
converges to a, we have

M(K) = limsupm(a,) < m(a)

p——+oo

by upper semi-continuity, so that a € S, by the definitions of M (K) and S.
Now, if & € S, we know that for every ¢ € Fk, m(g:(a)) = m(a) which gives
ge (@) € S. This shows that S is X-invariant.

Let S’ be a ¥-minimal subset of S. By Theorem 1, S’ is composed of torsion
elements i.e. of elements « of T, for which there exists ko € Z\{0} such that
kqa = 0 (in T,). Such an element has necessarily its lifts in Q”, and if X/k,
with X € Z" is one of them, § = 1/k, Y _ X;e; is suitable. O

Since it is known that if r < 1, M(K) = M(K) (see [11]) we get the following

result.

Corollary 1. For every number field K we have M(K) = M(K). Moreover if
the unit rank of K 1is strictly greater than 1, then M(K) = M(K) € Q.

Proof. The equality M(K) = M(K) is a direct consequence of definitions and
Theorem 3. The rationality of this number follows from Proposition 1.iii). O

4.3 The decidability of the Euclideanity of a number field

From the definition of M (K) and the standard definition of norm-Euclideanity
of number fields, it is well known that the value of M (K) gives the following
information:

o If M(K) < 1, K is norm-Euclidean,
o If M(K) > 1, K is not norm-Euclidean,

o If M(K) = 1, we cannot conclude except if there is an element ¢ of K
such that M (K) = mg(£); in this case K is not norm-Euclidean,
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so that Theorem 3 and Corollary 1 give the following result.

Corollary 2. Let K be a number field with unit rank strictly greater than 1. If
M(K) =1, then K is not norm-FEuclidean.

Let us put now

A = {z € H such that H |z;| < 1}.
i=1
It is obvious that if Zg + A = H then K is norm-Euclidean. H-W. Lenstra Jr.
has conjectured that it is in fact an equivalence (see [12]). Thanks to Theorem
3, we can prove that this is true as soon as r > 1.

Theorem 4. Let K be a number field with unit rank strictly greater than 1.
We have
Knorm-Euclidean <= Zx + A = H.

Proof. 1f K is norm-Euclidean, we have M(K) = M(K) < 1. Assume that
M(K) = 1. Then by Theorem 3, there exists & € K such that mg (§) = 1. But,
since K 1s norm-Euclidean, this is impossible, so that

M(K)=M(E)=M < 1.

Let z € H. We have my(2) < M < 1 and, by definition of mz(z), there exists
7 € 7k such that

- M+ 1
[Tl oz < =<1

i=1
This implies Zx +.A = H. O

Remark 2. In fact we have the following more precise result.
If A, = {z € H such that [];_, |z| < k}, then we can write

K norm-Euclidean <= 3k €]0, |[such that Zx + Ax = H.

Let us give now an important corollary of Theorem 4 which has already been
pointed out by H.W. Lenstra Jr.

Corollary 3. K being given with unit rank strictly greater than 1, the question
whether K 1s norm-FEuclidean is decidable.

The reader can refer to [12] for more details.

4.4 Inhomogeneous and Euclidean spectra

We can be more precise and look at all the values of m7= or m. It is a remarkable
fact that, contrary to what can happen in degree 2, all these values are rational
as soon as r > 1 and K is not a CM-field (totally complex quadratic extension
of a totally real number field). More precisely, inhomogeneous and Euclidean
spectra are equal, included in Q@ and we have the following result.

Theorem 5. Let K a number field of degree n > 3. If the unit rank r of
K s strictly greater than 1 and if K 1s not a CM-field, in particular if K 1s
totally real, there exists a strictly decreasing sequence (rp)p>1 of positive rational
numbers, which verifies: -

(1) plil:l-noo rp = 0.
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(i) mg(H) =m(R") =m(Ty) = {rp; p>1}U{0}.

