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Lie group structures on groups of smooth and holomorphic maps
on non-compact manifolds

Karl-Hermann Neeb, Friedrich Wagemann

Abstract. We study Lie group structures on groups of the form C*(M,K), where M is a non-
compact smooth manifold and K is a, possibly infinite-dimensional, Lie group. First we prove that
there is at most one Lie group structure with Lie algebra C*°(M,t) for which the evaluation map is
smooth. We then prove the existence of such a structure if the universal cover of K is diffeomorphic
to a locally convex space and if the image of the left logarithmic derivative in Q! (M,¢) is a smooth
submanifold, the latter being the case in particular if M is one-dimensional. We also obtain analogs
of these results for the group O(M,K) of holomorphic maps on a complex manifold with values in
a complex Lie group. We show that there exists a natural Lie group structure on O(M,K) if K is
Banach and M is a non-compact complex curve with finitely generated fundamental group.

AMS Classification: 22E65, 22E67, 22E15, 22E30

Keywords: Infinite-dimensional Lie group, mapping group, smooth compact open topology, group
of holomorphic maps, regular Lie group

Introduction

If M is a finite-dimensional manifold (possibly with boundary) and K a Lie group (modeled
on a locally convex space), then the group C*°(M, K) of smooth maps with values in K has
a natural group topology, called the smooth compact open topology. If, in addition, M is a
complex manifold without boundary and K is a complex Lie group, then C°°(M, K) contains
the subgroup O(M, K) of holomorphic maps, on which the smooth compact open topology simply
coincides with the compact open topology if M has no boundary. In this paper we discuss the
question when the topological groups C*°(M, K), resp. O(M, K), carry Lie group structures.

If K = E is a locally convex space, then C*(M, E) also is a locally convex space, hence
a Lie group. It is also well-known that if M is compact, then C°°(M, K) carries a natural Lie
group structure (cf. [Mi80], [Gl02a]; and [Wo06] for manifolds with boundary). In this case one
obtains charts of C*°(M, K) by composing with charts of K. This does no longer work for non-
compact manifolds. A necessary condition for a topological group G to possess a compatible
Lie group structure is that it is locally contractible, which implies in particular that the arc-
component G, of the identity is open. In some cases we shall prove that the topological group
C*(M, K) is not a Lie group by showing that the latter condition fails.

In general we cannot expect the group C°(M, K) to carry a Lie group structure, but any
“reasonable” Lie group structure on this group should have the property that for any smooth
manifold N, a map f: N — C®°(M, K) is smooth if and only if the corresponding map

fA"NxM— K, f*n,m):=f(n)(m)

is smooth. We thus start our investigation in Section I with a characterization of smooth maps
N x M — K in terms of data associated to the group G := C*°(M, K). This leads to the
main result of Section I, that for any regular Lie group K the group G carries at most one
regular Lie group structure with Lie algebra g = C°°(M,€) for which all evaluation maps
evy: C°(M,K) — K are smooth with L(ev,,) = ev,,. We call such a Lie group structure
compatible with evaluations.
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From what we have said above, it easily follows that such Lie group structures exist if M
is compact (Theorem I.3) or if the universal covering group K of K is diffeomorphic to a locally
convex space (Theorem IV.2), which is the case in particular if K is regular abelian or finite-
dimensional solvable. If K is diffeomorphic to a locally convex space E, the Lie group C*° (M, K )
is diffeomorphic to the locally convex space C°°(M, E) and the underlying topology coincides
with the smooth compact open topology. If K is not simply connected, the Lie topology might
be finer than the smooth compact open topology, but both coincide on the arc-component of the
identity, which need not be open in the smooth compact open topology. In Section IV we take
a closer look at this subtle situation and show that if, f.i., K is finite-dimensional solvable, then
both topologies coincide if and only if the group H'(M,Z) is finitely generated (Remark IV.13).
We also derive analogous results for the group O(M, K) of holomorphic maps on a complex
manifold M with values in a complex Lie group K.

Clearly, the condition that K is diffeomorphic to a vector space is quite restrictive. To find
weaker sufficient conditions for the existence of Lie group structures, we study in Section II the
left logarithmic derivative

§:C(M,K) — MC(M,¥) := {a € Q" (M, ¥):da + 3o, a] =0}, f— fL.df.

We show in Proposition II.1 that for any regular Lie group K with Lie algebra £, any connected
manifold M and any mg € M, it maps the subgroup

C(M.K) = {f € C™(M, K): f(mq) = 1}

of based maps homeomorphically onto its image, which is characterized by the Fundamental
Theorem (Theorem 1.5). If im(J) carries a natural manifold structure, we thus obtain a manifold
structure on the group C°(M, K) and hence on C*(M,K) =2 K x C°(M,K) a regular Lie
group structure compatible with evaluations (Theorem I1.2). If M is 1-connected, this is the
case if K is abelian, M is one-dimensional (cf. [KM97]) or for holomorphic maps on complex
curves.

If M is not simply connected, the situation is more complicated. If K is abelian, we
always have a regular Lie group structure on C*(M, K) since K is a vector space, but it
is compatible with the smooth compact open topology only if H'(M,Z) is finitely generated
(Theorem IV.8). If M is real 1-dimensional, then it either is compact or simply connected, but
the situation becomes interesting if M is a complex curve which is not simply connected. It turns
out that in this situation one can show that §(O(M, K)) is a complex submanifold of the Fréchet
space Qj (M,¥€) of holomorphic €-valued 1-forms on M whenever K is a Banach-Lie group
and 71 (M) is finitely generated. The key tool in our argument is Glockner’s Implicit Function
Theorem ([G103]) for smooth maps on locally convex spaces with values in Banach spaces, which
is used to take care of the period conditions.

We collect some of our main results in the following two theorems:

Theorem 1. Let K be a connected reqular real Lie group and M a real finite-dimensional con-

nected o -compact manifold. Then the group C°(M, K) carries a Lie group structure compatible

with evaluations if

(1) K is diffeomorphic to a locally convex space. If, in addition, m (M) is finitely generated, the
Lie group structure is compatible with the smooth compact open topology (Theorem IV.2).

(2) dimM =1 (Corollary IIL.3).

(3) M =TRF x C, where C is compact (Corollary 11.8). |

For complex groups and holomorphic maps we have:

Theorem 2. Let K be a reqular complex Lie group and M a finite-dimensional connected

o -compact complex manifold without boundary. Then the group O(M,K) carries a Lie group

structure with Lie algebra O(M,¥€) compatible with evaluations if

(1) K is diffeomorphic to a locally convex space. If, in addition, 71 (M) is finitely generated,
the Lie group structure is compatible with the compact open topology (Theorem IV.2).

(2) dime M =1, 71 (M) is finitely generated and K is a Banach—Lie group (Theorem I11.11).m
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Actually (2) in the preceding theorem was the original source of motivation for this work. It
provides in particular a Lie theoretic environment for Lie groups associated to Krichever-Novikov
Lie algebras which form an interesting generalization of affine Kac-Moody algebras (cf. [Sch03]).

If M is a o-compact finite-dimensional manifold and M = J,, M, is an exhaustion of M
by compact submanifolds M, with boundary, then the group C°°(M, K) can be identified with
the projective limit h£1 C>(M,,, K), where the connecting maps are given by restriction. Since

each group C*°(M,,, K) carries a natural Lie group structure, the topological group C*°(M, K)
is a projective limit of Lie groups. From this point of view, the present paper deals with Lie
group structures on certain projective limits of infinite-dimensional Lie groups. For projective
limits of finite-dimensional Lie groups, the corresponding problem has been solved completely in
[HoNe06].

The paper is structured as follows. Section I contains generalities on smooth maps with
values in Lie groups and the aforementioned uniqueness result on Lie group structures with
smooth evaluation map (Corollary 1.10). In Section II we exploit the method to obtain Lie group
structures on C*° (M, K) by submanifold structures on im(d) and in Section IIT we transfer this
method to groups of holomorphic maps. Target groups K whose universal cover is diffeomorphic
to a locally convex space are discussed in Section IV. We conclude with a short section on strange
properties of the exponential map of groups of holomorphic maps on non-compact manifolds
and an appendix with some technical tools necessary to deal with manifolds of smooth and
holomorphic maps.

Preliminaries

Let X and Y be locally convex topological vector spaces, U C X open and f:U — Y a
map. Then the derivative of f at x in the direction of h is defined as

A () (h) 1= Jim = (F(x + ) — £ ()

whenever the limit exists. The function f is called differentiable at x if df (x)(h) exists for all
h € X. It is called continuously differentiable or C! if it is continuous and differentiable at all
points of U and

df:Ux X =Y, (x,h)—df(z)h)

is a continuous map. It is called a C™-map if it is C' and df is a C"~!-map, and C* (or
smooth) if it is C™ for all n € N. This is the notion of differentiability used in [Mil84], [Ha82]
and [Gl02b], where the latter reference deals with the modifications needed for incomplete spaces.
If X and Y are complex, f is called holomorphic if it is smooth and its differentials df (z) are
complex linear. If Y is Mackey complete, it suffices that f is C*.

Since we have a chain rule for C'*-maps between locally convex spaces, we can define smooth
manifolds M as in the finite-dimensional case. A chart (p,U) with respect to a given manifold
structure on M is an open set U C M together with a homeomorphism ¢ onto an open set
of the model space. An atlas for the tangent bundle T'M is obtained directly from an atlas of
M, but we do not consider the cotangent bundle as a manifold because this requires to choose
a topology on the dual spaces, for which there are many possibilities. Nonetheless, there is a
natural concept of a smooth k-form on M. If E is a locally convex space, then an FE -valued
k-form w on M is a function w which associates to each p € M a k-linear alternating map
T,(M)* — E such that in local coordinates the map (p,v1,...,vx) — w(p)(v1,...,vx) is smooth.
We write QF(M, E) for the space of smooth k-forms on M with values in E. The differentials

d: Q% (M, E) — Q"1 (M, E)

are defined by the same formula as in the finite-dimensional case (cf. [Beg87]).
If M is a smooth manifold modeled on the locally convex space E, a subset N C M is
called a submanifold of M if there exists a closed subspace F' C E and for each n € N there
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exists an E-chart (¢,U) of M with n € U and ¢(U N N) = ¢(U) N F. The submanifold N is
called a split submanifold if, in addition, there exists a subspace G C E for which the addition
map F'x G — E,(f,g) — f+ g is a topological isomorphism.

M is a smooth manifold modeled on the locally convex space E with boundary M in
case the m € M have smooth charts (¢,U) to open neighborhoods ¢(U) of the boundary
of a half space of . M is said to have corners in case corner points have smooth charts to
open neighborhoods of the vertex of a quadrant in £. Boundaries and the set of corners may
be empty, and M reduces in this case to an ordinary manifold. For a complex manifold M , the
boundary is always supposed to be empty.

A Lie group G is a group equipped with a smooth manifold structure modeled on a locally
convex space for which the group multiplication and the inversion are smooth maps. We write
1 € G for the identity element and A,(x) = gz, resp., pg(xz) = xg for the left, resp., right
multiplication on G. Then each a € T3(G) corresponds to a unique left invariant vector field
x; with z;(g) = dAg(1).2,g € G. The space of left invariant vector fields is closed under the
Lie bracket of vector fields, hence inherits a Lie algebra structure. In this sense we obtain
on g := T1(G) a continuous Lie bracket which is uniquely determined by [z,y]; = [z, y] for
2,y € g. The Maurer—Cartan form kg € Q' (G, g) is the unique left invariant 1-form on G with
ke = idg, ie., Kg(x) = x for each z € g. We write ¢g: CNJO — G for the universal covering
map of the identity component Gy of G and identify the discrete central subgroup ker qg of éo
with 7T1(G) = 7T1(G0) .

In the following we always write I = [0, 1] for the unit interval in R. A Lie group G is
called regular if for each & € C*°(1,g), the initial value problem

Y0) =1, () =7(t)£(t) = T(Ay1))S(t)
has a solution v¢ € C*°(I,G), and the evolution map
evolg: C™(I,g) — G, & (1)
is smooth (cf. [Mil84]). We then also write
Evolg: C™(1,9) — C*(I,G), & 7,

and recall that this is a smooth map if C*°(I,G) carries its natural Lie group structure (cf.
Theorem 1.3 and Lemma A.5 below). For a locally convex space E, the regularity of the Lie
group (E,+) is equivalent to the Mackey completeness of E, i.e., to the existence of integrals
of smooth curves «:1 — E. We also recall that for each regular Lie group G, its Lie algebra
g is regular and that all Banach-Lie groups are regular ([GNOT7]). The evolution map evolg is
supposed to be holomorphic for a complex regular Lie group G.

Throughout this paper, K denotes a regular Lie group.

I. Generalities on groups of smooth maps and regular Lie groups

In this section we introduce the natural group topology on the group G = C*°(M, K) of
smooth maps from a manifold M with values in a Lie group K. We then describe some technical
tools to deal with nonlinear maps between spaces of smooth maps and differential forms which
leads to a characterization of maps f: N — G for which the corresponding map f*: N x M — K
is smooth (Proposition I.8). This in turn is used to show that G carries at most one regular Lie
group structure compatible with evaluations (Corollary 1.10).

Definition I.1. (Groups of differentiable maps as topological groups) (a) If X and Y are
topological spaces, then the compact open topology on the space C(X,Y) is defined as the
topology generated by the sets of the form

W(K,U) = {f € C(X,Y): f(K) C U},
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where K is a compact subset of X and U an open subset of Y. We write C(X,Y). for the
topological space obtained by endowing C'(X,Y) with the compact open topology.

(b) If K is a topological group and X is Hausdorff, then C(X, K) is a group with respect
to the pointwise product. Then the compact open topology on C(X, K) coincides with the
topology of uniform convergence on compact subsets of X, for which the sets W (C,U), C C X
compact and U C K a 1-neighborhood in K, form a basis of 1-neighborhoods. In particular,
C(X, K). is a topological group.

