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Abstract An original set-up is used to study the adhesive properties of two hemispherical soap bubbles put into con-
tact. The contact angle at the line connecting the three films is extracted by image analysis of the bubbles profiles. After
the initial contact, the angle rapidly reaches a static value slightly larger than thestandard120° angle expected from
Plateau rule. This deviation is consistent with previous experimental and theoretical studies: it can be quantitatively
predicted by taking into account the finite size of the Plateau border (the liquidvolume trapped at the vertex) in the free
energy minimization. The visco-elastic adhesion properties of the bubblesare further explored by measuring the devia-
tion∆θd(t) of the contact angle to the static value, as the distance between the two bubblesis sinusoidally modulated.
It is found to linearly increase with the imposed displacement amplitude. Thein-phase and out-of-phase components of
∆θd(t) with the imposed modulation frequency are systematically probed over a large range of frequencies.It reveals
a transition from a viscous to an elastic response of the system with a crossover frequency of the order0.2Hz. Inde-
pendent interfacial rheological measurements, obtained from an oscillating bubble experiment, allow us to test several
modes of deformation of the surfactant monolayers. The relevance of such adhesive dynamic properties to the rheology
of foams is briefly discussed using a perturbative approach to Princen2D model of foams.

PACS. 47.55.D- Drops and bubbles – 47.55.dk Surfactant effects – 83.80.Iz Emulsions and foams

1 Introduction

Liquid foams are concentrated dispersions of gas bubbles ina
liquid matrix. Their mechanical properties have been the fo-
cus of a number of studies in the recent past [1,2,3]. Liquid
foams exhibit quasi-elastic behavior up to a finite yield stress
or strain beyond which they flow like shear-thinning viscous
liquids. Most of the elastic response originates from the vari-
ation of the total film area induced by an applied shear. The
resulting shear modulus scales asµ = 2γ/R where2γ is the
surface tension of the soap film, andR the average radius of
the bubbles. The dissipation is controlled, in major part, by ir-
reversible rearrangements of the bubbles (T1 events).

Other mechanisms of energy storage and dissipation how-
ever contribute to the viscoelastic moduli of the foam. They
have been thoroughly discussed theoretically by Buzza and Schwartz
[4,5]. One is associated with the interfacial viscoelasticity of
the soap films, which can be independently measured using
a wide range of experimental techniques (oscillating barriers
[6,7], thin-film interfaces [8], oscillating bubble/drop [9,10]).
They all consist in submitting a single mono- or bi-layer to
an oscillating stretching while measuring the evolution ofthe
surface tension. The second source of dissipation takes place
in the Plateau borders, the region of the foam where the films
meet and where most of the liquid content is trapped. As the
foam is strained, the Plateau borders move relatively to thesoap
films to which they are connected, inducing dissipative viscous
flows. This viscous drag force has been extensively studied but

only in a situation where the Plateau border is in contact with a
solid surface [11,12,13,14].

Relating these local measurements (interfacial rheology and
Plateau border viscous drag force) to the global rheology of
the foams is tricky. First, it is difficult to actually separate the
different modes of dissipation. In a real foam, Ostwald ripen-
ing (the disproportionation of bubbles induced by gas diffusion
through the films) induce T1 events even in the absence of an
imposed strain. Second, due to the many modes of accessible
deformation, the motion of the vertices in a foam under sim-
ple strain is not affine. Describing their trajectory becomes ex-
tremely difficult when the foam is polydisperse.

Beyond these issues, one can also question the relevance of
measurements performed with an isolated film to describe the
behavior of a macroscopic foam. In all the techniques currently
used to estimate the rheological properties of the films, thesur-
factant layers are confined by solid barriers. In contrast, films
in a real foam are bounded by fluid Plateau borders which may
allow the transfer of surfactants from one side to another. In the
case of Plateau border viscous drag, the situation is even worst:
the resistance to motion is measured by dragging a Plateau bor-
der along a solid wall, which imposes a very different hydro-
dynamic boundary to the flow as compared to a self supported
Plateau border.

