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We consider the hybrid set-up formed by a metallic dot, capacitively coupled to a superconducting island S
connected to a bulk superconductor by a Josephson junction.Charge fluctuations in S act as a dynamical gate
and screen the electronic repulsion in the metallic dot, yielding instead a net attraction. As the offset charge of
the metallic dot is increased, positive steps (+2e) skipping charge numbers appear, followed by negative ones
(−e) signaling the occurrence of a negative differential capacitance. A circuit set-up with a detection scheme is
proposed, as well as potential applications in nanoelectronics.

PACS numbers: 73.23.Hk, 74.78.Na

The electronic Coulomb repulsion is central to the physics
of nanostructures, as the source of single-electron charging ef-
fects. At low enough temperatures, when a small-capacitance
grain is weakly coupled to a metallic reservoir, the average
number of charges,nN , in the grain increases one by one
as the gate voltageVgN is continuously varied, leading to
a Coulomb blockade staircase [1]. Plateaus in the charging
curve indicate an insulating-like regime, where the chargeis
stable, with zero differential capacitanceCdiff = e dnN

dVgN
. On

the contrary, steps signal a metallic-like regime where two
successive charge states are nearly degenerate, thusCdiff is
very large. Such features have also been studied in supercon-
ducting islands where charging steps involve electron pairs if
the superconducting gap in the island is larger than the charg-
ing energy [2], and single charges in the opposite case [3].
The study of charging patterns has been extended to double
islands, coupled by a capacitive tunnel junction. The islands
can be both normal metals [4, 5], or superconducting [6].

Hybrid metallic structures made of a superconductor and a
normal metal have been little explored in the Coulomb block-
ade regime. The present Letter addresses the system made of a
normal metallic dot (N), coupled to a superconducting island
(S) by a large capacitance. The S island is connected to a su-
perconducting reservoir by a Josephson junction (JJ), and acts
as a Cooper pair box experiencing pair number fluctuations.
The N dot is connected to a normal reservoir (Fig. 1). Here we
assume that electron tunneling between S and N is negligible;
therefore no proximity effect occurs in the N dot. We instead
focus on the charging properties of the N grain, as its gate
voltage is varied, under the influence of the S island which
plays the role of an auxiliary (and, as we will see, nonlinear)
gate. The main result of this Letter is that the Coulomb repul-
sion in N can be overscreened by the neighboring pair fluctu-
ations in S, and an effectivelocal attractionappears between
electrons added into N. As a corollary, certain charge states
are ”skipped” as the N gate voltage is varied. Moreover, the
charging curve becomes non-monotonous, displaying positive
steps (+2e) followed bynegativesteps (−e). The latter signal
a negativedifferential capacitanceCdiff in the N dot. The
attractive interaction is reminiscent of the so-called “negative-

U ” center in solids [8]. A related effect has been proposed
by Averin and Bruder for providing a controlled coupling be-
tween two superconducting charge qubits [9]. Notice that if
N instead was coupled to two reservoirs with a current flow-
ing through it, our set-up would be similar to that of a Cooper
pair box coupled to a single-electron transistor (SET). Thelat-
ter has been studied in great detail as a read-out device for a
superconducting (charge) qubit embodied in the S island [7].
In this case, contrary to ours, the coupling between N and S is
chosen to be very small in order to minimize the decoherence
due to backaction of the normal part of the device onto the
superconducting one.

FIG. 1: Schematic view of a normal grain (2DEG) coupled to a
Cooper pair box composed of a Josephson junction connectingsu-
perconducting reservoir 2 and island S gated by 10. For strong ca-
pacitive coupling (controlled by 3, 9), S imposes an attractive inter-
action among electrons tunneling between the normal island(N) and
its reservoir (defined by 7, 8). Detection is made by sweepingthe
gate voltage (4) and measuring the island voltages using quantum
point contacts for both N (5,6,7) and S (1,11,12).

The JJ connecting the S island to the reservoir has a Joseph-
son energyEJ and capacitanceCJ , and a gate imposes a
charge offsetQS = 2eNS = CgSVgS , with CgS ≪ CJ .
Symmetrically, the N island is connected to a normal reser-
voir by a tunnel junction, with one-electron tunneling rateΓ
and capacitanceCN , and experiences a gate offsetQN =
eNN = CgNVgN , with CgN ≪ CN . Most importantly, the
islands N and S are coupled together by a large capacitance
C0 > CN , CJ . We take the gap in S to be larger than the
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charging energy, so that only even charge number states2nS

occur in S, while all charge statesnN are a priori possible in
N (nS is the number of Cooper pairs in S). A low tempera-
ture allows us to neglect quasiparticle tunneling in S. Defin-
ing CΣS = CJ + C0 + CgS andCΣN = CN + C0 + CgN ,
b = CΣN