(c) In the following we topologize for two smooth manifolds M (possibly with boundary)
and N, the space C*°(M,N) by the embedding

(1.1) C¥(M,N) = [T CT* (M), T"(N))e, | = (T*(f))kero
k=0

where the spaces C(T*(M),T*(N)). carry the compact open topology. The so obtained topology
on C°(M,N) is called the smooth compact open topology.
Now let K be a Lie group with Lie algebra £ and r € NgU{oo}. The tangent map T'(mx)
of the multiplication map mg: K x K — K defines a Lie group structure on the tangent bundle
K (cf. [GNO7]). Iterating this procedure, we obtain a Lie group structure on all higher tangent
bundles T"K . For each n € Ny, we thus obtain topological groups C(T"M,T"K).. We also
observe that for two smooth maps f1, fo: M — K, the functoriality of T yields

T(fi- f2) =T(mx o (fr x f2)) =T(mg)o (THr xTfa) =Tf-Tf.
Therefore the inclusion map C*(M,K) — [[.—,C(T"M,T"K). from (1.1) is a group homo-

morphism, so that the inverse image of the progugt topology from the right hand side is a group
topology on C*°(M, K), called the smooth compact open topology. It turns C*°(M,K) into a
topological group, even if M and K are infinite-dimensional.

(d) In the following we topologize the space Q(M,E) of E-valued 1-forms on M as a

closed subspace of C*(TM, E). ]

For later reference, we first collect some information on the case where K = FE is a locally
convex space or where M is compact.

Proposition I.2. Let M be a finite-dimensional smooth manifold and E a locally convex

space. Then the following assertions hold:

(1) C*(M,E) is alocally convex space, hence a Lie group and the evaluation map of C*°(M, E)
is smooth. If E is Mackey complete, then C*°(M, E) is Mackey complete, hence a reqular
Lie group.

(2) If M and E are complex, then O(M,E) — C®(M,E) is a closed subspace, and the
evaluation map ev:O(M,E) x M — E is holomorphic. If E is Mackey complete, then
O(M, E) is Mackey complete, hence a regular Lie group. If M has no boundary, then the
subspace topology on O(M, E) coincides with the compact open topology.

Proof. (1) All the spaces C(T*M,T*E). are locally convex. Therefore the corresponding

product topology is locally convex, and hence C*°(M, E) is a locally convex space.

The continuity of the evaluation map follows from the continuity of the evaluation map for
the compact open topology because the topology on C*°(M, E) is finer. Next we observe that
directional derivatives exist and lead to a map

dev:C®(M,E)* x T(M) — E, ((f,£),vm) — &(m) + Tr(f)v

whose continuity follows from the first step, applied to the evaluation map of C*°(T'M, E). Hence
ev is C', and iteration of this argument yields smoothness.

In view of Lemma A.3, we have C*(I,C>®(M, E)) = C>*(I x M, E), and if E is Mackey
complete, then we have an integration map

1
C*(I x M,E) — C™(M, E), gH/ £(t,) dt
0
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which implies that each smooth curve with values in C*° (M, E) has a Riemann integral, i.e.,
that C*°(M, E) is Mackey complete, which, in view of evol(¢) = fol &(t) dt, is equivalent to it
being a regular Lie group.

(2) Since O(M, E) is a closed subspace of C* (M, E), O(M, E)x M is a closed submanifold
of C°(M, E)x M, and the first part of the proof shows that the evaluation map is smooth on this
space. Clearly, it is separately holomorphic in both arguments, hence its differential is complex
linear, and the assertion follows.

If E is Mackey complete, then C°(M, E) is Mackey complete by (1), and the closed
subspace O(M, E) inherits this property.

If M has no boundary, then the Cauchy Formula entails that on the space O(M, E)
uniform convergence on compact subsets implies in any local chart uniform convergence of all
partial derivatives on compact subsets. Hence the inclusion map

O(M,E) — C*(M, E)
is continuous and therefore a topological embedding.! ]

Theorem 1.3. Let M be a smooth manifold and K be a Lie group with Lie algebra €. Then
the following assertions hold:

(1) If M is compact (possibly with corners or boundary), then C°(M,K) carries a Lie group
structure for which any €-chart (¢x,Uk) of K yields a C*°(M,¥)-chart (¢,U) with

U= {f € C°(M,K): (M) S Ux}, o(f) = pxco f.

and the evaluation map of C°(M,K) is smooth. The corresponding Lie algebra is
C>(M,8), and if K is regular, then C*°(M, K) is reqular.

(2) If M is compact and complex (possibly with boundary) and K is a complex Lie group, then
O(M, K), endowed with the smooth compact open topology, carries a Lie group structure for
which any chart (pr,Uk) of K yields a chart (o, U) with

U= {f € OOM,K): f(M) C Uk}, olf) =k o/,

and the evaluation map ev:O(M,K) x M — K s holomorphic. The corresponding Lie
algebra is O(M, t).

Proof. (1) For the existence of the Lie group structure with the given charts we refer to
[G102a] for the case without boundary which is also dealt with in [Mi80], and to [Wo05] for the
case of manifolds with corners, including in particular manifolds with boundary.

The smoothness of the evaluation map follows on each domain U as above from the open-
ness of C*°(M, px(Uk)) in C*°(M,¥) and the smoothness of the evaluation map of C*>°(M,¢),
verified in (1).

Now we assume that K is regular and put g := C*(M,¥t) and G := C*°(M, K). Then we
obtain for each £ € C*°(I,g) = C™(I x M,t) (Lemma A.3) a curve v:I — G by ~v(¢)(m) :=
Evolg (§™)(t), defining a smooth map I x M — K (Lemma A.6(3)), hence a smooth curve
in G (Lemma A.2). Now d§(7™) = &™ implies that the evolution map of G is given by
evolg(&)(m) := evolg(§™). Therefore the smoothness of evolg follows from Lemma A.3 and
the smoothness of the map (£, m) — evolg (™) (Lemma A.6(3)).

(2) For the Lie group structure we refer to [Wo06]. The holomorphy of the evaluation map
follows as in (1) from Proposition 1.2(2). [

L Note that if M is a complex manifold with boundary, then we cannot expect that the topology O(M,C)
inherits from C*°(M,C) coincides with the compact open topology, as can be seen for the example M={z€C:|z|<1}.
In this case the space O(M,C) of holomorphic functions with smooth boundary values is not complete with respect
to the compact open topology, but it is a closed subspace of C*°(M,C) with respect to the smooth compact open

topology.
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Smooth maps with values in regular Lie groups

Definition I.4. Let M be a smooth manifold (with boundary) and K a Lie group with Lie
algebra £ and Maurer-Cartan form kg € Q' (K,€). For an element f € C™(M,K) we call
5(f) == frrxg = f~Ldf € QY(M,®) the (left) logarithmic derivative of f. This is a E-valued
1-form on M. We thus obtain a map

5:C°(M, K) — Q' (M, ¥)
satisfying the cocycle condition

(1.2) 5(f1f2) = Ad(f2)~".6(f1) + 8(f2).

(cf. [KM97, 38.1], [GNO7]). From this it easily follows that if M is connected, then
(1.3) 6(f1):6(f2) — (Hk/’EK) fo=Xg o fi1.

If K is abelian, then ¢ is a group homomorphism whose kernel consists of the locally constant
maps M — K.

We call o € Q1 (M, 8) integrable if there exists a smooth function f: M — K with §(f) = .
We say that « is locally integrable if each point m € M has an open neighborhood U such that
a |y is integrable. We note that for any smooth map f:M — K and any smooth curve
~:[0,1] = M we have

(1.4) f(y(1)) = f(7(0)) evolk (v*0(f)) = f(~(0)) evolk (6(f © 7).

To describe necessary conditions for the integrability of an element o € Q*(M, &), we define
for a manifold M and a locally convex Lie algebra £, the bracket

[, ]: QN (M, €) x QY (M, 8) — Q*(M, €)

by

[, Blp (v w) = [y (v), Bp(w)] = [ap(w), Bp(v)]  for v, w € T,(M).
Note that [«a, 5] = [8,a]. For a locally convex Lie algebra ¢ and a smooth manifold M (with
boundary), we write

MC(M,¥) := {a € Q" (M,¥):da + o, a] = 0}

for the set of solutions of the Maurer—Cartan equation.
The following theorem characterizes the image of § for a regular Lie group K.

Theorem I.5.  (Fundamental Theorem for Lie group-valued functions) Let K be a regular Lie

group and o € QY(M,¥).

(1) « is locally integrable if and only if o € MC(M, €).

(2) If M is 1-connected and « is locally integrable, then it is integrable.

(3) Suppose that M is connected, fix mg € M and let « € MC(M, £). Using piecewise smooth
representatives of homotopy classes, we obtain a well-defined group homomorphism

perg:m(M,mo) — K, [y] — evolg(y"a),

and o is integrable if and only if this homomorphism is trivial.
Proof. (1) and (2) follow directly from [KM97, Th. 40.2] (see also [GN07]).
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(3) (cf. [GNOT7]) Let qas: M — M denote a simply connected covering manifold of M and

choose a base point mg € M with ga(mg) = mg. Then the £-valued 1-form ¢}, on M
also satisfies the Maurer—Cartan equation, so that (2) implies the existence of a unique smooth

function f: M — K with 6(f) = ¢y and flimg) = 1.
We write o
o:mi(M,mo) x M — M, (d,m)— dm=:c4(m)

for the left action of the fundamental group w1 (M,mg) on M. In view of (1.3) in Definition 1.4,

the relation &(f o oq) = TR = qho = §(f) for cach d € m (M, mg) implies the existence of
a function

x:m(M,mg) —» K with  fooq=x(d)-f for dem (M, mp).

For dy,ds € w1 (M, mg) we then have

fo Odydy = fo Ody ©0dy = (X(dl) : f) °0d, = X(dl) ’ (fo Jd2) = X(dl)X(dQ) : fa

so that x is a group homomorphism. We now pick a smooth lift 7: I — M with gy oy =~ and
observe that

6(fo7) =7 qua=7"a,

which leads to x([v]) = f([y]-m0) = f(F(1)) = evolg(y*a). This proves that per?° is well-
defined and a group homomorphism.

Clearly, per!’® vanishes if and only if the function ]7 is invariant under the action of
m1 (M, mg), which is equivalent to the existence of a smooth function f: M — K with foqy = f,
which in turn means that « is integrable. ]

Remark I.6. Let M be a connected smooth manifold (with boundary), mo € M, and

am: M — M a universal covering map. Further let K be a regular Lie group with Lie algebra €.
Then we have an embedding

s MC(M, €) — MC(M, &)™ (Momo)

where the right hand side denotes the set of all solutions of the Maurer—Cartan equation on M
which are invariant under the action of the fundamental group m (M, mg) by deck transforma-
tions.

(a) If f € C=(M,K) satisfies 6(f) = qrro, then
f(d.x) =per™(d) - f(z) forall e M.

If, conversely, f € C(M, K) satisfies f(d.z) = x(d)- f(x) for z € M and d € 71 (M, mg), then
5(f) is m1 (M, mg)-invariant, hence of the form 6(f) = g};«, and x = per?®. This shows that

C™ (M, K)F := {f € C™(M K):5(f) € 43, MC(M. 1)}
is fibered over the set Hom(wy (M, mg), K) by

C*(M,K)f = U (M, K)x.
x€Hom(71 (M,mo),K)
where

C®(M,K)y = {f € C®°(M,K): Yz € M)(Vd € 7 (M, mg)) f(d.z) = x(d)f(z)}.

The set C*° (M , K)y is invariant under multiplication with functions in ¢},C> (M, K) from the
right. Conversely, for f,g € C*°(M, K),, the function g=! - f factors through a function F on
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M with g - q3F = f. Therefore the fibers of COO(M, K)* coincide with the orbits of the group
C> (M, K), acting by right multiplication. On the set MC(M, ¢), the corresponding action is
given by

ax f:=8(f)+Ad(f) o
for « € MC(M, ) and f € C°°(M,¥) (Definition 1.4).

In general, not all the sets COO(M ,K)y are non-empty. Indeed, this condition can be
interpreted as the smooth (which is equivalent to the topological [MWO06]) triviality of the flat
principal K-bundle P, := M Xy K = (M x K)/mi (M), where m (M) acts on M x K by
d.(z,k) = (d.x, x(d)k). Not all such bundles are topologically trivial. If ¥ is a compact Riemann
surface of genus g > 1, then there are flat non-trivial SLy(R)-bundles over ¥ (see p. 24 in [KT68],

which uses results from [Mil58]). On the other hand, if K is a complex algebraic group, then
[Gro68, Cor. 7.2] asserts that all rational characteristic classes of the bundles P, vanish.

(b) Note that for f; € COO(M,K)X“ i = 1,2, and im(x2) C Z(K), we have x1x2 €
Hom(mi (M, mg), K) with f1fa € C®(M,K)y,x,- For d(f;) = qi;aq we then have 0(f1f2) =
gy B, where

B=as+Ad(f2) .

and Ad(f2) is the well-defined function M — Aut(t), defined by Ad(f2) o gar = Ad(f2) (cf.
Definition 1.4). ]

For later use in Section III, we record the following formula:

Lemma 1.7. Let x € ¢ and 3 € Q*(M,R) be a closed 1-form. Then o« := 3-x € Q(M,¥)

satisfies

(1.5) pery’® = expg o(pery” -z).