One attempt to extract information about local dissipation
within a macroscopic foam has been recently proposed by Du-
rand and Stone [15]. They optically studied the dynamic of T1
events in a confined 2D foam (a monolayer of bubbles squeezed
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between two solid plates) and were able to relate the duration
of the plastic process with intrinsic rheological properties of
the soap films. This experiment has two limitations: first, the
friction of the Plateau borders on the confining walls induce
viscous dissipation. Second, the use of T1 events as the defor-
mation mechanism does not allow one to modulate in a con-
trolled way the dynamics of local deformation of the set of
bubbles (although this might actually be feasible with minor
modification of the authors’ experimental procedure).

In this article, we propose a new approach to study local
elastic and dissipative processes in a configuration more di-
rectly amenable to 3D foams. Two hemispherical bubbles are
put into contact and their relative distance is modulated atvar-
ious frequencies. In this configuration, the central film sepa-
rating the two bubbles is bounded by a self-supported Plateau
border whose radius oscillates with the distance between the
two bubbles. We focus on angular measurements at the contact
line which provides most of the relevant information concern-
ing the elastic and dissipation processes.

The article is organized as follows. In part 2, the exper-
imental set-up, the optical measurements and image analysis
are detailed. The static results of contact angle measurements
are presented in part 3, together with data obtained from a nu-
merical simulation. Part 4 focuses on dynamic properties of
adhesion and also presents the results of standard rheological
interfacial measurements performed on single films using the
same soap solution. These results are discussed in part 5: two
different models of monolayers stretching are discussed and
their predictions are confronted to the angular measurements.
In part 6, the application of these angular measurements to the
rheology of foams is discussed within the scope of Princen 2D
hexagonal model [16]. Conclusion and perspectives are drawn
in part 7.

2 Experiments

An hemispherical bubble is formed by blowing air at the cone-
shaped end of a stainless steel tube, of external radiusR =
7mm, filled with a soap solution (figure 1). The liquid in the
tube is connected through a porous disk (Duran, diameter2.8mm,
height 5mm) to a reservoir. Once the bubble is formed, the
reservoir is lowered a few centimeters to impose a small nega-
tive pressure difference between the liquid and gas phases.The
disk porosity is fine enough (poresize 10-16µm) to prevent the
bubble from being sucked down. The entire device is enclosed
in a glass cell (40×40×40cm) to limit evaporation and increase
the bubbles lifetime. In all the experiments, the soap solution is
made of tetramethyltetradecylammonium bromide (TTAB pur-
chased from Sigma-Aldrich) 3g/L in a water/glycerol mixture
(volume ratio of 75/25).

This device is used in two types of experiments. In single
bubble experiments, a section of the air tube is squeezed be-
tween two parallel plates whose separation can be sinusoidally
modulated using a DC motor (Newport, LTA-HS). A pressure
sensor (Validyne, DP103) allows us to simultaneously monitor
the pressure drop between the inside and outside of the bubble.
In the double bubble setup, a similar device is placed on top of
the first one (figure 1) and their axis are carefully aligned using

two cameras. The top device is mounted on a vertical displace-
ment stage attached to the DC motor.

air needle

Vitton joints

7 mm

porous media

glass cell

light source

Figure 1. Schematic of the experimental double bubble device.

The set-up is illuminated by a diffusive light source (Schott,
Backlight). The shadow image of the bubbles is captured on
a CCD-camera equipped with a telecentric objective (Navitar,
6X) to allow accurate angular and length measurements. De-
pending on the studied frequency, two cameras are used: a Pul-
nix TM-1320 CL and a Mikrotron MC1310 with frame rates
up to 15 frames/s and 240 frames/s respectively. Image capture
is synchronized with the motor motion and pressure recording.
The bubbles profiles are extracted by image analysis with a sub-
pixel resolution using the software IDL (see figure 2(c)). The
symmetry axis is determined and defines the cylindrical coordi-
nates(r, z). For both bubbles, the profilesr(z) are fitted to the
Laplace equation which relates the local curvature1

R′
+ 1

R′′
to

the pressure drop∆P across the film:

∆P = 2γ(
1

R′
+

1

R′′
) (1)

r(z)
√

1 + r′(z)2
=
∆P

4γ
r(z)2 + λ (2)

where2γ is the surface tension of the soap film; the parame-
ter λ results from the integration of equation (1) and is set by
the boundary conditions. For each bubble, the set of parame-

ters
(

∆P
4γ
, λ

)

is extracted from the best fit of the region of the

profiles outside the Plateau borders. The prolongations of the
reconstructed profiles intersect in the Plateau border and define
a contact radiusrc and a contact angleθ as shown in figure
2(c). Similarly, the three interfaces which delimit the Plateau
border obey the same equation (2) with the term∆P

4γ
replaced

by ∆P
2γ

since these are single air/water interfaces. Here∆P

corresponds to the pressure difference between the liquid in
the Plateau border and the gas phase (bubble or atmosphere).
By fitting the external profile, we extract the set of parameters
(

∆P
2γ
, λl

)

and reconstruct the Plateau border (see figure 2(d)).
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Figure 2. Images of a double bubble static adhesion experiment (a)
before contact and (b) just after contact. Results of the image anal-
ysis: (c) external profiles fitted by the Laplace equation from which
the central film radiusrc and contact angleθ are extracted, (d) recon-
structed Plateau border.

3 Static correction to Plateau rule

In this part, we report on static measurements of the contact
angleθ. Two bubbles are brought into contact at vanishing low
speed. Time0 is defined by the image of the first contact. The
time evolution of the central film radiusrc and contact angleθ
at short times are shown on figure 3. It exhibits a transient of
a few seconds during which both parameters significantly vary.
The first∼ 0.1s corresponds to the rapid formation of the cen-
tral film: only the end of this phase can be captured even with
the fast camera. During the next few seconds, the radius and
contact angle keep increasing. This second stage is associated
with the capillary drainage of the freshly formed film toward
the Plateau border which allows pressure equilibration within
the liquid phase. This process can be monitored by measuring
the evolution of the Plateau border height (see figure 3). Fort
& 10s, the system is equilibrated (figure 4) but a slow decay
of rc is still observable due to gas diffusion through the films.
This process does not affect the value of the contact angleθ
which remains constant until the bubbles breakup (after a few
minutes).

We defineθeq as the value of the contact angle for time
t > 10s. For all experiments,θeq is found to be larger than
120°as predicted by Plateau rule [17]. Such a deviation has
been previously observed in various experiments [18,19,20].
In the last reference, similar measurements were performedon
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Figure 3. Short-times evolution of the contact radius (circles) and the
Plateau border height (squares) as a function of time for two contact-
ing bubbles. During the first 0.2s, the fast rise of the contact radius
conrresponds to the initial growth of the central film. After 0.2s, the
evolution of the contact radius is to be compared to the one of the
PLateau border height. Both series of measurements are adjusted by
rising exponential fits of the typex0 +∆xe

t

τ (solid lines) and high-
light a characteristic timeτ of the order of 1s.
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Figure 4. Long-times evolution of (a) the contact angle and (b) the
contact radius as a function of the time during a contacting bubbles
experiment. After an initial growth, both series reach constant values,
the contact angle value being slightly higher than the predicted 120°
from the Plateau rule. The decay of the contact radius after 60s is
attributed to the gas diffusion outside the bubble. The experiment ends
up when one of the two bubbles break.

a single catenoid separated by a soap film. The contact angle
between both catenoidal films was found to grow linearly with
the ratiorP B

rc

whererPB is the Plateau border curvature radius
andrc the central film radius.

This deviation can be qualitatively understood by first con-
sidering an infinitely dry foam. In this case, the force equilib-
rium at the contact line imposes the three films to meet at120°.
Decorating the line with a Plateau border reduces the total area
of the films by a quantity2Sdry − SPB [21] which is a (neg-
ative) decreasing function of the Plateau border volume. The
presence of a Plateau border is thus associated with a negative
line tension. In the specific case of the double bubble, this effect
has been described by Fortes and Teixeira [22]. They predicta
contact angle in the presence of Plateau border given by:

θeq = 120 +
180

π

1

4πr2c
√

3
(2Sdry − SPB) (3)
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In order to test this expression, several contacting bubbles
experiments are performed with different values of contactra-
dius and Plateau border size. For each of them, the final value
of the contact angle as well asSdry−SPB are measured. Figure
5 shows the measured angleθeq as a function of the predicted
result obtained from equation (3).