CΣS
andr = C0√

CΣN CΣS
, the total charging energy of the

NS system can be written in a standard way as

EC = ECN [(nN − NN )2 + 4b(nS − NS)2

+ 4r
√

b(nN − NN )(nS − NS)] (1)

with ECN = e2

2CΣN (1−r2) . Recall thatNN , NS are con-
tinuous control parameters. Notice that the asymmetry pa-
rameterb and the coupling parameterr < 1 are not inde-
pendent, asr < min (b, 1√

b
). From Eq. (1), one can plot

the charge stability diagram of the isolated NS system in the
(NN , NS) plane. First, for a valueNS imposing an integer
number of pairs in S, sayNS = 1, the charging number
nN increases monotonously withNN . Next, consider a case
wherenS fluctuates, for instanceNS = 0.5. For smallr,
as shown in Fig. 2(a),nN is again a monotonous function
of NN : the sequence of charge states(nN , nS) as NN in-
creases reads(0, 0̄), (0, 1̄), (1, 0̄), (1, 1̄), (2, 0̄), (2, 1̄), . . . (no-
tice the oscillation ofnS). The result is very different ifr
is large. In Fig. 2(b), forNS = 0.5, nN increases withNN

but in a non-monotonous way, the charge state sequence being
(1, 0̄), (0, 1̄), (2, 0̄), (1, 1̄), (3, 0̄), (2, 1̄), etc. The correspond-
ing Coulomb staircases are plotted in inset.

FIG. 2: (a) Charge stability (or honeycomb) diagram forr =

0.2, b = 1. The inset shows the charging curve for N. (b) Same
for r = 0.8. The Coulomb staircase (inset) exhibits charge skipping
effects.

One sees that the transition from(nN , 1̄) to (nN + 2, 0̄) at
NN = nN + 1 “skips” the charge statenN + 1 in the grain.
This signals an attractive potential (“negative-U” [10]) in N

which overcomes the Coulomb repulsion. After increasing
by two units,nN decreases by one unit, yielding a negative
differential capacitance (NDCA)Cdiff = CgN

dnN

dNN
at half-

integer values ofNN . In addition to the already known “in-
sulating” and “metallic” behaviors, this phenomenon signals
an overscreening of the charge repulsion in N due to neigh-
bouring pair fluctuations in S. Strikingly, the total numberof
steps, positive or negative, is doubled with respect to the usual
case. Both “charge skipping” and NDCA effects occur above
the dotted line indicated in the inset in Fig. 3 displaying a
(b, r) diagram. This line can be determined by a simple mag-
netic analogy: defining charge pseudospinsσz

S = 2(nS−NS)
andσz

N = nN − NN for NS = 0.5 andNN integer,EC can
be rewritten asEC = ECN [(σz

N )2 + 2r
√

b σz
Nσz

S + b], thus
with an anisotropy and an antiferromagnetic coupling between
charge pseudospins . Ifr

√
b > 1

2 , the “antiferromagnetic” so-
lution σz

N = ±1, σz
S = ∓1 is favored, e.g. skipping the state

nN = NN (σz
N = 0).

To analyze the occurrence of an effective attraction (equiv-
alently charge skipping) in the open NS system, let us now
write its full Hamiltonian:

H = EC +
∑

kσ

εk c†kR,σ ckR,σ +
∑

qσ

εq c†qN,σ cqN,σ

+
∑

kqσ

Tk,q c†kR,σ cqN,σ + H.c. − EJ

2
(|nS + 1〉〈nS | + H.c.) ,(2)

wherek (q) denotes electron states in the normal reservoir R
(grain N), and the Coulomb interactionEC is given by Eq.
(1). The total charge in N isnN =

∑

qσ
c†qN,σ cqN,σ. Assum-

ing constant densities of states in N and R, the single-electron
transition rate from R to N is given in the golden rule approx-

imation byΓ(+1) =
δE

(+1)

C

e2RN
[exp (δE

(+1)
C /kBT ) − 1]−1.