Proof. That « satisfies the Maurer—Cartan equation follows from da = df -z =0 = [a, a].
To calculate perl**, we first pick a smooth function h € C*°(M,R) with dh = ¢},5. Then

fiM — K, m— expg(h(m)z)

is a smooth function with

Tin(f)v = Thimyz(expg ) (dh(m)v - 2) = dh(m)v - Th(m).(expg ) (z)
= dh(m)v . Tl()‘expk(h(m)z))x = dh(m)v . Tl()\f(m))l',

so that
0(f) =dh-x =gy (8- 7) = garer.
Let o € q;;' (mo) and assume w.l.o.g. that k() = 0, so that f(ig) = 1. We then have

perg*(d) = f(d.mo) = expy (h(d.mo)z) = expy (pery” (d)z),

which implies (1.5). [

Uniqueness of regular Lie group structures

The following theorem characterizes smooth maps N x M — K in terms of smoothness
of maps defined on N. We shall need it later to prove the uniqueness of a regular Lie group
structure on C°(M, K) with smooth evaluation map.
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Proposition 1.8. Let N be a locally conver manifold, M a connected finite-dimensional

manifold and K a reqular Lie group. Then a function f: N x M — K is smooth if and only if

(1) there exists a point mg € M for which the map f™: N — K ,n— f(n,mq) is smooth, and

(2) the functions fn: M — K,m — f(n,m) are smooth and F: N — QY(M,€),n — &(f,) is
smooth.

Proof. “=7: If f is smooth, then all the maps f™ and f, are smooth. To see that F is
smooth, we recall that Q!(M,€) is a closed subspace of C°°(T'M, ) (Definition 1.1(d)), so that
it suffices to show that the map

F:NxTM —¢ (n,0) — 8(fa)v = kg (T(fn)v) = kx (T(f)(0,v))

is smooth (Lemma A.2). Since the Maurer—Cartan form ki of K is a smooth map TK — ¢,
the assertion follows from the smoothness of T'(f): T(N x M) =2 TN xTM — TK.

“«<=": Step 1: First we show that f™ is smooth for each m € M. Pick a smooth path
~:[0,1] = M with v(0) = mo and (1) = m. Then

f"(n) = fa(m) = fu(mo) evoli (8(fn 07)) = fn(mo) evolk (v"0(fn)) = f™°(n) evolk (" F(n)).

Hence the smoothness of f™0, evolyx, F, and the continuity of the linear map ~*: Q!(M, €) —
C*°(]0,1],¢) imply that f™ is smooth.

Step 2: Now we show that f is smooth. To this end, let m € M and choose a chart
(p,U) of M for which ¢(U) is convex with ¢(m) = 0. We have to show that the map

hNxU—=K, (n,) f(n,e" (2))

is smooth. For ~,(t) :=tx, 0 <t <1, we have
h(n,x) = h(n,7:(1)) = h(n,0) evolx (3(fa 0 ¢~ 072)) = f™(n) evolx (v; (¢~ 1) F(n)).
Since f™ and evolg are smooth and
(™) Q1 (U8 — Q' (e(U), ¥)
is a topological linear isomorphism, it suffices to show that the map
QN e(U),8) x U — C=([0,1],8), () = 7ja
is smooth. In view of Lemma A.2; this follows from the smoothness of the map
QN p(U),8) x U x [0,1] =&, (a,2,t) = (y70) = (),

which is a consequence of the smoothness of the evaluation map of C*°(T'M, £) (Proposition 1.2).
(]

The following theorem characterizes the “good” Lie group structures on C*(M, K) in
various ways. Note that we do not assume that the Lie group structure is compatible with the
topology on C* (M, K).

Proposition 1.9.  Let M be a connected finite-dimensional smooth manifold and K a reqular
Lie group. Suppose that the group G := C°°(M,K) carries a Lie group structure for which
g := C°(M,¥¢) is the corresponding Lie algebra and all evaluation maps ev,,:G — K, m € M,
are smooth with

L(evy,) =evp:g — &

Then the following assertions hold:
(1) The evaluation map ev:G x M — K, (f,m) — f(m) is smooth.
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(2) If, in addition, G is reqular, then a map f: N — G is smooth if and only if the corresponding
map AN x M — K is smooth.

Proof. (1) Let N C M be a compact submanifold (with boundary). Then C*°(N, K) carries
the structure of a regular Lie group (Proposition 1.3). Let gg:Go — G denote the universal
covering of the identity component Gy of G. Consider the continuous homomorphism of Lie
algebras

P:L(G) = C™®(M,t) — C°(N,¥), fr— f|n.

In view of the regularity of C°°(N, K), there exists a unique morphism of Lie groups
$:Go — C=(N,K) with L(@) =1,

where éo is the universal covering group of the identity component Gg of G. Then, for each
n € N, the homomorphism ev, op: Gy — K is smooth with differential L(ev, 0op) = ev,, so
that ev,, og = ev,, oqg, where gg: Gog — G is the universal covering map. We conclude that

ker qo C ker @,

and hence that @ factors through the restriction map Gy = C*°(M,K)y — C*®(N,K). In
particular, the restriction map C*°(M,K) — C°°(N, K) is a smooth homomorphism of Lie
groups.

This implies in particular that for each relatively compact open subset U C M, the map
G — QYU,e), f — §(f |v) is smooth (cf. Lemma A.5(1)), and since Q(M,€) embeds into
[T, QY(U,¥), it follows that § is smooth.

(2) Now we assume that the evaluation map is smooth. If f is smooth, then f™° = ev,,, of
is smooth and (1) entails that § o f: N — QY(M,€) is smooth, so that Proposition 1.8 implies
that f” is smooth.

If, conversely, f" is smooth, we have to show that f is smooth. To this end, we may
w.l.o.g. assume that N is 1-connected, since the assertion is local with respect to V. We define
B eQ(N,g) by

Bv =k (T(f")(v,0)),

which shows immediately that 0 defines a smooth map TN x M — ¢ which is linear on the
tangent spaces of N, and with C*°(T'N x M,¥) =2 C*(TN,g) (Lemma A.3), we see that this is
an element of Q(N,g).

We claim that (§ satisfies the Maurer—Cartan equation. In fact, for each m € M, we have
evm o3 = §(evy, of ),

which satisfies the Maurer—Cartan equation. Since the evaluation map ev,,:g — £ is a homo-
morphism of Lie algebras, and the corresponding maps ev,,: Q'(M, g) — Q(M, €) separate the
points, it follows that 3 satisfies the Maurer—Cartan equation.

Fix a point ng € N. Since G is regular and N is 1-connected, the Fundamental Theorem
(Theorem 1.5) implies the existence of a unique smooth function h: N — G with h(ng) = f(no)
and 6(h) = 8. For each m € M we then have h(ng)(m) = f(no)(m) and

d(evim oh) = evyy, 00(h) = evy, 08 = d(evy, of ),

so that the uniqueness part of the Fundamental Theorem, applied to K -valued functions, yields
evy, of = evy, oh for each m, which leads to h = f. This proves that f is smooth. ]

In the following, we say that a Lie group structure on C*°(M,K) is compatible with
evaluations if it satisfies the assumptions of the preceding proposition. The following corollary
contains one of the main results of this section. It asserts that there is at most one regular Lie
group structure compatible with evaluations.



12 ncc6.tex March 15, 2007

Corollary 1.10. Under the assumptions of the preceding theorem, there exists at most one
regular Lie group structure on the group G := C* (M, K) compatible with evaluations.

Proof. Let G; and G2 be two regular Lie groups obtained from Lie group structures on
C>*(M,K) compatible with evaluations. In view of Proposition 1.9, the smoothness of the
evaluation maps ev;: G; x M — K implies that the identity maps G; — G2 and G> — G, are
smooth, hence that G; and G5 are isomorphic Lie groups. ]

In the preceding corollary, we do not have to assume that the Lie group structure on
C>*(M, K) is compatible with the smooth compact open topology, but even if we consider only
regular Lie group structures compatible with this topology, the uniqueness of these structures
does not directly follow from Lie theoretic considerations:

Remark I.11. If G is a regular Lie group and H any simply connected Lie group, then any
continuous homomorphism v¢: L(H) — L(G) of Lie algebras integrates to a unique homomor-
phism ¢: H — G with L(¢) = ¢ (cf. [Mil84]). This implies in particular that two 1-connected
regular Lie groups with isomorphic Lie algebras are isomorphic. In this sense regularity of a Lie
group is crucial for uniqueness results.

On the other hand, we do not know if there exist topologically isomorphic regular Lie groups
(1 and G5 which are not isomorphic as Lie groups. To prove that this is not the case, we would
need a result on the automatic smoothness of continuous homomorphisms of Lie groups, but
presently the optimal result in this direction requires at least Holder continuity (cf. [Gl05]). =

II. Logarithmic derivatives and the Maurer—Cartan equation

In this section we describe a strategy to obtain a Lie group structure on the group G :=
C>*(M,K) for a non-compact connected manifold M. It is based on the injectivity of the
logarithmic derivative on the normal subgroup

G.:={f € C™(M,K): f(mo) = 1},

where my is a base point in M. We thus realize G, as a subset of MC(M, ¢) C Q'(M,€). There
are several situations, in which one can show that 6(G.) is a manifold, and where transferring
the manifold structure of im(d) to G. leads to a Lie group structure on G, and hence on
G = G, x K because K (realized as the constant functions on M) acts smoothly by conjugation
on QY(M,€) D §(G.) (Lemma A.5(2)).

One of the main results of this section is Theorem II.2, asserting that 4(G.) is a Lie
group whenever it is a submanifold of Q'(M,€). This condition is satisfied in particular if M
is one-dimensional (Corollary 11.3). Then we establish an iterative procedure leading to regular
Lie group structures on C*°(R™ x M, K) for any compact smooth manifold M and any n
(Corollary I1.5).

Proposition II.1. If K is a regular Lie group and M 1is a connected finite-dimensional
smooth manifold, then the map

5:C2(M,K) — QY (M, €)

is a topological embedding. Let Evoly := 6—1:im(d) — C>°(M, K) denote its inverse. Then § is
an isomorphism of topological groups if we endow im(S) with the group structure defined by

(2.1) ax* f:= 3+ Ad(Evolg(8)) *.a
and

(2.2) a™! = — Ad(Evolg ().«
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Proof. First we show that ¢ is continuous. By definition of the topology on C*° (M, K), the
tangent map induces a continuous group homomorphism

T:C®(M,K) — C®(TM,TK), fw— T(f).

Let ki:TK — ¢ denote the (left) Maurer—Cartan form of K. Since §(f) = f*kx = kx o T(f),
it follows that the composition

C=(M, K) — C*(T(M), T(K)) — C=(T(M),¥), fr—T(f)—d(f)

is continuous.

Next we show that § is an embedding. Consider o« = d(f) with f € CX(M,K),
i.e., f(mg) = 1 holds for the base point mg € M. To reconstruct f from «, we pick for
m € M a piecewise smooth path 7:[0,1] — M with (0) = moe and (1) = m. Then
6(f o) =7"0(f) =" implies f(m) = evolx (v a).

We now choose an open neighborhood U of m and a chart (¢,U) of M such that ¢(U)
is convex with ¢(m) = 0. Then, for each © € U, (1.4) in Definition 1.4 yields

(2.3) f(@) = f(m) - evolk (vz0),

where 7,(t) = ¢~ (tp(x)).
From Lemma A.6(1),(2), we immediately derive that the map

(2.4) Ql(M, HxU— K, (o) evolg(y*a)-evolg(via)

is smooth, so that the corresponding map Q'(M,€) — C°(U,K) is in particular continuous
(Lemma A.1). We conclude that the map

is continuous. We finally observe that for each open covering M = ics Ujs the restriction maps
to U; lead to a topological embedding C>°(M, K) — [[;c; C>(U;, K), and this completes the
proof. ]

Theorem I1.2.  Let M be a connected finite-dimensional smooth manifold (with boundary)
and K a reqular Lie group. Assume that the subset 6(C°(M, K)) is a smooth submanifold of
QY (M, €) and endow C(M, K) with the manifold structure for which §: C>(M, K) — im(8) is
a diffeomorphism and

C®(M,K) = K x C=(M, K)

with the product manifold structure. Then the following assertions hold:
(1) For each locally convex manifold N, a map f: N x M — K is smooth if and only if all the
maps fn: M — K,m — f(n,m) are smooth and the corresponding map

YN - C®(M,K), n~— f,

s smooth.
(2) K acts smoothly by conjugation on C°(M,K), and C*(M, K) carries a reqular Lie group
structure compatible with evaluations.
Proof. (1) Let mg be the base point of M. According to Proposition 1.8, f: N x M — K is
smooth if and only if f™° is smooth, all the maps f, are smooth, and §o fV: N — Q(M, &) is
smooth. In view of our definition of the manifold structure on C2°(M, K), the latter condition
is equivalent to the smoothness of the map N — C®(M, K),n + f,(mo)~fn = fmo(n)"Lfn.
Since the evaluation in mg coincides with the projection

C®(M,K) = K x C®(M,K) — K,
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we see that f is smooth if and only if all the maps f, are smooth and fV is smooth.

(2) For the evaluation map f =ev:Gx M — K, we have ev¥ =id¢g and evy = g for each
g € G. Hence (1) implies that ev is smooth.

In view of Proposition II.1, § is an isomorphism of topological groups if im(d) is endowed
with the group structure (2.1). We now show that the operations (2.1) and (2.2) are smooth
with respect to the submanifold structure on im(J).

The Lie group structure: It suffices to show that the map

im(8) x Q*(M,€) — QY(M,¥), (a,p)+— Ad(Evolg()).8

is smooth. For each open covering (U;);e s, we obtain an embedding Q! (M, £) — [Les QL(U;, e,
so that it suffices to prove for each m € M the existence of an open neighborhood U of m, for
which the map

m(8) x QYU €) — Q' (U,8), (a,B) — Ad(Evolg(a)).B

is smooth. Choosing U so small that it lies in a chart domain, we have Q! (U, €) = C>(U, )¢
for d = dim M, so that it suffices to show that

im(6) x C=(U,8) — C=(U,8), (o, f) — Ad(Evolk (a)).f,
is smooth. Now it suffices to see that the map
im(0) x C°(U,8) x U = ¢, (a, f,z) — Ad(Evolg () (x)).f(x)

is smooth. Since the action map K x C®°(M,t) — C°(M,¢t) is smooth (Lemma A.5(1)), it
suffices to recall from Proposition 1.2 that the evaluation map of C*°(U,¥) is smooth and to
show that the map

(2.5) im(0) xU — K, (a,z)+— Evolg(a)(x)

is smooth.
Let m € M. To obtain Evolk(a), we pick a piecewise smooth path ~:[0,1] — M with
v(0) = mg and (1) = m. Then §(Evolk(a) ov) = v*§(Evolk (a)) = v*a implies

Evolg (a)(m) = evolg (y*«).