(iil) for each p > 1 the set of a« € T, such that m(a) = r, is finite and lifts to
points in Q", which implies that if x ¢ K, mz(z) = 0.

The proof of Theorem 5 uses the following lemma.

Lemma 2. Let K be as in Theorem 5. There exists a unit ¢ € Ex such that
for every positive integer p we have Q(e?) = K.

Proof of Lemma 2. Assume that this result is false and that for every ¢ € Fi,
there exists a p. > 0 such that Q(eP<) is a proper subfield of K. Then, as Fg
is a subsemigroup of the multiplicative group K* of K, we know by Lemma 1
that there exists a positive integer N and a proper subfield F' of K such that
eN ¢ F for every ¢ € Fg.

Let us put n’ = [F : Q]. Since F is a proper subfield of K, n’ is a proper divisor
of n and we have 2n’ < n. Let us denote (7], r}) the signature of F.

Let (€1, ...,r) be aset of fundamental units of K. Since e1,..., &, are independent
and N > 0, eV ..., ¥ are r independent units of F, so that r < r/ where
" =7} + 7, — 1 is the unit rank of F, i.e. the maximal number of independent
units of F. Thus r1 + ro < 7| + 74, which implies n — ry < n’ — r}. From this
inequality and from 2n’ < n, we deduce

rg >re—rh>n—n'>n/2

But n = r; 4 2r3 so that the only possibility is (r1,72) = (0,n/2), which leads
to vy, = 0, n’ = n/2 and r{ = n/2. This proves that K is a totally complex
quadratic extension of the totally real field F', which was excluded by hypothesis.
g

Proof of Theorem 5. Let k be a positive real number verifying
0<k<M(K).

Let us denote Sy the set of a € T, such that m(a) > k. By upper semi-
continuity of m and choice of &k, Sg 1s a nonempty closed proper subset of T,
(proper because otherwise we should have m(z) > k > 0 for all z € R™ which
is obviously impossible). Moreover as in proof of Theorem 3, S, like S, is -
invariant, so that, if hypotheses of Theorem 2 are verified, we know that Sy is
finite.

But condition (1) comes from Lemma 2. £ € Ex being given, since fP has the
oi(e)? = 0;(eP) as eigenvalues associated to the eigenvectors w;, the characteris-
tic polynomial of ¢ is [[;—; (X — o;(g”)), which is the characteristic polynomial
of eP so that it is irreductible over 7Z if [Q () : Q] = n.

We can deduce condition (2) from the existence, i being given, of a unit £ such
that |o;(g)| > 1 (take € such that o;(¢) ¢ C; as in proof of Theorem 3, and if
loi(e)| < 1 take 1/€).

Finally, since r > 1, condition (3) is given by two independent units, say €1 and
gq: 1f gil = g7,, with [ and m integers, then, in particular, for every z € K,
elz = ez mod Zk which leads to (¢}65™ — 1)z € Zg. But this is possible
only if efe;™ — 1 = 0 and this implies / = m = 0. Thus Theorem 2 can be
applied and Sj is finite.

Then, if @ = T € Sk, since for all non-torsion unit € (here r > 1), g.(Sk) C Sk,
there exists distinct positive integers [ > p > 0 such that g'(a) = gf(a) which
leads to &!=?.®(x) = ®(z) mod Zx and ®(z) € K = ®(Q") so that z € Q™.
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Thus, S is a finite subset of elements whose lifts are in Q" and necessarily

m(Sk) = m(T,) N[k, M(K)] is a finite subset of Q by Proposition 1.iii).
Let us put 7y = M(K) > 0, and for p > 1, if r, > 0, rpp1 = supm(T,\S,,),
which is well defined since S, G Ty,

We see that, p being given, if r,, is defined and if r, > 0, since S, is finite and
the set of 1/¢ (¢ > 2) infinite, there exists ¢ € N, ¢ > 2, such that 1/q € Tn\Sr,,

so that 7,41 > m(1/q) = 1/¢" > 0.
Thus, by induction, for all p, r, is defined and r, > 0.