Considering first the case of smallEJ , we perform a T-
matrix calculation of the transition rates from(0, 1̄) to (2, 0̄)
(close toNN = 1) and from(2, 0̄) to (1, 1̄) (close toNN =
1.5). For the first transition, we take into account three
configuration paths involving higher-energy states:(0, 1̄) →
(1, 1̄) → (2, 1̄) → (2, 0̄), (0, 1̄) → (1, 1̄) → (1, 0̄) → (2, 0̄),
and(0, 1̄) → (0, 0̄) → (1, 0̄) → (2, 0̄). For the second tran-
sition, only one excited state is involved:(2, 0̄) → (1, 0̄) →
(1, 1̄) and(2, 0̄) → (2, 1̄) → (1, 1̄). The shape of each step is
calculated at finite temperature by solving the master equation
governing the dynamics of the probabilitiesp(0, 1̄), p(2, 0̄) for
the positive step andp(2, 0̄), p(1, 1̄) for the negative one. The
master equation reads as usualṗ(a) = Γb→ap(b)−Γa→bp(a)
with p(b) = 1 − p(a) for the main statesa, b involved in the
transition. Here, the probabilities of other states are neglected,
e.g., close toNN = 1 or NN = 1.5. This is a valid assump-
tion if the steps are sufficiently narrow. The calculated steps
are shown in Fig. 3.

For the parameters indicated in the caption of Fig. 3, a pos-
itive step (where the charge numbernN = 1 is skipped) and a
consecutive negative step are stabilized. Notice that contrary
to the usual staircase, where all real transitions betweenn and
n ± 1 can be treated by the same master equation [11], here
the rates are of higher order and the virtual states involvedin
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FIG. 3: Coulomb staircase in the smallEJ regime forr = 0.8, b =

1, EJ/ECN = 0.5, kBT/ECN = 3 · 10
−2, RN/RK = 10.

Charge skipping occurs forr > 1/2
√

b (dotted line in the inset).

FIG. 4: Coulomb staircase in the adiabatic regime forEJ/ECN = 2

(the other parameters are the same as in Fig. 3). The constraint for
charge skipping depends onEJ . The inset shows the minimumr
values forEJ/ECN = 1 (dotted),EJ/ECN = 2 (dashed), and
EJ/ECN = 4 (dash-dot).

one transition (positive step) become real states for the next
(negative) one. A full treatment is beyond the scope of this
Letter.

Let us now turn to the case of a large Josephson energy,
EJ > ECS = e2

2CΣS(1−r2) . Then one relies on an adiabatic
assumption [9]: setting the phase difference toφ across the
JJ, one can solve the Hamiltonian (2) neglecting the normal
electron tunneling term. The adiabatic HamiltonianHad =
EC − EJ cosφ describes a Cooper pair box with an effec-
tive gate voltage, which is an adiabatic function ofnN . In
the tight-binding limit EJ

ECN
≫ b, assuming that the junction

dynamics is confined to the lowest Bloch band, one obtains:

Had = ECN (1 − r2)(nN − NN )2

−∆0 cos[2π(NS − r

2
√

b
(nN − NN))] , (3)

where the bandwidth is given by

∆0 = 16

√

2

π
b ECN

(

EJ

2bECN

)3/4

e−
√

8EJ/bECN . (4)

The second term inHad represents an effective screening po-
tential acting on the charge in N. ChoosingNS which controls
the phase of the cosine term, one can achieve a negative curva-
ture ofHad, seen as an effective charging energyEeff

CN for the
gauged charge in N,nN −NN . A necessary condition for this
is π2

2
r2

b(1−r2)∆0 > 1, yielding the frontier lines in the inset

in Fig. 4. Clearly, a largeEJ puts a strong constraint on the
coupling capacitanceC0, requiring values ofr closer to one
than for smallEJ . If this is satisfied, one calculates the shape
of the charge skipping and negative steps using a master equa-
tion based on transition rates between charge statesnN = 0, 2
or nN = 2, 1, respectively. The adiabatic transition rates are

given byΓad =
δEeff

CN

e2RN
[exp (δEeff

CN /kBT )− 1]−1. The corre-
sponding steps are shown in Fig. 4, and are flatter than in the
smallEJ case.

To operate in the Coulomb blockade regime, the tempera-
ture must be sufficiently low to suppress thermal excitations.
The energy difference between two charge states depends on
r. A largerr facilitates charge skipping, although a too strong
coupling spoils it since the system virtually becomes one sin-
gle island and the energy no longer depends on the location
of the charge. An optimumr is close to0.75 (for b = 1) for
small Josephson energies. In this case, the requirement for
Coulomb blockade iskBT < ECN