We now choose an open neighborhood U of m and a chart (¢,U) of M such that p(U) is
convex. Then, for each x € U, (1.4) in Definition 1.4 entails

Evolg () (x) = Evolg (a)(m) - evolg (via),
where v, (t) = ¢! (te(x)). From Lemma A.6(1),(2), we derive that the map
QY M, ) xU - K, (a,z)+— evolg(y*a) - evolg (yia)

is smooth, so that restriction to the submanifold im(J) implies the smoothness of (2.5). We
conclude that multiplication and the inversion in im(d) is smooth and hence that it is a Lie
group.

The Lie algebra: Next we verify regularity. To this end, we first determine the tangent
space Tp(im(d)) to see the Lie algebra of this group. Let 7: I — im(d) be a smooth curve with
7(0) =0 and B :=1'(0). Then

an(t) + 3 [n(t),n()] = 0

for each t € I yields dn’(0) =0, so that 3 is closed. We also have

1 = per; 6 (v) = evolx (y"n(t))
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for each smooth loop v in mp and each ¢t € I. Taking the derivative in ¢ = 0, we get with
Lemma A.5(1):

0

1
0=To(evoli)(r°8) = [ 8= [ 6.
¥
Hence all periods of 38 vanish, so that 3 is exact. If, conversely, 8 € Q(M,€) is an exact 1-
form, then 8 = df for some f € C°(M,¥), and the curve a(t) := §(expg(tf)) in im(J) satisfies
o/ (0) =T1()f = df = . This shows that
To(im(6)) = Bir(M, €) = dC°(M, t) = C°(M, ),

as a topological vector space (apply Proposition I1.1 to the Lie group (¢, +)).
Next, recall that for each m € M and ~:[0,1] — M from mg to m we have

Evolk () (m) = evolg (v*«),

so that we get for any smooth curve n in im(é) with n(0) = 0 and #'(0) = df with f € C°(M,¥)
the relation

% o EvolK(n(t))(m) = % 0 eVOlK(’Y*U(t)) — TO(eVOIK)’Y*n/(O) :/O 7*77,(0) _ f(m),
4l Evol(u(t) = 1.

Now we can determine the Lie bracket on Tp(im(d)). Let n;: 1 — im(d), j = 1,2, be smooth
curves in 1 and f; € C°(M,¢) with df; = n/(0). Then

0? d
950t ls=t=0 m(s) * na2(t) = I

y Ad(Evolic (1) (0) = ~[fa, dfa).

For the Lie bracket in L(im(d)) = dC> (M, £), we thus obtain the formula

[df1, df2] = —[f2, df1] + [f1, df2] = d[f1, fa],

showing that
d: C2° (M, €) — Ty(im(5))

is an isomorphism of Lie algebras if C2°(M, ) is endowed with the pointwise Lie bracket.
Regularity: It remains to verify the regularity of G, i.e., the smoothness of the map

evolg: C>*(I,9) - G = C°(M, K).

First we make this map more explicit. Let £ € C>®(I,g) & C>*(I x M,¢) (Lemma A.2).
To see that the curve 7(t)(m) := Evolg(§™)(t) in G is smooth, we observe that the map
IxM— K,(t,m) — ~(t)(m) is smooth (Lemma A.6(3)), so that (1) implies that v: I — G is
smooth. We also obtain from Lemma A.6(3) that §(y): = &, so that d(y) = £. Hence

evolg(€)(m) = evolg (€™) = evolL (&, m).

In view of (1), the smoothness of evol. (Lemma A.6(3)) now implies the smoothness of evolg .=

If M is one-dimensional, then each €-valued 2-form on M is trivial, so that da = 0 = [, @]
for each o € Q'(M,€). Therefore all 1-forms trivially solve the Maurer—Cartan equation. We
thus obtain:
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Corollary II.3. If M is a one-dimensional 1-connected o-compact real manifold (with
boundary), then the group C°(M,K) carries a reqular Lie group structure for which

5:C(M,K) — Q' (M, €) = C°°(M, £)

is a diffeomorphism and C*°(M,K) = C*(M,K) x K carries the structure of a regular Lie
group compatible with evaluations and the smooth compact open topology. ]

For the case M = R, the preceding corollary can also be found in the book of Kriegl and
Michor ([KM97, Th. 38.12]). Note that any 1-connected o-compact 1-dimensional manifold
with boundary is diffeomorphic to R, [0,1] or [0, oo].

Lemma I1.4. If K # expt, then the exponential image of C*°(R,¢) is not an identity neigh-
borhood in C* (R, K).
Proof.  The exponential function C*°(R,¢) is simply given by exp({) := expy o0&, where
expy is the exponential function of K.

Let k € K \ expt and consider a smooth curve ¢:R — K with g(¢) = 1 for ¢t < 0 and
g(t) =k for t > 1. Then g,(t) := g(t — n) defines a sequence in C>*°(R, K), converging to 1.
As gn(n+1) = k € expt, none of the curves g, is contained in the image of the exponential
function. ]

Iterative constructions

Corollary I1.3 is much more powerful than it appears at first sight because it can be applied
inductively to show that for each compact manifold M and k € N the group C®(R* x M, K)
carries a regular Lie group structure compatible with evaluations. This result is the main goal
of this subsection. First we need two lemmas. The more general key result is Theorem II.7.

Lemma II.5. Let (Gp)nen be a sequence of Lie groups, onm:Gm — G, morphisms of Lie
groups defining an inverse system, G := hin G,, the corresponding topological projective limit
group and @,: G — G, the canonical maps. Assume that G carries a Lie group structure with
the following properties:
(1) A map f: M — G of a smooth manifold M with values in G is smooth if and only if all the
maps fn := @n o f are smooth.
(2) L(G) = l(in L(G,) as topological Lie algebras, with respect to the projective system defined
by the morphisms L(pnm): L(Gp) — L(Gr).
Then the map
U:.C*°(M,G) = h£1 C*®(M,G,), [+ (fu)nen

is an isomorphism of topological groups.

Proof. First we note that our assumptions imply that
TG = L(G) x G = (lim L(G,) % Gn) = lim T(G,,)

as topological groups. Moreover, writing |L(G)| for the topological vector space underlying
L(G), considered as an abelian Lie algebra, we have

L(TG) = | L(G)| % L(G) = (hil |L(Gn)| % L(Gn)) = lim L(TG,),

so that the Lie group T'G inherits all properties assumed for G. Hence we may iterate this
argument to obtain
T"G = lim T*G,,
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for each k and that (1) holds for the Lie group T*G'.
We thus have topological embeddings

C(T*M, T*G), — lim C(T*M, T*G,).,
which leads to a topological embedding

C*(M,G) = [ c(@*M,T%G). — [] lim C(T*M,T*G,). =lim [] C(T*M,T*G.).,
keNp keNg keNg

showing that ¥ is a topological isomorphism. ]
Lemma I1.6. If N and M are compact manifolds (possibly with boundary), then the map
:C(N,C®(M, K)) — C*(N x M,K), fw f

is an isomorphism of Lie groups.

Proof. The bijectivity of ® follows from the smoothness of the evaluation map of C*°(M, K)
(Proposition 1.3) and Proposition 1.9. To see that ® is an isomorphism of Lie groups, let (p,U)
be a t-chart of K with ¢(1) = 0. Then C*(M,U) is an open identity neighborhood, so that
C(N,C>*(M,U)) is an open identity neighborhood, and so is C*°(N x M,U). That ® restricts
to a diffeomorphism

C*(N,C*®(M,U)) = C(N x M,U)

now follows from Lemma A.3 which asserts that
C*®(N,C*(M,t)) — C°(N x M,¥), f— Jis

is an isomorphism of topological vector spaces, hence restricts to diffeomorphisms on open subsets.
]

Theorem I1.7. Let K be a reqular Lie group and N and M finite-dimensional smooth
o -compact manifolds. We assume that G :== C>°(M,K) carries a reqular Lie group structure
compatible with evaluations and the smooth compact open topology. If C*°(N,G) also carries a
regular Lie group structure compatible with evaluations and the smooth compact open topology,
then C*°(N x M, K) carries a regular Lie group structure compatible with evaluations. Moreover,
the canonical map

®:C°(N x M,K) — C*(N,G), ffY
is an isomorphism of Lie groups.

Proof. In view of Proposition 1.9, the map ® is a bijective group homomorphism. First we
show that it is an isomorphism of topological groups.

Let M = |J,, M,, be an exhaustion of M by compact submanifolds M,, with boundary
satisfying M,, € M? +1- Then our definition of the group topology implies that

G = C™(M,K) = lim C™(M,, K)

as topological groups. Put G, := C*°(M,,K) and recall from Proposition 1.3 that it carries
a regular Lie group structure compatible with evaluations. We also have the isomorphism of
topological Lie algebras

L(G) = C™(M,¥) = lim L(G,) = lim C>(M,,¥),

—

and Proposition 1.9 implies that we have for each smooth manifold X:

C™(X,G) = C™(X x M,K) = 1lim C®(X x M,,K)=1lim C*(X,G,)
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on the level of groups (without topology).
Now let (Ng)ren be an exhaustion of N by compact submanifolds with boundary. Then
Lemmas I1.5 and II1.6 lead to the following isomorphisms of topological groups:

C*(N,G) = @ C*(N,G,) = h£1 C*(N,C*(M,,K))
= @ kli;n nC®(Ng, C®(M,,K)) = h£1 kh£1 nC® (N x My, K)
>~ C®(N x M, K).
The preceding isomorphism leads to a regular Lie group structure on the topological group

C*®(N x M,K). To see that this is the unique regular Lie group structure compatible with
evaluations, we first observe that all evaluation maps

eV(n,m) = €V 0ev,: C(N,C*(M,K)) — K

are smooth and then apply Proposition 1.9 to see that the evaluation map on C*°(N x M, K) is
smooth. ]

Applying Theorem I1.7 and Corollary II.3 inductively, we obtain:

Corollary II.8. Let K be a regular Lie group, M a finite-dimensional compact manifold,
k€ Ny and N := RF x M. Then C*(N,K) carries a reqular Lie group structure compatible
with evaluations and the smooth compact open topology. ]

Corollary II1.9. For each finite-dimensional connected Lie group M and each regular Lie
group K, the group C*°(M,K) carries a regular Lie group structure for which the evaluation
map 1S smooth.

Proof. This follows from the fact that each connected Lie group M is diffeomorphic to R" xC',
where C' is a maximal compact subgroup and n = dim M — dim C' ([Ho65]). u

III. The complex case

In this section we assume that M is a connected complex manifold without boundary of
dimension d and that K is a regular complex Lie group.

If E is a complex locally convex space, we write Q7 (M, E) for the space of holomorphic
E-valued 1-forms on M. For a complex Lie algebra £, we write

MCp (M, €) := MC(M, ) N Q. (M, )
for the set of holomorphic solutions of the Maurer—Cartan equation and topologize this space as
a subspace of O(TM, ), endowed with the compact open topology.

In the complex setting, the Fundamental Theorem is easily deduced from the real version
(Theorem 1.5):

Theorem III.1. (Complex Fundamental Theorem) Let M be a complex manifold and K be

a reqular complex Lie group.

(1) A smooth function f: M — K is holomorphic if and only if 6(f) is a holomorphic €-valued
1-form.

(2) An element o € Q) (M,¥€) is locally integrable to a holomorphic function if and only if it
satisfies the Maurer—Cartan equation.

(3) Suppose that M is connected, fit mg € M and assume that o € MCy(M,€). Then « is
integrable to a holomorphic function M — K if and only if the period homomorphism perl®
1s trivial.

Proof. (1) If f is holomorphic, then T(f):T(M) — T(K) is holomorphic, and since kx is

holomorphic, the same holds for §(f) = kx o T(f).

If, conversely, d(f) is a holomorphic 1-form, then each map To(f): To(M) — Ty (K) is
complex linear, so that f is holomorphic.
(2), (3) In view of (1), this follows from Theorem I.5. ]
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Remark III.2. Remark 1.6(a) carries over to the holomorphic setting as follows. For each
homomorphism x:m (M, mp) — K we obtain a holomorphic flat K-bundle P, := M xy K. If
M is a Stein manifold M and K is Banach, then the Oka principle (cf. [Rae77, Th. 2.1]) asserts
that this bundle has a holomorphic section if and only if it has a continuous section. This is the
case if and only if the corresponding space O(M, K),, is non-empty.

A typical example where (’)(M , )y = © can be obtained as follows: Consider the complex
manifold M = PGL,(C) = PSL,(C) with the universal covering M = SL,(C) and identify
m (M) with the cyclic group C, := SL,(C) N C*1 of order n. Define x:m (M) — C* by
z=x(2)"'1. Then

P, = M x,, C* = SL,(C) x,, C* 2 SL,(C) - C*1 = GL,(C),
and this C*-bundle over M is non-trivial because the corresponding surjective homomorphism
T (GL,(C)) 2 Z — m(M) = C,
does not split since Z is torsion free. ]

Proposition II1.3. If M is a connected complex manifold without boundary and K a regular
complex Lie group, then the map

5:0.(M,K) — Q} (M, ) C O(T(M),¥)

is a topological embedding if O(M,K) carries the compact open topology.