120
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θ
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Figure 5. Experimental static contact angleθeq as a function of the
angle predicted by Fortes law (equation 3) for various values of the
radiusrc and the Plateau border volume.

This result was independently confirmed by simulations of
the double bubble experiment carried out using Surface Evolver
[23]. This software allows one to calculate minimal surface
configurations under a given set of conditions. Two contacting
bubbles of fixed volume are generated with different volumes
of the Plateau border. After several minimization cycles, the
equilibrated configuration is treated the same way as for the
experiments. Figure 6 shows the numerical contact angle ver-
sus the predicted contact angle value for various Plateau border
volumes.
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Figure 6. Numerical contact angle obtained from Surface Evolver
simulations as a function of the angle predicted by Fortes law (equa-
tion 3) for various values of the imposed Plateau border volume.

The agreement of the experimental and numerical results
with Fortes and Teixeira’s model validates the decoration law

for the double bubble. It also demonstrates the accuracy of the
angle measurement procedure. In the rest of the article, expres-
sion 3 will be used in order to calculate, at any moment, the
equilibrium contact angleθeq(t). This reference angle will be
subtracted from the measured angle in order to extract the dy-
namic deviation∆θd = θ(t) − θeq(t).

4 Dynamics of adhesion

In order to probe the dynamic response of the contact angle,
a sinusoidal displacement of the upper tube is applied at con-
trolled frequencies in the range 0.01-20 Hz. The double bubble
is prepared as previously described. Successive contacts and
separations of the bubbles allow one to progressively reduce
the volume of liquid trapped in the Plateau border. All exper-
iments are performed with a contact radiusrc ≈ 2mm and a
Plateau border heighthPB ≈ 0.2mm<< rc. Figure 7 shows
the typical time evolution ofrc(t) andθ(t). The corrected con-
tact angle,θeq(t) calculated from equation 3, varies between
120.50° and 120.56°. Therefore, the main contribution to the
observed oscillation ofθ(t) is due to dynamic effects. The evo-
lution of these two parameters are decomposed as:

rc(t) = r0c +∆rc(ω)cos(ωt) (4)

∆θd(t) = ∆θ(ω)cos(ωt+ φ(ω)) (5)
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Figure 7. Evolution of the contact radius (squares) and the contact an-
gle (circles) as a function of the time over an oscillating period for an
oscillating amplitude of0.2mm at a frequency of3Hz. The error bars
are calculated from the uncertainties on the fitting parameters (equa-
tion 2). Typical standard deviations are equal to7µm for the contact
radius and0.2° for the contact angle.

It should be noted thatr0c is not strictly constant : it slightly
decreases as a consequence of the gas diffusion (figure 4(b)).
To precisely measurerc(ω),∆θ(ω) andφ(ω), rc(t) and∆θd(t)
are therefore filtered to extract the Fourier component associ-
ated with the imposed frequency. Figure 8 shows the depen-
dence of∆θ with ∆rc/r

0

c for three different oscillation fre-
quencies. It shows that the contact angle response is linearwith
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the imposed solicitation. This allows one to define two moduli
associated with the in-phase and out-of-phase responses ofthe
contact angle to the modulation of the contact radius:
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Figure 8. Linearity of the amplitude of the dynamic angle deviation
with the amplitude of the normalized contact radius variations at dif-
ferent frequencies. Squares:0.2Hz. Circles:1Hz. Diamonds:5Hz.

G′(ω) = −
∆θ(ω)

∆rc(ω)
r0ccos(φ(ω)) (6)

G′′(ω) =
∆θ(ω)

∆rc(ω)
r0csin(φ(ω)) (7)
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Figure 9. Evolution of the angular elastic and viscous moduli, esti-
mated from equation (6) and (7), with the frequency of the oscillation.
Closed circles: elastic modulus. Open circles: loss modulus.

Figure 9 shows the evolution ofG′ andG′′ as the frequency
is varied over 3 decades. It reveals a transition from a viscous
regime at low frequency to an elastic regime at high frequency,
with a crossover around 0.2Hz.