4 . In the step calculations,
the valuer = 0.8 was used to accommodate for both the small
and large Josephson energy cases. A temperature ofT ∼ 30
mK and a typical charging energy ofECN ∼ 10−4 eV were
used. For the symmetric case whereb = 1, this charging en-
ergy givesCN = CS ∼ 2 fF. Furthermore, if we assume, e.g.,
CgN = CgS = 0.02 fF, then the gate chargesNS = 0.5
and NN = 0.75 − 2.75 correspond toVgS = 4 mV and
VgN = 6− 22 mV, respectively. The value ofr chosen for the
calculations corresponds toC0 = 4CN = 8 fF. The second re-
quirement for Coulomb blockade is that the tunnel resistance
RN is larger than the resistance quantumRK = h

e2 ≈ 25.8

kΩ.The valueRN

RK
= 10 was used, yielding a first-order tun-

neling rate ofΓ ∼ 109 s−1. The second- and third-order tun-
neling rates are107 s−1 and5 · 103 s−1, respectively.

Let us briefly discuss the issue of phase coherence in S. As
shown above, charge skipping only requires that pair tunnel-
ing occurs between the superconducting reservoir and the S
island in order to screen the repulsive interaction in the nor-
mal grain. No phase coherence is needed, as shown by the
first calculation where the Josephson tunneling is treated per-
turbatively. Moreover, as a backaction effect, charge fluctua-
tions in N should strongly react upon S and reduce the phase
coherence. A full treatment goes beyond the adiabatic ap-
proximation made in the largeEJ case. One can anticipate
that corrections to the adiabatic behavior can cause substan-
tial fluctuations in the phaseφ, renormalizingEJ to a smaller
value, thus making the small-EJ case generic.

The relationship between charge skipping and proximity ef-
fect calls for a comment. The latter manifests the onset of
pairing correlations in a metal, despite the absence of a pairing
potential, due to Cooper pair diffusion. Here, in the absence
of any tunneling of electrons between N and S, no phase co-
herence can be established whatsoever in N. Charge skipping
indicates instead a local attractive (negative-U) potential ca-
pacitively induced in N. Adding to this a very small tunneling
termTNS between N and S opens the possibility of establish-
ing a true phase coherence between statesnN , nN + 2. Then
such a proximity effect could be studied in a quite unusual
regime, whereTNS < |U |. More generally, the occurrence
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of an attraction in a metallic dot has interesting consequences,
some of them having been theoretically explored in the con-
text of molecules with polaronic behavior, like pair tunneling
[10, 12], or the possibility of a charge Kondo effect [13] in the
coherent regime of tunneling between N and R. Another ap-
plication of the mechanism proposed in this Letter consistsin
inducing an attractive correlation between excess chargesin
two or more neighboring normal dots capacitively coupled to
the same S island. Such a device could be useful in quantum
information processing based on the charge [14] or spin [15]
degree of freedom of individual electrons in normal quantum
dots.

We now propose a scheme for detecting an induced at-
traction in a normal metallic grain. The goal is to detect
the non-monotonous charging of the N grain. SETs or point
contacts [16] provide very sensitive detection of the local
change in the electrostatic potential (rather than the charge).
In double-dot setups with weak mutual coupling, the poten-
tial fluctuations in each dot can be measured by a different
neighboring point contact [17]. In the present case, plac-
ing a point contact close to N does not measureδnN , but
insteadδVN = e(C−1)NN (eδnN) + 2e(C−1)NS(δnS) =

e
CΣN (1−r2) [δnN + 2r

√
b δnS ]. If r

√
b > 1

2 , doubling of the

number of steps can be detected, but not the non-monotonous
charging curve. To access the latter, it is suitable to mea-
sureδVS = e

CΣN(1−r2) [r
√

b δnN + 2b δnS ] as well, with
a second point contact close to S, and reconstructδnN =
CΣN

e [δVN − r√
b
δVS ]. The parametersCΣN , r, b can easily

be measured from a honeycomb diagram obtained in the nor-
mal (non-superconducting) state in the presence of very weak
tunneling between N and S. A setup adapting that of Ref. 17 is
proposed in Fig. 1, involving a superconductingNb strip with
a Cooper pair box, coupled laterally to anInAs 2DEG. No-
tice that the direction of charge transfer also can be measured
[18], and that other experimental access to the correlationbe-
tween charge fluctuation in N and S could be obtained from
shot noise measurements, as in Ref. 19.

In conclusion, we have proposed a set-up inducing an elec-
tronic attraction in a metallic dot. We believe that it couldbe
useful in view of more complex nanoelectronics devices. The
authors are grateful to T. Martin, M. Fogelström, and G. Jo-
hansson for useful discussions. D. F. and A. Z. were partially
supported by AC Ministère de la Recherche. The work of C.
H. was supported by the Swedish Research Council (VR) un-
der grant 621-2006-3072.
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