Proof. To see that the inclusion O(M, K) — C*°(M, K) is a topological embedding for any
complex Lie group K, it suffices to prove that uniform convergence of holomorphic functions in
O(M, K) implies uniform convergence of all tangent maps T (f): T" (M) — T™(K) on compact
subsets.

Suppose that f; — f in O(M,K) and let C C M be a compact subset for which f(C)
lies in Uk for some holomorphic €-chart (¢,Uk) of K. Then we may w.l.o.g. assume that
fi(C) C Uk for each i. As we have seen in Proposition 1.2(2), this implies that, on the interior
C°, pofilco: CY — € converges to o f|co in C°(CP,€), but this also implies that f;|co — f|co
in C>*°(C% K) (Lemma A.4). Since each compact subset of M can be covered with finitely many
sets of the form C?, it follows that f; — f in C*(M, K).

Now the assertion of the corollary follows from Proposition II.1. ]

Lemma IT1.4. If K is a reqular complex Lie group, then evolgx: C*°([0,1],¢) — K is holomor-
phic.

Proof. From Corollary I1.3, we know that C°°([0, 1], ¢) carries a natural Lie group structure,
and for this Lie group structure, the map evolg is a group homomorphism. In view of the
regularity of K, this map is smooth. To verify its holomorphy, it therefore suffices to show that
T (evolg) is complex linear which is an immediate consequence of Lemma A.5(1). m

We now adapt Proposition 1.8, Proposition 1.9 and Corollary I.10 to complex Lie groups to
derive a complex version of Theorems II.2.

Proposition II1.5.  Let N be a locally convex complex manifold, M a connected finite-dimen-

sional complex manifold and K a reqular complex Lie group. Then a function f:N x M — K

is holomorphic if and only if

(1) there exists a point mg € M for which the map f™: N — K,n— f(n,mg) is holomorphic,
and

(2) the functions f,: M — K,m s f(n,m) are holomorphic and F: N — Qjf (M,€),n — §(fn)
is holomorphic.

Proof. “=" is verified as in the real case (Proposition 1.8).
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“«<": The proof follows the line of the real case. In addition, we use that evolx is
holomorphic (Lemma I11.4) and that the pull-back maps +* are complex linear. One point that
requires some extra care is the verification of the holomorphy of the map

U (p(U), ) x U — C=(1,8), vya=aoTl(y).

From the proof of Proposition 1.8 we know that it is smooth and it is complex linear in «, so
that its holomorphy follows from its holomorphy in x. ]

Proposition III.6. Let M be a connected finite-dimensional complex manifold and K a
regular complex Lie group. For a complex Lie group structure on the group G := O(M,K) for
which g := O(M,¥¢) is the corresponding Lie algebra and all evaluation maps evy,:G — K,
m € M, are holomorphic with

L(evy,) =evp:g — &

Then the following assertions hold:

(1) The evaluation map ev:G X M — K, (f,m)— f(m) is holomorphic.

(2) If, in addition, G 1is regular, then a map f: N — G is holomorphic if and only if the
corresponding map f: N x M — G is holomorphic.

Proof. (1) From Proposition 1.9 it follows that ¢ is smooth. It also satisfies the cocycle
identity
3(fuf2) = Ad(f2)71.0(f1) + 8(f2).

Since the maps Ad(f) are complex linear on Qj (M, ¥), it therefore suffices to observe that
T1(0)(f) = df is complex linear in f, to conclude that ¢ is holomorphic.

(2) If f is holomorphic, then f™° = ev,,, of is holomorphic and (1) entails that do f: N —
Q} (M, €) is holomorphic, so that Proposition IIL.5 implies that f” is holomorphic.

If, conversely, f” is holomorphic, we first use Proposition 1.9 to see that f is smooth. That
its differential is complex linear follows from the holomorphy of f*. ]

In the following, we say that a Lie group structure on O(M, K) is compatible with evalua-
tions if it satisfies the assumptions of the preceding proposition. As in the real case, we obtain:

Corollary III.7. Under the assumptions of the preceding theorem, there exists at most one
regular complex Lie group structure on the group O(M, K) which is compatible with evaluations.m

Theorem II1.8. Let M be a connected complex manifold and K a complex regular Lie group.
Assume that the subset 6(O.(M, K)) is a complex submanifold of Q) (M, &) and endow O, (M, K)
with the manifold structure for which §: O.(M, K) — im(9) is biholomorphic and

O(M,K) 2 K x O,(M, K)

with the product manifold structure. Then the following assertions hold:
(1) For each locally convex complex manifold N, a map f: N x M — K 1is holomorphic if and
only if all the maps f,: M — K,m — f(n,m) are holomorphic and the corresponding map

fY:N — OM,K), nr— f,

18 holomorphic.
(2) K acts holomorphically by conjugation on O.(M,K), and O(M,K) carries a regular
complex Lie group structure compatible with evaluations.

Proof. (1) is proved as Theorem II.2(1). Here we use Proposition IIL.5 instead of Proposi-
tion L.8.

(2) For the evaluation map f =ev:G x M — K, we have ev¥ =idg and ev, = g for each
g € G. Hence (1) implies that ev is holomorphic.
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The complex Lie group structure: In view of Propositions II.1 and III.3, § is an
isomorphism of topological groups if im(d) is endowed with the group structure (2.1). To see
that the group operations are holomorphic, we have to show that the map

im(8) x QF (M, ) — QF (M, §), (a,fB) — Ad(Evolg(«)).8

is holomorphic. Its smoothness has already been verified in the proof of Theorem II.2. Since it
is complex linear in 3, it is holomorphic in the second argument.
We claim that it is also holomorphic in the first argument «. Since the evaluation maps

eVon: Q (M, €) — Hom(T,, (M), €)

are complex linear, and the adjoint action of K on ¢ is holomorphic, it suffices to show that for
each element m € M, the map

im(6) - K, o Evolg(a)(m)

is holomorphic.
For any piecewise smooth path v:[0,1] — M with v(0) = mg and v(1) = m we have

Evolg (a)(m) = evolg (y*«),
so that the holomorphy of evolg (Lemma II1.4), combined with the complex linearity of the map
QF (M, €) — C>=([0,1],8), a— v«
implies that im(d) is a complex Lie group. As in Theorem I1.2(2), we see that
d: O, (M,t) — To(im(d))

is an isomorphism of Lie algebras if O, (M, £) is endowed with the pointwise Lie bracket.
Regularity: It remains to verify the regularity of G, i.e., the holomorphy of the map
evolg. As in the real case, we see that

evolg(€)(m) = evolg (€™) = evol(€,m),

which is smooth by (Lemma A.6(3)). Since evolg is holomorphic (Lemma IIT.4) and &™ is
complex linear in ¢ and holomorphic in m, it follows that evoll:C®(I,g) x M — K is
holomorphic, which implies that evolg is holomorphic. [ ]

As in the real case, there is a natural situation where im(d) is a submanifold, namely if
M is one-dimensional and simply connected. In this case, each £-valued holomorphic 2-form
on M vanishes, so that all holomorphic 1-forms satisfy the Maurer—Cartan equation, and if M
is simply connected, Theorem III.1 implies that im(d) = QCliR,h(M, ), which is in particular a
submanifold. If M has no boundary, then the Riemann Mapping Theorem implies that it is
isomorphic to C, the unit disc A := {z € C:|z| < 1}, or the Riemann sphere C 2 §2.

Corollary II1.9.  For each reqular complex Lie group K and each 1-connected complex curve
M without boundary, the group O.(M,K) carries a regular complex Lie group structure for
which

5: 0. (M, K) — Q} (M, ¥)

is biholomorphic and O(M,K) =2 K x O,.(M,K) carries a regular complex Lie group structure
compatible with evaluations and the compact open topology. ]
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Remark IIL10. Let M := C be the Riemann sphere. That the space Ql(@ C) is trivial
(which is well- known) can be seen as follows. Each holomorphic C-valued 1-form « is closed,
hence exact because C is simply connected. Now there exists a holomorphic function f: C—cC
with df = «, and since f is constant, we get a = 0. From this and the Hahn-Banach Theorem,
we directly get Ql((C ¢) = {0} for any locally convex space .

In view of Corollary II1.9 and the fact that J is injective on O, (((A:, K), we now derive
0.(€,K) = {1}

for any complex Lie group K, and this is independent of whether K has non-constant holomor-
phic functions K — C or not. In particular, we see that there is no non-constant holomorphic
function from C to any Lie group of the form E/T'p, where 'y is a discrete subgroup of the
complex locally convex space E'. ]

We extract the following version of the Regular Value Theorem from Glockner’s Implicit
Function Theorem ([G103]):

Theorem II1.11. Let M be a locally convex manifold, N a Banach manifold, F: M — N
a smooth map and ng € N. Assume that for each m € M with F(m) = ng there exists a
continuous linear splitting of the tangent map

Ty (F): Ty (M) — Ty (N).

Then F~(ng) is a split submanifold of M .
If, in addition, M and N are complex manifolds and F is holomorphic, then F~'(ng) is
a complex split submanifold of M .

Proof. Since the property of being a submanifold is local, it suffices to show that each
mo € F~1(ng) has an open neighborhood U for which U N F~!(ng) is a submanifold of U. In
particular, we may assume that M is an open subset of a locally convex space X 2T, (M). In
view of the continuity of F', we may choose U in such a way that F(U) is contained in a chart
domain in N, so that we may further assume that N = T, (N) is a Banach space.

Fix a continuous linear splitting o: N — X of the tangent map T,,,(F). Then Y :=
ker T,,,,(F) is a closed subspace of X and the map

YxN =X, (y,0)—y+o)

is a linear topological isomorphism. We may therefore assume that X = Y x N, write myg
accordingly as (yo, eo), and that Tp,,(F): X =Y x N — N is the linear projection onto N.
Now Theorem 2.3 in [G103] implies the existence of an open neighborhood U of my in
Y x N and a diffeomorphism 6: U — 6(U) onto some open neighborhood of (yo,n¢) in ¥ x N
with
0(a,b) = (a, F(a,b)) for (a,b) €U.

This implies that
F7lno)NU =071(Y x {no})

is a smooth submanifold of U. The remaining assertions are immediate from loc. cit. |

The following theorem is the second main result of this section.

Theorem III.12. Let M be a non-compact connected complex curve without boundary.
Assume further that 71 (M) is finitely generated and that K is a complex Banach-Lie group.
Then the group O.(M,K) carries a regular complex Lie group structure for which

5:0.(M,K) — Qj (M, )

is biholomorphic onto a complex submanifold, and O(M,K) 2 K x O.(M, K) carries a regular
complex Lie group structure compatible with evaluations.
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Proof. In view of Theorem IIL8, it suffices to show that im(d) is a complex submanifold.
First we recall that the fundamental group m (M) is free, because this is true for all non-
compact surfaces without boundary. Let

717"'7’7’1“:[071]4)M

be piecewise smooth loops in the base point mg such that [y1],...,[y.] are free generators of
m1 (M, mg). Then the map
(3.1) Hom(mi (M), K) — K", x+— (x([n])s-- - x([])

is a bijection.

Since the Maurer—Cartan equation is trivially satisfied for holomorphic 1-forms on a com-
plex curve (cf. Corollary II1.9), we have im(§) = P~1(1) for the map

P (M, ®) — K", aw (perg®([n]), ..., perg®([v]))
(Theorem III.1). Since
perg” ([7]) = evolk (v" )

depends holomorphically on « for each piecewise smooth curve v on M (Lemma II1.4), P is a
holomorphic map from the complex Fréchet space 2} (M, €) to the complex Banach manifold K”.

To see that P~1(1) is a submanifold, we have to verify the assumptions of Theorem III.11.
The Behnke—Stein Theorem ([Fo77, Satz 28.6]) implies that each group homomorphism m; (M) —
C can be realized by integration against a holomorphic 1-form. Hence there exist holomorphic
1-forms f1,..., 0, € Q,(M,C) with

(3:2) A@:%

We define a linear map
ot — QL (M,E), (v1,...,7,) Zﬁj - T
j=1

whose continuity follows from Lemma A.5(3).
To verify for a € P71(1) that the map T, (P) has a continuous linear section, we consider
the map
0o ¥" — QL (M,8), x— a+Ad(f)  o(z) =6(f)+Ad(f) Lo(x),

where f € O.(M, K) is the unique function with §(f) = o (Theorem III.1). As f is fixed, o, is
a continuous affine map, hence in particular holomorphic. From Remark I.6(a) we further know
that

Py (@) = PTo(a),
so that Poo, = Poo.

In view of pergm([’y]) = evolg (v*0), the differential of the map 5 — perg“) in 0 is given
by

Th(evolg)(Y*B) = /17*5 Lﬂ

0

ne)@) = ([ 6. 8).

considered as an element of €. From

(Lemma A.5(1)). Therefore

T

/Yio(xl,...,xr):Z/ 8, x5 = m,

j=1 Vi
we derive To(P) o o0 = idgr . We further have
To(P)oAd(f)t oo = To(P) o To(0s) = To(Pooy) =To(Poo) =Ty(P)oo =ider.
~1(1) was arbitrary,
) [ ]

Hence Ad(f)~!o o is a continuous linear section of T, (P). Since a € P
Theorem III.11 implies that P~*(c) is a complex submanifold of ©},(M, €)
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Corollary IT1.13.  Let ¥ be a compact complex curve, F C ¥ a finite set and M := X\ F.
Then, for each Banach—Lie group K, the group O(M,K) carries a reqular complex Lie group
structure compatible with the compact open topology and with evaluations.

In particular, for each Banach—Lie group K, the topological group O(C*,K) carries a
compatible Lie group structure.

Proof.  To apply Theorem II1.12, it suffices to verify that my (M) is finitely generated, but
this follows from the fact that M is homotopic to a compact surface with |F| boundary circles.m

Example I11.14. Let M = C* and K = GL,(C). Then we associate to each holomorphic
function &:C* — gl,(C) the 1-form
a=¢&(2)dz.