By construction (rp) is decreasing. Assume that for some p we have r,11 = 7,.
Then, sup m(T,\S;,) = rp, which means that there are elements o in T, with
m(a) < rp as close to 7, as desired. But this is in contradiction for instance
with the fact that S, /5 is finite. Thus the sequence (r,) is strictly decreasing.

The same argument (S, /3 is finite) shows that for every p, r, is in m(T,).

The decreasing sequence (r,) converges to a real number L > 0. Assume that
L > 0. Since St is finite, the set of r,, which is a subset of m(T,) whose all
elements are greater than /2, would be finite. We obtain a contradiction to
the fact that (r,) is strictly decreasing, and necessarily L = 0. This is (i).

The inclusion {r,; p > 1} U {0} C m(T,) is obvious. Assume that it is a strict
one. Then there is an « in T, such that r,41 < m(a) < r, for some p, but this
contradicts the definition of r,41. We have (ii).

(iii) comes from the fact that {a € T, such that m(a) = rp,} = S, \Sr ;i)
so that it is finite and has its lifts in Q7, by the general property of the Sg
previously seen. Moreover, for all p, r, is obviously rational. O

Corollary 4. Under the same hypotheses, M (K) = M(K) is attained.

If we put My(K) = M(K) and M;(K) = M(K), we have:

Vp> 1, My(K) = My(K) € Q and Mpy:1(K) < Mp(K).

In particular, M(K) is isolated. Moreover li{l_n M,(K) =0.
p—+oo

Proof. We know that the set of a € T, such that m(a) = M(K) is finite
and lifts in Q", so that Proposition 1.ii) gives the first result. The rest is a
direct consequence of Theorem 5, since by the definitions it is clear that in fact

My(K) = Mp(K) =r,. O

Remark 3. It can be interesting to see that things cannot happen in the
same way when K is a CM-field, even if » > 1. Suppose that K is a totally
complex quadratic extension of a totally real field K, of degree n. Denote the n
embeddings of K in C by oy (with 054,/ = 77) and the n/2 embeddings of K+
by 7;. We know that the complex conjugation 7 induces an automorphism of K
and commutes with each o;, that [K : K*] is Galois and that Gal(K/KT) =
{id, 7}. Let z € K and Z € Zg. Then Trg/x+(2) =z +7 € Kt and Z+7Z¢€
Z x+, and we have

n/2
Nijalz = 7) = [[ oie = 2)oiC: = 7).

But for u € C we have

ud > —(u+1)?,
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so that we obtain

n/2 s
Nejalz=2)| > 5]l (= 2) + = 2))
i=1
n/2
1 _ —\2
> 2_11'_1 (a'i(z—i—z)—O'Z-(Z—}—Z))
1 n/2 9
_ . = — . !
> o Zé@iﬂl}(@@ﬂ) i(Z ))
1 n/2 2
_ 1 . = — Y !
> 2n(z,;%fK+i_1 7i(z +7) TZ(Z))
. 2
_ 1 2 — !
> % (f Nicrjo((+9 Z))
1 N2
> 2—n(mK+(z—|—z))
This implies
1 2
mg (z) > 2—n(mK+(z+7)) ,

so that if y € KT\Zg+, and if we put A = mg+(y) > 0, then for every z € K
such that z + 7 = y, we have

1
mg(z) > 2—n)\2 > 0.

But there are infinitely many such z in K modulo Zg, and, by upper semi-
continuity, we find a non countable infinity of x € R™ modulo Z™ such that
Y
m(z) > —A°.
Z o
Thus, the situation is quite different than in Theorem 5. Moreover, under the
hypothesis » > 1, we have the equivalence

Vk >0, Sp = {a € T,; m(a) >k} is finite <= K is not a CM-field.
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