The existence of an in-phase component of the dynamic an-
gle signal cannot be accounted for by dissipation in the Plateau

border alone. In contrast, it can be understood by considering
the viscoelastic behavior of the soap films [24,15]. As the dis-
tance between the bubbles are modulated, the films area varies
which in turn induces a variation of their surface tension. In
Gibbs approach, the surface tensionγ(t) associated with a si-
nusoidal modulation of the film surface areaS(t) = S0 +
∆Scos(ωt) is written, in the limit∆S/S0 ≈ 0:

γ(t) = γ0 + E′(ω)
∆S

S0
cos(ωt) + E′′(ω)

∆S

S0
sin(ωt) (8)

whereẼ(ω) = E′(ω) + iE′′(ω) is the Gibbs complex modu-
lus [25,26]. This parameter can be independently evaluatedby
sinusoidally modulating the volume of a single bubble while
recording its radiusR and the internal pressureP , from which
its surface tension2γ = P/2R and area can be calculated. The
frequency diagram of both moduli are plotted on figure 10.
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Figure 10. Evolution of the Gibbs elastic and viscous moduli with
the frequency of the oscillation for an oscillating bubble experiment.
Closed squares: elastic modulus. Open squares: viscous modulus. The
dispersion is mainly due to uncertainties on the measurement of the
internal pressure.

5 Interpretation

In this section, we attempt to relate the double-bubble angular
measurements to the film rheological moduli obtained from the
single oscillating bubble experiment. This requires to describe
the evolution of each monolayer that form the double bub-
ble system. Two situations are successively examined which
should correspond to small and large values of the ratioµs/µlh,
whereµs is the film viscosity,µl is the solution bulk viscosity
andh is the thickness of the films.

5.1 Adhesive monolayers

Whenµs << µlh, surfactant monolayers are adhesive: the vis-
cosity of the intercalated fluid layer inhibit any relative motion
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between them. In this situation, one needs to consider sepa-
rately the central film, characterized at each time by its area
and surface tension (S1, 2γ1), and the two outer films similarly
characterized by (S2, 2γ2)1. Within this hypothesis, the evolu-
tion of γi andSi are related through equation 8. Measurements
of the different surface areas in both the experiments and the
Surface Evolver simulations show thatS1(t) + S2(t) is a con-
stant equal to2πR2 for initially hemispherical bubbles. The
variations∆Si and∆rc (with respect to their equilibrated val-
uesSi andrc) are thus simply related, to first order, through:

∆S1

S0

1

=
2∆rc
r0c

(9)

∆S2

S0

2

=
2r0c∆rc

2R2 − r0c
2

(10)

As the distance between bubbles is modulated, the three
films experience cycles of compression and stretching whichin
turn modulate their surface tensions2γ1 and2γ2 (figure 11(a)).
Defining 2∆γ1 and 2∆γ2 as the instantaneous deviations to
the equilibrium surface tension2γ0, force equilibrium at the
intersection point between the three interfaces yields (inthe
limit ∆θd << 1):

√
3

2
γ0∆θd(t) = ∆γ1(t) −∆γ2(t) (11)

(a) (b)

Figure 11. Models of compression/stretching of the monolayers for
a double bubble submitted to an oscillating solicitation. (a) When
µs << µlh, the monolayers are adhesive and the three films are
stretched independently. (b) Whenµlh << µs, the monolayers are
able to slide over one another. Only the outer monolayer is actually
stretched since the internal monolayer area remains constant to the
first order.

By combining equations (6), (7), (8), (10), and (11), one
can predict, within these hypothesis, the expression ofG′ and
G” as a function of the Gibbs moduli as:

1 the system is assumed to be symmetric, which is the case in all
experiments, so that the outer film have identical characteristics

γ0G
′ = f(r0c , R)E′ (12)

γ0G
′′ = f(r0c , R)E” (13)

with

f(r0c , R) =
2
√

3

4R2

(2R2 − r0c
2)

(14)

5.2 Sliding monolayers

A different mode of surface deformations is expected when
µs >> µlh. In this case, the relatively low viscosity of the
interstitial fluid allows the surfactant monolayers to slide over
one another (see figure 11(b)). Under this hypothesis, the sur-
face tensions on each side of the outer soap films can be dif-
ferent, and are denotedγint andγext respectively. As indicated
before, over the whole range of solicitations explored, thetotal
surface area of each bubble is found to be constant so that the
internal monolayer does not experience any significant com-
pression or stretching. It yields thatγint is constant equal to
γ0. The contact angle deviation∆θd thus only results from
the modulation ofγext associated with the compression and
stretching of the external monolayer, so that:

√
3γ0∆θd(t) = ∆γext(t) (15)

Following the same scheme as before, the associatedG′

andG” can be expressed as in equations (12) and (13), with a
geometrical factorf now equal to:

f(r0c , R) =
1
√

3

2r0c
2

2R2 − r0c
2

(16)

Figure 12 shows the frequency diagram ofE′ andE” to-
gether withγ0G

′/f andγ0G”/f calculated from the same set
of data as in figure 9, within both (a) the adhesive and (b) the
sliding monolayers hypothesis. It appears that none of these
models correctly captures the viscoelastic adhesive properties
of the bubbles. Thehe stored and dissipated energy in the os-
cillating double bubbles experiments are overestimated inthe
first model and underestimated by the second one.

Bulk and surface viscosities for the same solution (TTAB
in a water/glycerol mixture) have been determined by Pitoiset
al. [27]. They foundµl = 2.10−3Pa.s andµs = 2.10−8kg.s.
Estimating the film thickness to be of the order of a fewµm,
this yields a ratioµlh

µs

of the order of a few tenth, which is not
incompatible with an intermediate regime of film deformation.

6 Application to a 2D model foam

In this part, the consequence of such dynamic effects on the
bulk rheology of foams is discussed. We attempt to estimate
how the angular measurements provided by the double bubble
set-up can be relevant to predict the contribution of the films
(and Plateau borders) to the foam rheological properties. Our
approach will be limited to a perturbative version of Princen 2D
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Figure 12. Comparison of the Gibbs moduliE′ (closed squares) and
E”(open squares) obtained from the oscillating bubble experiments,
with γ0G

′/f (closed circles) andγ0G”/f (open circles). The later
correspond to the angular moduli measured with the double bubble ex-
periments and normalized by the geometrical parameterf(r0c , R). (a)

Model of adhesive monolayers:f(r0c , R) = 2√
3

4R2

(2R2−r0
c

2)
(b) Model

of sliding monolayers:f(r0c , R) = 1√
3

2r0

c

2

2R2−r0
c

2 .

regular hexagonal model. Figure 13(a) shows the initial config-
uration, wherer is the initial (and uniform) length of the films.
As a reference situation, we consider the quasistatic deforma-
tion of the structure associated with an imposed strainǫ along
the horizontal direction. Taking into account Plateau ruleand
the surface conservation of each cell, Princen derives the an-
gle Ψ of the initially vertical films as well as the film length
variationdr as a function ofǫ (see figure 13(b)):

Ψ =
1

2
ǫ (17)

dr

r
=

√
3

2
ǫ (18)

The shear stress on a horizontal line (indicated in figure
13(b)) can be evaluated by considering that each film crossing
this plane has a contributionF = 2γ sin(Ψ). Since the width
of a unit cell isr

√
3, the stress is written:

ψ

r r-dr

r+dr

r

(a) (b)

Figure 13. Princen model for the deformation of a 2D hexagonal
foam. (a) Initial configuration. (b) After a small quasistatic deforma-
tion, the angles of the Plateau border remain equal to 120°. To the first
order, the vertical films length remains unchanged but their orienta-
tion change by an angleψ. The other films length are modified by a
quantitydr proportional to the applied strain.

σ = F =
2γ

r
√

3
sin(Ψ) ≈

2γ

r
√

3
Ψ (19)

This allows one to define a shear modulus:

µ =
σ

2ǫ
=

√
3γ

2r
(20)

120 +∆θd

ψ+∆θd

Figure 14. Effect of the dynamic contact angle correction on the de-
formation of a 2D hexagonal structure. Contrary to the classical qua-
sistatic deformation (dashed line), the angle of the central Plateau bor-
der is no longer 120°. This deviation induces an additional rotation of
the vertical line of an angle equal to the dynamic correction∆θd.