Now d(f) = « is equivalent to the requirement that f is a solution of the linear differential
equation

f'(z) = f(2)8(2).

If, for example, £(z) = 271 A for a matrix A, then the differential equation reads
(3.3) f'(z) = 27 YAf(2),
and the corresponding 1-form on the group (C*,-) is invariant. A solution of (3.3) exists if and
only if
f(z) _ elog z-A

is well-defined. The corresponding period homomorphism is

P(q):Z — GLn(C), n— e2™n4,

Therefore o € P~1(1) is equivalent to >™4 = 1, which is equivalent to the diagonalizability of
A and Spec(A) CZ.

Note that on the subspace M, (C)% the matrix 1 € GL,(C) is not a regular value of P
because 1 is a not a regular value of the exponential function. Despite this fact, we have seen in

the proof of Theorem II1.12 that 1 is a regular value of the holomorphic function
P:QY(C*, M, (C)) — GL,(C), «a+ per,. L]

Remark IT1.15. Throughout the present section we considered only complex manifolds without
boundary to make sure that the compact open topology on O(M, K) is the right one. If M has
non-empty boundary, all results remain true with respect to the finer smooth compact open
topology. ]

IV. Maps with values in special Lie groups

In this section we discuss the group C*°(M, K) under the assumption that the universal
covering group K of K is diffeomorphic to a locally convex space. This includes in particular all
regular connected abelian Lie groups ([MT99], [GN07]), all finite-dimensional solvable Lie groups
and many interesting projective limits of Lie groups ([HoNe06]).

The starting point is the result that C°°(M,K) always carries a Lie group structure
compatible with evaluations. Then we study the passage from K to K, which is encoded
in an exact sequence

1 — m(K) — C®(M,K) — C®(M, K) — Hom(m (M), 7 (K)) — 1

which shows that the Lie group C°°(M, K)/m;(K) can be identified with a normal subgroup of
C*(M, K), which eventually leads to a Lie group structure on the whole group. We further show
that, if the group Hom(mi (M), 71 (K)), endowed with the topology of pointwise convergence, is
discrete, then this Lie group structure is compatible with the smooth compact open topology. To
shed some light on these subtleties, we briefly discuss the groups Hom(A,T") for an abelian group
A and a discrete subgroup I' of a locally convex space, and this discussion leads to necessary
conditions for the Lie group structure on C*°(M, K) to be compatible with the smooth compact
open topology if K is abelian or finite-dimensional.
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Proposition IV.1. Let M be a finite-dimensional manifold, K a Lie group with Lie algebra
¢, ox: K — E a diffeomorphism onto a locally convex space and G := C*°(M,K). Then

@G:GHCOO(MaE)v f'—><PKOf

is a homeomorphism which defines a manifold structure on G, and this turns G into a Lie group
compatible with evaluations. If, in addition, K is regular, then G is also reqular.
Proof. Tt follows directly from the functoriality of the topology on C°°(M, N) in N that pg
is a homeomorphism. We consider (¢¢,G) as a smooth atlas of the topological group G.

To see that the group operations of G are smooth, let myg: K x K — K denote the
multiplication of K and 7y its inversion map. Then

o omg o (P X ') ExE —FE
is smooth, so that Lemma A.4 implies that the induced map
(px omp o (pic X @i )w: CF (M, E x E) — C*(M, E)

is smooth, and this means that the multiplication in G is smooth. With a similar argument, we
see that the inversion is also smooth. Hence G is a Lie group.

To calculate the Lie algebra of this group, we observe that for m € M, we have for the
multiplication in the chart (¢q, G)

(f *a 9)m) = g (961 (F)e(9) ) (m) = exc (05 (F(m)eic (9(m))
= f(m) w1 g(m) = F(m) + g(m) + be(f(m), g(m)) + -+,

where the Lie bracket in ¢ 2 Ty (K) = F satisfies

[z,y] = be(w,y) — be(y, )

(cf. [GNOT7]). Hence, we accordingly have (bg(f,g))(m) = be(f(m),g(m)), and thus

[ 91(m) = bg(f, 9)(m) = ba(g, £)(m) = be(f(m), g(m)) = be(g(m), f(m)) = [f(m), g(m)].

Therefore g = C*°(M,¢), endowed with the pointwise defined Lie bracket, is the Lie algebra
of G.

The compatibility of the Lie group structure with evaluations follows directly from Propo-
sition 1.2 and the definition of the manifold structure on G.

Now we assume that K is regular. With Lemma A.6(3), we obtain for each £ € C*(1,g)
a curve v:I — C®°(M,K) by ~(t)(m) := Evolg (§™)(t), defining a smooth map I x M — K,
hence a smooth curve in G (Lemma A.2) because

C=(1,G) = C(I,0%(M, E)) = C=(I x M, E) = C¥(I x M, K).

Further, 6(y™) = £™ implies that the evolution map of G is given by evolg(§)(m) := evolg (™).
Now the smoothness of evolg follows from Lemma A.6(3) and Lemma A.2. ]

Theorem IV.2.  Let M be a finite-dimensional connected o -compact manifold, K a connected

Lie group with Lie algebra ¥ whose universal covering group K is diffeomorphic to a locally convex

space. Then the following assertions hold:

(1) G:=C>®(M,K) carries the structure of a Lie group compatible with evaluations. If K is
reqular, then G is regular.

(2) On the identity component Gy, this Lie group structure is compatible with the smooth
compact open topology. In particular, the Lie group structure on G is compatible with the
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smooth compact open topology if and only if Gy is open with respect to the smooth compact
open topology.

(3) mo(G) = Hom(my (M), 1 (K)) with respect to the Lie group structure and the smooth compact
open topology.

(4) If m (M) is finitely generated or, more generally, Hom(m (M), 71 (K)) is discrete with
respect to the topology of pointwise convergence, then G is also open in the smooth compact
open topology, so that the Lie group structure on G is compatible with this topology.

Proof. (1) First we apply Proposition IV.1 to the Lie group Go := C°>°(M, K) to obtain a
Lie group structure compatible with evaluations. Let gx: K — K denote the universal covering
group. Since ker gk is central in K, the conjugation action

C’I?:I}XI}HI}, (z,y) — zyxz
factors through a smooth action
Cx:KxK—K, () ayz"

We claim that the corresponding action of G = C*(M, K) on Gy = C®(M, K) by (f.g)(m) :=
CK(f( ))(g(m)), is an action by smooth automorphisms. To see this, first observe that if
qnm: M — M is the universal covering manifold of M, then C'*° (M K ) also carries a smooth Lie
group structure for which we may identify C'>° (M, K ) with a closed submanifold (corresponding
to a closed vector subspace under the chart in Pr0p0s1t10n IV.1). Since each smooth map
[iM — K can be lifted to a smooth map f M — K the corresponding automorphism of
Go coincides with the restriction of the automorphism cF of C(M,K) to C*(M, K), hence
is smooth.

Since kergx = m(K) C K is a discrete central subgroup of K and therefore also of the
Lie group GO, the quotient Gy := Go /m1(K) carries a unique Lie group structure for which
the quotient map Go — Gy is a covering (cf. [GNO7]). This quotient map corresponds to the
homomorphism

q%COO(MaI?)_)COO(M7K)a quKof

which is equivariant with respect to the aforementioned action of the group C°°(M,K) on
C>(M, I~() by conjugation. Hence Gp = im(¢}) is a normal subgroup which carries a Lie
group structure and the other group elements act by smooth automorphisms. This implies that
the Lie group structure extends uniquely to all of G in such a way that Gq is the open identity
component of G (cf. [GNO7]). We thus obtain a Lie group structure on G for which ¢¥: Gy — Gy
is the universal covering map, which implies that its Lie algebra also is g. The evaluation map

ev:Gx M — K can be obtained by factorization of the evaluation map ev: Gy x M — K because
qK 0 ev = evo(q% x idps),

which shows that it is smooth on Gy x M and hence on all of G x M because it is multiplicative
in the first argument.

If, in addition, K is regular, then Proposition IV.1 implies that C:‘o is regular, and this
easily implies that Gy and G are regular Lie groups (cf. [GNOT]).

(2) The construction in Proposition IV.1 implies that on Gy = C°°(M, K) the Lie group
structure is compatible with the smooth compact open topology. Writing this group as a

semidirect product Gy = C°(M, K) x K , we see that Go = C>°(M, K) x K, so that it suffices
to see that the injective continuous homomorphlsm

g C=®(M,K) — C®(M,K)

of topological groups is a topological embedding with respect to the smooth compact open
topology.
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To verify this claim, let m € M and C be a relatively compact open neighborhood of m.

To see that _ B
(ax) " ax (CF(M, K)) — CZ(M, K)
is continuous in the smooth compact open topology, we note that for each m € N, the map
T™(qx): T"K — T™K
is the universal covering morphism of the Lie group 77 K. If we can show that for all these
coverings, the corresponding map
() g e (Co (M, T™K)) — Co(M, T™K)

is continuous in the compact open topology, the corresponding assertion follows. Hence it suffices
to show that

(4.1) (ai) ™" ai (C. (M. K))e — Cu(M, K).
is continuous with respect to the compact open topology.

Evaluation in the base point my maps the subgroup 71 (K) = ker gi to a discrete subgroup
of K. Hence it is discrete as a subgroup of C(M K )e, so that for any sufficiently small 1-
neighborhood V' in C(M, K) we have C,,(M, K)NVri(K) C V. Let C be a compact connected
subset of M and U be an open 1-neighborhood in K with

W(C,U)m (K)NCo(M,K) CW(C,U) and UU 'nn(K)={1}.

We claim that for any f € C,(M, K) the relation q%(f) € W(C,qx (U)) implies f € W(C,U),
and this implies the continuity of (4.1). Any such fv maps the connected set C into the open
subset Umi(K) = qx'(qi(U)), and our assumption on U implies that the open sets Uz, z €
m1(K), are pairwise disjoint. Hence there exists a z € m (K) with feW(C,Uz) =W(C,U)z,
so that f € C.(M,K) leads to z =1, ie., f € W(C,U).

This completes the proof of (2 ) We also note that if K is regular, then the assertion
follows directly from Proposition II.1, because both maps

51:C®(M,K) — QY (M,8) and  §: C2(M, K) — Q'(M, ¥)
are topological embeddings with d 0 ¢/ = 47 .

(3) The range of ¢ consists of all smooth maps f: M — K lifting to maps f M- K.
If mg € M is a base point, this condition is equivalent to the condition that the homomorphism

L(f):m(M,mo) — [8', K] = m(K), [a] = [foq]
is trivial. In view of
[(fr-f2)oa] =[(frica) - (faoa)l=[fioa]-[f20a],
I" is a group homomorphism, and we obtain an exact sequence
(4.2) 1— m(K) — C®°(M, K)—2 (M, K)—— Hom(ry (M), 71 (K))

of groups.

We also note that T is continuous with respect to the compact open topology on C*°(M, K)
and the topology of pointwise convergence on the abelian group Hom(7y (M), 71 (K)), which turns
it into a totally disconnected group because 71 (K) is discrete. This implies that im(¢}) also
coincides with the arc-component of 1 with respect to the smooth compact open topology.

To see that I' is surjective, let v € Hom(my (M), m (K)), and consider the corresponding
K- principal bundle P,:= =M Xy K — M over M. Since K is contractible, this bundle is
topologically trivial, and hence also smoothly trivial ([MWO06]), so that there exists a smooth
function f: M — K with f(d.z) = y(d)f(z) for d € 7 (M) and = € M. Then f induces a
smooth function f: M — K with I'(f) = ~v. As kerT" is the arc-component of the identity for
both topologies on C*°(M, K), its surjectivity implies (3).

(4) If w1 (M) is finitely generated, the group Hom(m (M), 71 (K)) is discrete with respect
to the topology of pointwise convergence. This in turn implies that Gy is open with respect
to the smooth compact open topology. Hence (2) implies that the Lie group structure on G is
compatible with this topology because this is the case on Gy . ]
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Theorem IV.3. Let M be a finite-dimensional connected o-compact complex manifold,
K a connected complex Lie group with Lie algebra ¥ whose universal covering group K is
diffeomorphic to a locally convexr space. Then the following assertions hold:

(1) G:=O(M,K) carries a Lie group structure compatible with evaluations. If K is regular,
then G is regular.

(2) On the identity component Gy, this Lie group structure is compatible with the smooth
compact open topology.

(3) If m (M) is finitely generated or Hom(mwy (M), 71 (K)) is discrete with respect to the topology
of pointwise convergence, then Gy is also open in the smooth compact open topology, so that
the Lie group structure on G is compatible with this topology.

(4) If M is Stein and K is Banach, then mo(G) = Hom(m (M), m1(K)) holds with respect to
the Lie group structure and the smooth compact open topology.

Proof. Using Lemma A.4(3), (1) is proved exactly as in the real case, where the evaluation
map is holomorphic by Proposition 1.2(2). We omit the details.

(4) Here the crucial step is the surjectivity of the map I', for which we need that any
bundle P, = M x, K — K is holomorphically trivial. In the proof of Theorem IV.2, we have
argued that it is topologically trivial. Since M is assumed to be Stein and K Banach, the Oka
principle (cf. [Rae77, Th. 2.1]) asserts that this bundle has a holomorphic section. The remaining
arguments are similar to the real case. ]

Remark IV.4. (a) It is quite plausible that under the assumptions of Theorem IV.2, the
abelian group 71 (K) is torsion free because each torsion element would lead to a fixed point free
action of a cyclic group on the locally convex space K.

If K is finite-dimensional, such an action does not exist (cf. [Sm41)), and if K is regular
and abelian, we know anyhow that 71 (K) is a subgroup of the additive group of €, hence torsion
free.

(b) Theorem IV.2 applies in particular to all finite-dimensional Lie groups K which are
diffeomorphic to some vector space. These groups are isomorphic to semidirect products of the
form

R x SLy(R)™,

where R is a simply connected solvable Lie group and SAI:g (R) is the universal covering group of
SL2(R), which is diffeomorphic to R3.
Interesting infinite-dimensional Lie groups diffeomorphic to locally convex spaces can also
be found among the simply connected pro-solvable pro-Lie groups (see [HoNe06] for more details).
(¢) Theorem IV.3 applies to all finite-dimensional complex Lie groups K which are biholo-
morphic to a vector space, which is equivalent to K being solvable. ]

Maps with values in abelian Lie groups

We have seen in Theorem IV.2 that the smooth compact open topology on C*°(M, K) is
compatible with the Lie group topology if and only if the arc-component of the identity is open.
To get a better understanding of what is going wrong if 71 (M) is not finitely generated, we now
take a closer look at the relevant facts on abelian groups.

Let K be a regular connected abelian Lie group, hence of the form K = ¢/T' i, where ¢ is
a Mackey complete locally convex space and T' C £ is a discrete subgroup isomorphic to 7 (K)
(cf. [MT99], [GNO7]). We write qx:& — K for the quotient map with kernel 'y . Then K 2 ¢
is a locally convex space and Theorem IV.2 applies.

Since £ is abelian, o € Q'(M, €) satisfies the Maurer—Cartan equation if and only if « is
closed and for each mo € M we have

pern:mi (M, mg) — K, [7] HqK(/a).

Y
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Therefore a closed 1-form « is integrable if and only if all its periods are contained in I'r . Let
Zin (M8, Tg) = im(8) C Ziz (M, ¥)

denote the subgroup of all 1-forms satisfying this condition (Theorem 1.5). Proposition II.1 now
implies that

is an isomorphism of topological groups, inducing an isomorphism of the path components of the
identity
CS:O(M7 K)U« = C:O(Mvé) - dCOO(M7E)

because we have
50 (M, K) — Hom(m (M), i), T(H(B]) = [ 8(7)

We conclude that the path component of the identity in C°°(M, K) is open if and only if
Hig(M,e,T) = Zig (M, 8, T k) /dC™ (M, ¥t)

is a discrete subgroup of the topological vector space Hig(M,t) = Zig(M,¥€)/dC>(M,¥).
In view of the de Rham Theorem (cf. [KM97]) and the Hurewicz Homomorphism, we have
isomorphisms of groups

Hig(M,¥¢) = Hslmg(M, t) = Hom(H, (M), €) = Hom(7 (M), €)

because Hi(M) = m(M)/[r1 (M), 71(M)] (cf. [Bre93]). By restriction, we thus obtain the
isomorphism of groups

(4.4) Hig (M, €, Tg) = Hom(m (M), Tk),

and, in view of Theorem IV.2, it is interesting to see when this actually is an isomorphism of
topological groups, resp., when the subgroup H (}R(M , € Tk) is discrete.

Lemma IV.5. If M is connected and o-compact and € is a Fréchet space, then the natural
map
®: Hig (M, ) — Hom(H, (M), ¥)

is an isomorphism of Fréchet spaces, where the space Hom(H,(M),¥) carries the topology of
pointwise convergence.

Proof. First we observe that it is a continuous bijection of Fréchet spaces, where the topology
of pointwise convergence on Hom(H; (M), €) defines a Fréchet space structure because the group
H,(M) is countably generated (cf. [Ne04, Prop. IV.9]). Now the Open Mapping Theorem
([Ru73]) implies that ® is an isomorphism of Fréchet spaces. ]

In view of the preceding lemma, we are left with the question when Hom(A4,T'x) is discrete
in Hom(A,¢) for an abelian group A. The following theorem provides some information on the
structure of 'k .

Theorem IV.6. (Sidney) Countable discrete subgroups of locally convex spaces are free.

Proof. If I is a discrete subgroup of the locally convex space £, then there exists a continuous
seminorm p on ¢ such that inf{p(y):0# v € I'} > 0. If ¢, is the completion of the normed space
t/p~1(0), it follows that I" embeds as a subgroup of £, whose intersection with a sufficiently
small ball is trivial, and therefore I' is realized as a discrete subgroup of some Banach space.
This implies that every discrete subgroup of a locally convex space is isomorphic to a discrete
subgroup of some Banach space. Now the assertion follows from Sidney’s Theorem that countable
discrete subgroups of Banach spaces are free ([Si77, p.983]). u
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Lemma IV.7. Let A be a countable abelian group. Then the following are equivalent:

(1) Hom(A,T) is discrete in Hom(A, E) for each discrete subgroup T' of a locally convex
space E .

(2) Hom(A,T) is discrete in Hom(A, E) for one non-zero discrete subgroup T of some locally
convex space F .

(3) Hom(A,Z) is discrete in Hom(A,R).

(4) Hom(A,Z) is finitely generated.

Proof. Let A; C A denote the intersection of all kernels of homomorphisms A — Z. Then

we have an embedding

AJAy s ZHOMAD) g Ay s (x = x(a)

and the group A/A; is countable. As all countable subgroups of groups of the form Z! are free
([Fu70, Th. 19.2]), we have
A= Al ) AQ?

where Hom(A;,Z) = 0 and Ay = Z() s free (cf. [Fu70, Cor. 19.3] for this result due to K. Stein).
In particular, we have Hom(4,Z) = Hom(As,Z) = Z”, and this group is finitely generated if
and only if J is finite.

If x: A — T is a homomorphism, then y(A) is a countable discrete subgroup of the locally
convex space €, hence free by Sidney’s Theorem IV.6. Therefore the homomorphisms x(A) — Z
separate points, which implies that A; C ker y. We conclude that

Hom(A,T') 2 Hom(Ay,T') = Hom(Z(),T') = 1.

The topology of pointwise convergence on Hom(A,T') corresponds to the product topology on
I'/. Hence this group is discrete if and only if either I' = {0} or J is finite. In particular,
Hom(A,Z) is discrete if and only if J is finite. [

From the proof of Lemma IV.7 we obtain in particular that Hom(A,Z) = Z”, where J is
a countable set. If J is finite, then Z7 = Z!7| is discrete, and otherwise it is isomorphic to ZN,
which is not discrete.

Theorem IV.8. Let M be a connected o-compact manifold, € a Fréchet space, I'x C ¢ a

non-trivial discrete subgroup, and K := €/T' k. Then the following are equivalent:

(1) The Lie group structure on C°°(M,K) from Theorem IV.2 is compatible with the smooth
compact open topology.

(2) The arc-component O (M, K), = ¢}4(C>(M,¥)) is open with respect to the smooth compact
open topology.

(3) Hig(M,¢,T'k) is a discrete subgroup of Hiy(M,¥€).

(4) HY(M,Z) is finitely generated.

Proof. The equivalence of (1) and (2) follows from Theorem IV.2(2).
The equivalence of (1) and (3) follows from the discussion preceding Lemma IV.5. To prove

the equivalence between (3) and (4), we recall from (4.4) and Lemma IV.5 the isomorphism

Hir(M, % Tx) = Hom(H: (M), I'k)
of topological groups. As Hi(M) is a countable abelian group (cf. [Ne0O4, Prop. IV.8]), the

equivalence of (3) and (4) follows from 'y # {0}, Lemma IV.7, and Hom(H:(M),Z) =
HY(M,Z). ]
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The complex case

Now we assume that M is a complex manifold and K 2 €/T'k is a regular abelian complex
Lie group, i.e., ¥ is a complex Mackey complete space.

Theorem IV.9. Let M be a connected o-compact complex manifold without boundary, € a
complex Fréchet space, T C ¥ a non-zero discrete subgroup and K :=€/T k. Then

5:0.(M,K) — Z§R7h(M, £ Tk)

is an isomorphism of topological groups, and the following are equivalent:

(1) The Lie group structure on O(M,K) is compatible with the compact open topology.

(2) The arc-component O.(M,K), = ¢ (O(M,¥)) is open with respect to the compact open
topology.

3) Hipn(M,£,Tk) = {[a]:a € MCy(M,¥),(Vy € C=(S', M)) fva € Tk} is a discrete
subgroup of H(}RJ](M, t). If, in addition, M is a Stein manifold, then (1)-(3) are equivalent
to:

(4) HY(M,Z) is finitely generated.

Proof. The equivalence of (1)—(3) is shown precisely as in the real case. Suppose, in addition,
that M is a Stein manifold. Then the Oka principle ([Gr58], Satz I, p. 268) implies that each
continuous map M — C* is homotopic to a holomorphic map. As the homotopy classes [M,C*]
are classified by

Hom(7y (M), 7 (C*)) = Hom(m (M), Z) = H' (M, Z),

each homomorphism 71 (M) — Z arises as m1(f) for a holomorphic map f: M — C*. Hence
each class in H!(M,Z) is represented by a holomorphic 1-form. In view of Lemma IV.5, this
implies that

Hig ,(M,C,Z) = Hig(M,C,Z) = Hom(H,(M), Z)

as topological groups, and the discreteness of this group is equivalent to (4) (Proposition IV.8).m

Remark IV.10. The assumption that M is Stein is crucial in (4) above, because, in general,
not every homomorphism H; (M) — C is represented by integration of a holomorphic 1-form.
A typical example is given by a complex torus M = C/D, where Z? = D C C is a discrete
subgroup. Since holomorphic functions on M are constant, each holomorphic 1-form on M
is a constant multiple of dz. Therefore Hjg (M,C) = Cl[dz] is one-dimensional, and the
homomorphism 71 (M) =2 D — C corresponding to A - dz is given by d — Ad. The group
homomorphism D — C,d — d is not represented by integration of a holomorphic 1-form. ]

Remark IV.11. If M is a non-compact Riemann surface, then M is Stein and m (M) is a
free group, so that Hy (M) is a free abelian group. Therefore Theorem IV.9 implies that for any
abelian complex Fréchet—Lie group of the form K = ¢/T'k, the group O(M, K) is a Lie group
with respect to the compact open topology if and only if the free abelian group H; (M) has finite
rank. ]

Remark IV.12. (a) If M is a compact Kéhler manifold (and ¢ still abelian), then Q} (M, ) =
MC}, (M, ¥) because each holomorphic 1-form is automatically closed (cf. [We80]).

(b) For any compact complex manifold we have O,(M,€) = {0} because all holomorphic
functions are constant. Therefore the Lie group structure on O, (M, K) is discrete. |
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Maps with values in finite-dimensional Lie groups

Remark IV.13. (a) Let K be a connected finite-dimensional Lie group whose universal
covering group K is diffeomorphic to a vector space, which is equivalent to £/ rad() 2 sly(R)™
for some m € Ny and this in turn is equivalent to the maximal compact subgroup T C K
being a torus (cf. [HoNe06]). Let d := dim7. Since T is a maximal compact subgroup,
71 (K) = 1 (T) = Z¢ is a free abelian group (cf. [Ho65]). Therefore

Hom (7 (M), m (K)) = Hom(H, (M), 71 (T)) = HY (M, Z,)°.

If K is not simply connected, then d > 0, so that this group is discrete if and only if H'(M,Z)
is finitely generated (Lemma IV.7).

If this is the case, then Theorem IV.2 implies that the Lie group structure on C*° (M, K)
is compatible with the smooth compact open topology. If H'(M,Z) is not finitely generated,
then B _

C=(M,T) = C*(M,K) N C=(M,T)

is not an open subgroup of C°(M,T) C C*(M, K), and therefore C°(M, I~() is not an open
subgroup of C°(M, K). Now the topological decomposition

C®(M,K) = C®(M,K)x K

implies that the arc-component of the identity in C'*°(M, K) is not open, hence that the Lie
group structure is not compatible with the smooth compact open topology.

(b) If K is a finite-dimensional complex Lie group, the Levi decomposition implies that
the condition that K is diffeomorphic to a vector space is equivalent to K being solvable.

Suppose that H'(M,Z) is not finitely generated and let T'C K be a real maximal torus.
Then the inclusion T — K extends to a holomorphic Lie group morphism T — K. Note that
for T =2 T™ the universal complexification is T = (C*)™. If the map Tz — K is an embedding,
then we also have an embedding

Tc — O(M,T¢) — O(M, K).

If M is a Stein manifold, then O(M,T¢) is not a Lie group because O(M,T¢) = O(M,Tc), is
not open (Theorem IV.9). As in (a) above, this implies that O(M, K) is not open in O(M, K),
and therefore that O(M, K) is not a Lie group with respect to the compact open topology. =

V. Some strange properties of the exponential map

In this subsection, we collect some interesting properties of the exponential function of the
groups O(M, K) on a finite-dimensional complex manifold M to a complex Banach—Lie group
K, which is simply given by exp(§) := expy of, where expy is the exponential function of K.

Proposition V.1. Let M be a complex manifold which has non-constant holomorphic func-
tions, and K be a complex connected Banach-Lie group. If K # expy €, then the image of the
exponential function of O(M, K) is not an identity neighborhood.

Proof. Step 1: First we claim the existence of a holomorphic function ¢: M — C with real
part unbounded from above. Suppose that such a function does not exist. Replacing f by ¢f,
—f and —if, we conclude that for each holomorphic function f: M — C the functions Re f
and Im f are bounded, and hence that f is bounded. If f is non-constant, then f(M) is a

open subset of C, hence has a boundary point zg € f(M). But then the function (f — z9)7! is
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unbounded, a contradiction. We therefore find a holomorphic function ¢: M — C and a sequence
xn € M with Rel(z,) — co.
Step 2: Let
Ky :={f(1):f € O(C, K), f(0) = 1}.

Then K; is a subgroup of K, because it is the homomorphic image of the subgroup O,(C, K)
under the evaluation map in 1. If k = expy « for some z € €, then the map f(z) := expg(zx)
satisfies f(0) = 1 and f(1) = k. Hence K; D expg ¢, and since the connected Banach-Lie
group K is generated by expy £, we obtain K = K;.