The system is now submitted to an oscillating strainǫ =
ǫ0 cos(ωt). At finite oscillating frequency, one expects the Plateau
rule to no longer be obeyed, and a correction∆θd(t) has to be
added to the angleΨ (see figure 14). By analogy with the dou-
ble bubble measurements, we defineG′ andG” such as:

∆θd(t) = G′(ω)
dr

r
cos(ωt) +G′′(ω)

dr

r
sin(ωt) (21)

In the limit where the structure is weakly perturbated with
regards to its equilibrium configuration (i.e.∆θd << Ψ ), the
expression ofdr/r provided by Princen (equation 18) remains
valid to the first order. Substitutingψ by ψ +∆θd in equation
19 yields a corrected foam modulus which complex form now
writes:
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G̃ = µ[1 +
√

3(G′ + iG”)] (22)

It should be noticed that this result is independent of the
physical origin of the viscoelastic process which setsG′ and
G”. With the solution used in the present study, it appears that
the viscoelastic behavior of the films is responsible for theob-
served deviation to Plateau rule. But one might expect for other
systems that the dominating effect is the viscous dissipation
localized in the Plateau border. Regardless of this underlying
mechanism, the frequency diagram provided by the double bub-
ble angular measurement directly provides the contribution of
the film and Plateau border rheology to the foam modulus.

One limitation of this approach however needs to be under-
lined. Princen model of foam elasticity is based on a perfectly
regular network. In a real foam,r is largely distributed and one
expectsG′ andG” to depend on the relative lengths of the films
connecting the given vertex. One is actually confronted with
the same averaging problem when trying to evaluate the macro-
scopic modulusµ of a disordered film network. This structure
parameter should control the prefactor ofG′ + iG”. But this
limitation should still allow to compare different systems(with
different film rheological properties) provided that the foam
structure is identical (same polydispersity).

Conclusion

A device has been developed to measure the contact angle be-
tween two soap bubbles in static and dynamic adhesion. This
set-up allows us to confirm the existence of a negative line ten-
sion associated with the presence of a Plateau border at the
intersection of three soap films: the static contact angle issys-
tematically larger than 120° and the deviation amplitude can be
quantitatively predicted given the central film radius and vol-
ume of the Plateau border. By varying the distance between
bubbles, one can modulate the radiusrc of the central film.
This induces a further deviation of the contact angle∆θd which
maximum value scales linearly with the amplitude of∆rc/rc.
The amplitude and phase shift of∆θd with regards to∆rc/rc
has been systematically studied as a function of the modulation
frequency.

The resulting phase diagram exhibits a transition from a
viscous to an elastic regime with a crossover at a frequency of
order0.2Hz. This behavior of the double bubble cannot be de-
duced in a straightforward way from measurements of the film
rheology obtained by single oscillating bubble measurements.
In particular, considering the three films in the double bubble
experiment as being independently stretched leads to overesti-
mate the stored and dissipated energy in the oscillating exper-
iment. This indicates that the solicitation to which monolayers
are submitted in a foam are not equivalent to what is imposed
in standard film rheometers. We suggest that this discrepancy
results from the fact that self-supported Plateau borders do not
act like solid barriers and that they may allow partial transfer
of surfactant from one side to another. The limiting case, which
was examined also, corresponds to the situation in which sur-
factant layers are free to slide over one another.

In order to test this hypothesis, we intend to vary the rela-
tive viscosity of the surfactant monolayer and the bulk solution.

Surface viscosity can be increased by adding dodecanol in the
solution. In contrast, the interstitial film can be renderedmore
viscous by increasing glycerol concentration or by adding sol-
uble polymers such as PEO (Polyethylene Oxide).

We have illustrated the possibility to use these angular mea-
surements as a way to predict the contribution of the films and
vertices to macroscopic foam rheology. The proposed approach
is based on a perturbative version of Princen 2D regular foam
model. It is therefore extremely naive and will need further
work in order to be adapted to 3D foams and to take into ac-
count structural disorder. However, it suggests that this type of
geometrical measurements might provide most of the relevant
information. In particular, it integrates the different modes of
energy dissipation, including the viscous drag associatedwith
the Plateau borders motion. In order to test these ideas, such
dynamical adhesion data need to be confronted to standard rhe-
ological measurements on 3D foams for various chemical so-
lutions.

We woud like to thank K.Brakke for his help with Surface Evolver
simulations as well as I. Cantat and J.-F. Géminard for fruitful discus-
sions.
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