Step 3: Let k € K\expy ¢. In view of the preceding paragraph, there exists a holomorphic
map f:C — K with f(1) = k and f(0) = 1. We define h,(z) := f(e!@~4n))  Then
hn(zn) = f(1) € expy B, so that h, is not contained in the image of the exponential function of
O(M, K). On the other hand h,, — 1 uniformly on compact subsets of M, hence in O(M,K).m

Corollary V.2. Let M be a complex manifold with non-constant holomorphic functions
and K1 < K a Banach-Lie subgroup whose exponential function is not surjective. Then there
exist 0-neighborhoods in O(M,¥) whose image under the exponential function is not an identity
neighborhood in O(M,K).

Proof. Let Ug C ¢ be an open 0-neighborhood which is relatively compact and for which
expg lu, is a diffeomorphism onto its open image, satisfying

(5.1) expy(Ue) N K1 = expy (Ue N E7).

Pick mo € M and a compact neighborhood C' of my. Then we consider the identity neigh-
borhood W(C,expy (U)) of O(M,K). Let ¢ < ¢ be the Lie algebra of K; and observe that
W(C,Uy) is a 0-neighborhood in O(M, ¢).

In view Proposition V.1, each identity neighborhood in O(M, K1) contains a holomorphic
function h: M — K7, not contained in the image of the exponential function of O(M, K;). Sup-
pose that h = exp& = expg of holds for some holomorphic function &: M — €, contained in
W (C,Uyg). Then the injectivity of expg |, and (5.1) imply that £(C) C UgN¥;. Since f is holo-
morphic, we obtain {(M) C &, contradicting the construction of h. Therefore exp(W(C,Uy))
is not an identity neighborhood in O(M, K). [

The preceding corollary implies in particular that the exponential function of
O(M,GL,(C)) is not locally surjective for any Stein manifold M. The following lemma shows
that it is locally injective.

Lemma V.3. If M is a connected complex manifold, then the exponential function
exp: O(M,t) - O(M, K)

is locally injective.

Proof. Let C C M be a non-empty compact subset, U C £ be an open 0-neighborhood on
which the exponential function expy:t — K is injective, and define

U:=W(C,U) ={£ € O(M,t): (Vx € C) £(x) € Us}.

Then U is an open 0-neighborhood in O(M,¢). If £, € U satisfy exp& = expn, then the
injectivity of expy on U implies that £ | = n]c, and since M is connected, we obtain £ =7
by analytic continuation. ]
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Appendix. Technical tools

Lemma A.1. Let M,N and L be locally conver manifolds, f € C°(M x N,L) and put
fo(y) == f(z,y). Then the map f¥: M — C®°(N,L),x — f, is continuous.
Proof. Step 1: (cf. [NeOl, Lemma III.2]) For Hausdorff spaces M, N and L and f €
C(M x N, L), the map fV: M — C(N, L)., is continuous: Suppose that f, € W(K,U) for some
compact subset K C N and some open subset U C L, i.e., {z} x K C f~1(U). Since f~1(U) is
an open subset of M x N and {z} x K C M x N is compact, there exists an open neighborhood
O C M of x such that O x K C f~}(U). This means that z € O C {p € M: f, € W(K,U)},
which proves the assertion.
Step 2: fV is continuous. For each & € N we have a natural product decomposition
T*H(M x N) = Tk(M) x T*(N), so that Step 1 implies the continuity of the maps

M O(TH(N), D))o, w e TH(E)
for each k € N. In view of the definition of the topology on C*°(N, L), this proves that fV is
continuous. ]

Lemma A.2. Let N and M be smooth manifolds.

(1) If E is a locally convez space and f € C°(N x M, E), then fV:N — C*°(M, E) is smooth.

(2) If M is compact (possibly with boundary) and K is a Lie group, then for each smooth map
fE€C®(NxXxM,K), the map f¥V: N — C*(M, K) is smooth with respect to the natural Lie
group structure on C*°(M,K).

Proof. (1) We may w.l.o.g. assume that N is an open convex subset of a locally convex space
X and identify T(N) with N x X . First we show that f¥ is C' with tangent map
TT(N) = CX(LT(E)), Un(0)(n) = Ty (f)0
whose continuity follows from Lemma A.1 and the smoothness of the tangent map
T(f):T(N)xT(M)—T(E).
Fix (z,h) € T(N). For a sufficiently small € > 0 the map
| —&,e[x[0,1] = C®(M, E), (t,u)— V(z+ uth,h)

is continuous by Lemma A.1. Therefore
1
|—e,e[= C*(M,E), t— / U(z + uth, h) du
0

is continuous, and so
1 1 1
}ir% g(fv(z +th) — f¥(2)) = }ir% U(z + uth, h) du = / U(z,h) du=T(x,h).

Thus T(fV)(z,h) = ¥(z, h), and the continuity of ¥ implies that fv is C*.

Applying this argument to the tangent map T'(fV), we see that T(fV) is also C!, so that
fY is C?. Proceeding inductively, it follows that fV is smooth.

(2) To see that fY is smooth in a neighborhood of some ng € N, it suffices to prove the
smoothness of the map n — f¥(ng)~1fV(n), so that we may assume that fV(ng) = 1.

Let (¢r,Uk) be a t-chart of K and (¢,U) the corresponding C*° (M, £)-chart of the
group C*(M, K), given by

U:=C*(M,Ug) and ¢(§) =pgof
(cf. Theorem 1.3). Then the continuity of fV implies that f¥ maps a neighborhood Uy C N of
ng into U, we may assume that f(N x M) C U, and we have to show that @ o fV |y, is smooth.
Since
(po f7)n)(m) = ek (f(n,m)) = (¢x o f)"(n)(m),

we have po f¥ = (g o f)V: N — C°°(M,¥), and the smoothness of this map follows from (1).m
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Lemma A.3. Let K € {R,C}, N be a locally convexr smooth K-manifold, M a finite-
dimensional smooth K-manifold (without boundary in case K = C ) and E a topological K-vector
space. Then the following assertions hold:

(1) For K=R, amap f: N — C®°(M,E) is smooth if and only if the map

fANxM—E, f*n)(m):= f(n,m)

is smooth. The map ¥:C°(N,C>®(M,E)) —» C®(N x M, E), f — f" is an isomorphism
of topological vector spaces.

(2) For K=C, amap f: N - O(M,E) is holomorphic if and only if f” is holomorphic. The
map V:O(N,O(M,E)) — ON x M, E), f — f" is an isomorphism of topological vector
spaces.

Proof. [Gl04, Prop. 12.2] directly implies (1). To verify (2), we first observe that the Cauchy

Formula implies that on the closed subspace O(M, E), uniform convergence on compact subsets

implies uniform convergence of all partial derivatives on compact subsets. Hence the inclusion

map

O(M,E) — C=(M, E)

is continuous and therefore a topological embedding. In this sense the compact open topology on
O(M, E) coincides with the C-smooth compact open topology, which is used in [Gl04]. Therefore
(2) follows from [G104, Prop. 12.2] for K = C or by observing that the map ¥ in (1) maps the
closed subspace O(N, O(M, E)) of C*(N,C>(M, E)) homeomorphically onto O(N x M, E).m

Lemma A.4. Let Ey and Fy be locally convex spaces, U; C E; open subsets, and p:Uy — Us
be a smooth map.
(1) The map

i C(M,Uy) — C=(M,Us), frpof

18 continuous.
(2) If, in addition, M is compact or U; = E; for j = 1,2, so that the subsets C*°(M,U;) are
open in C(M, E;), then the map @. is smooth.
(3) If, in addition to the assumptions in (2), E1 and Es are complex and ¢ is holomorphic,
then @, is holomorphic.
Proof. (1) The continuity of ¢, follows directly from the definition of the topology and the
continuity of left compositions with respect to the compact open topology.
(2) Assume that M is compact or U; = E; for j = 1,2. In view of Lemma A.2, the
smoothness of ¢, follows from the smoothness of the corresponding map

COO(Mle)XM*)UQa (f,m)Hcp(f(m)):gpoev(f,m),

where ev: C°(M,U;) x M — U; is the smooth evaluation map (Proposition 1.2).
(3) In view of (2), it remains to show that the differentials of ¢, are complex linear, which
follows from

d(p:)(f)(€) (@) = dp(f (2))&(x). .

The following two lemmas collect some technical smoothness properties of regular Lie
groups.

Lemma A.5. For a connected finite-dimensional smooth manifold M (with boundary) and a
reqular Lie group K with Lie algebra €, the following assertions hold:
(1) The map Evolg: C*([0,1],8) — C([0,1], K) is a diffeomorphism with

TO(EvolK)(f)(t):/O &(s)ds  and TO(eVOIK)(f):/O &(s)ds.

Its inverse is
5:C2([0,1], K) — C>°([0,1],8)  with Ty(6)(¢) =¢&'.
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(2) The action of K on QY(M,®) by Ad(k).c := Ad(k) o « is smooth.
(3) The multiplication map Q(M,R) x ¢ — QY (M, 8), (o, z) — - x is continuous.

Proof. (1) First we show that Evolg is smooth. For v € C*([0,1], K) and ~s(¢t) := v(st) we
have d(s)(£) = s0(2)(st) = S(s,6(1))(), where

S:[0,1] x C°*°([0,1],8) — C>°(]0,1],8), S(s,&)(t) = s&(st)
is smooth by Proposition 1.2 and Lemma A.2. For §(v) = £ we have
Evolg (§)(s) = 7(s) = 7s(1) = evolx (S(s, ),
showing that the map C*°([0,1],€) x [0,1] — K, (&, s) — Evolg (§)(s) is smooth, and this implies
that Evolgk is smooth (Lemma A.2).

To see that ¢ is smooth, we write 0(v)(t) = kx(7/(t)). Since kg is smooth, the assertion
follows from the smoothness of the homomorphism of Lie groups

C>([0,1], K) — C*>([0,1], TK), v+,

Lemma A.2 and the smoothness of the evaluation map of C*°([0,1],TK) (Theorem 1.3).
From 0 o Evolg = idge([o,1],¢) and the smoothness of Evoly , we derive that

T1(6) o To(Evolg ) = idgee([0,1,¢) -

Using the Chain Rule, we obtain directly T7()(€)(t) = £'(t), and since T1(J) is injective on
Ce°(]0,1],8), the tangent space of C2°([0,1], K) in the constant function 1, we get

Ty (Bvolie) (€)(t) = /0 £(s) ds.

Now evy o Evolg = evolk leads to the asserted formula for Tp(evoly).

(2) Since Q!(M, ) is a closed subspace of C>°(T'M, ¢), it suffices to observe that the action
of K on C>*°(TM,¢), given by k.f := Ad(k) o f is smooth. In view of Lemma A.2, it suffices to
show that the map

KxC®(TM,e) xTM — ¢, (k, f,m)— Ad(k).f(m)

is smooth, which in turn follows from the smoothness of the adjoint action of K on £ and the
smoothness of the evaluation map of C*°(T'M, ) (Proposition 1.2).

(3) With the same argument as in (2), it suffices to show that

C®(TM,R) x ¢t — C>*(TM,t), (f,x)—f-x
is smooth. This in turn follows from the smoothness of the map
C(TM,R) x TM xt — ¢, (f,v,2)— f(v) -z=-ev(f,v) x

(Proposition 1.2, Lemma A.2). ]
Lemma A.6. Let M be a connected finite-dimensional smooth manifold (with boundary) and
K a regular Lie group with Lie algebra €.
(1) If v:10,1] — M s a piecewise smooth curve, then the map

QYM,¢) — K, o~ evolg(y*a)

is smooth.
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(2) Let (p,U) be a chart of M for which o(U) is a convex 0-neighborhood and ~4(t) :=
o (tp(z)). Then the map

Q' (M, e) xU — K, (a,z) — evolg(via)

s smooth.
(3) For £ € C(I x M,¥) put £™(t) :=&(t,m). Then the map

v IxM— K, (t,m)— Evolg(£™)(t)

is smooth with

)u(m) = (6 m) ™" St m) = €7(),

and the map
evoly: C®(I,g) x M — K, (&,m) — evolg (&™)

s also smooth.

Proof. (1) This follows from the smoothness of evolx and the fact that for each smooth path
n:[a,b] — M the map

QN (M, 8) — C=([a,b],8), arn*a=aocTy

is continuous and linear, hence smooth.
(2) Since K is regular, we have to show that the map

QYM,e) x U — C>([0,1],€), (a,2)+— i
is smooth. In view of Lemma A.2, this follows from the smoothness of the map
QUUE x U X [0,1] > & (a,0,) = (120)i = a0y 7alt)
which is a consequence of the smoothness of the evaluation map of C*°(TU,t) (Proposition I.2)

and of the map U x [0,1] — T M, (x,t) — ~.(t).
(3) First we recall from Lemma A.3 that for g := C°°(M,€) we have

C®(I,g9) 2 C(I x M, %) = C®(M,C*(I,¢?))
as topological vector spaces. In this sense, we consider each £ € C*°(I,g) as a smooth map

Ix M — ¢. In particular, £™ € C*(I, ), evolg (é™) € K, and the map £V: M — C>°(I,€),m —
&™ is smooth. Hence the smoothness of v follows from

7(t,m) = Evolg (£™)(t) = evo(Evolg (£Y(m)),t) = evo((Evolg of") x id;)(m,t)

because the evaluation map of C*°(I, K) is smooth (Theorem I1.3). The formula for d(y) follows
immediately from the definition.
To see that evolg is smooth, we first recall that evolgx is smooth. Hence it suffices to

observe that the map

C™(I x M, &) x M — C=(1,¥), (&,m)— &™

is smooth because it corresponds to the evaluation map of the space C*°(M,C>(I,¥)) (cf.
Proposition 1.2). ]
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