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Capacitively coupling a normal metallic grain to a superconducting island can lead to attractive correlation
(negative-U center) in the grain. The considered setup geometry is similar to that of a Cooper pair box coupled
to a single-electron transistor, but operates in the regimeof strong capacitive coupling. In the Coulomb staircase
for the grain, positive steps (+2e) skipping odd charge numbers are found to be followed by negative ones (−e)
signaling the occurrence of a negative differential capacitance. The condition for charge skipping is analyzed
as a function of the ratio between the Josephson (EJ ) and charging energies. The non-monotonous charging
curves are calculated in the limits of large and smallEJ .

PACS numbers: 73.23.Hk, 74.78.Na

Single electron charging effects are characteristic of small
metallic structures. When a small-capacitance grain is weakly
coupled to a metallic reservoir at sufficiently low temper-
atures, the average number of charges,nN , in the grain
increases one by one as the gate voltageVgN is continu-
ously varied, leading to Coulomb blockade oscillations in
the conductance [1]. Plateaus in the charging curve indicate
an insulating-like regime, with zero differential capacitance
Cdiff = e dnN

dVgN
, while steps signal a metallic-like regime

whereCdiff is very large. Such oscillations have also been
studied in superconducting islands where charging steps in-
volve only electron pairs if the superconducting gap in the is-
land is larger than the charging energy [2], and single charges
in the opposite case [3]. The study of charging patterns has
been extended to double islands, coupled by a capacitance as
well as by electron tunneling. The islands can be both normal
metals [4, 5], or superconducting [6]. The latter embodies
a particular case of coupled superconducting qubits and dis-
plays challenging coherent electronic transport.

The present Letter addresses the “mixed” case where a su-
perconducting island (S) is coupled to a normal grain (N) by
a large capacitance (Fig. 1). Moreover, we disregard any
electron tunneling between S and N. This situation might be
achieved for instance at the interface between a superconduc-
tor (Nb) and a two-dimensional electron gas (InAs). The S is-
land is connected to a superconducting reservoir by a Joseph-
son junction (JJ), and the N grain is connected to a normal
reservoir. Notice that if N is instead coupled to two reservoirs
and a current flows through N, the set-up is similar to that of
a Cooper pair box (CB) coupled to a single-electron transistor
(SET). It has been studied in great detail as a read-out device
for a superconducting (charge) qubit embodied in the S island
[7]. In this case, the coupling between N and S is assumed
to be very small, in order to minimize the decoherence due to
backaction of the normal part of the device onto the supercon-
ducting one. Here we instead consider the case of a large ca-
pacitive coupling, which strongly correlates the charge fluctu-
ations in the two islands. We focus on the charging properties

of the N grain, under the influence of the S island. Notice that
no proximity effect occurs in the present case due to the ab-
sence of tunneling between the two islands. As shown below,
this situation may lead to an overscreening of the Coulomb
repulsion in N and to skipping of certain charge states as the
N gate voltage is varied. This signals a correlated motion of
electrons in and out the N grain. Such an attractive correlation
is reminiscent of the so-called “negative-U ” center in solids
[8]. Here it is due to screening by the neighboring pair fluc-
tuations in S. A related effect has been proposed by Averin
and Bruder for providing a controlled coupling between two
superconducting charge qubits [9].

FIG. 1: Schematic view of a normal grain (2DEG) coupled to a
Cooper pair box composed of a Josephson junction connectingsu-
perconducting reservoir 2 and island S gated by 10. For strong ca-
pacitive coupling (controlled by 3, 9), S imposes an attractive cor-
relation amongst electrons tunneling between the normal grain (N)
and its reservoir (defined by 7, 8). Detection is made by sweeping
the gate voltage (4) and measuring the island voltages usingquantum
point contacts for both N (5,6,7) and S (1,11,12).

The S island is connected to the reservoir by a JJ, with
Josephson energyEJ and capacitanceCJ , and coupled to
a gate imposing a charge offsetQS = 2eNS = CgSVgS ,
with CgS ≪ CJ . Symmetrically, the N island is connected
to a normal reservoir by a tunnel junction, with one-electron
tunneling rateΓ and capacitanceCN , and experiences a gate
offset QN = eNN = CgNVgN , with CgN ≪ CN . Most
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importantly, the islands N and S are coupled by a large ca-
pacitanceC0 > CN , CJ . We take the gap in S to be larger
than the charging energy, so that only even charge number
states2nS occur in S, while all charge statesnN are a priori
possible in N (nS is the number of Cooper pairs in S). The
temperature is supposed to be small in order to neglect quasi-
particle tunneling in S. DefiningCΣS = CJ + C0 + CgS and
CΣN = CN + C0 + CgN , b = CΣN

CΣS
andr = C0√

CΣN CΣS
, the

total charging energy of the NS system can be written as

EC = ECN [(nN − NN )2 + 4b(nS − NS)2

+ 4r
√

b(nN − NN )(nS − NS)] (1)

with ECN = e2

2CΣN (1−r2) . The numbersnN andnS are inte-
gers whileNN , NS are continuous control parameters. No-
tice that the asymmetry parameterb and the coupling pa-
rameterr < 1 are not independent, asr < min (b, 1√

b
).

From Eq. (1), one can plot the charge stability diagram of
the isolated NS system in the(NN , NS) plane. First, for
a valueNS imposing an integer number of pairs in S, say
NS = 1, the charging numbernN increases monotonously
with NN . Next, consider a case wherenS fluctuates, for in-
stanceNS = 0.5. For smallr, as shown in Fig. 2(a), one
sees thatnN is again a monotonous function ofNN : the
sequence of charge states(nN , nS) as NN increases reads
(0, 0̄), (0, 1̄), (1, 0̄), (1, 1̄), (2, 0̄), (2, 1̄), etc. (note the oscil-
lation of nS). The result is very different ifr is large.
In Fig. 2(b), for NS = 0.5, nN increases withNN but
in a non-monotonous way, the charge state sequence being
(1, 0̄), (0, 1̄), (2, 0̄), (1, 1̄), (3, 0̄), (2, 1̄), etc. The correspond-
ing Coulomb staircases are plotted in inset.

FIG. 2: (a) Charge stability (or honeycomb) diagram forr =

0.2, b = 1. The inset shows the charging curve for N. (b) Same
for r = 0.8. The Coulomb staircase (inset) exhibits charge skipping
effects.

Let us comment this result. The transition from(nN , 1̄) to
(nN + 2, 0̄) at NN = nN + 1 happens to “skip” the charge
statenN + 1 in the grain. This indicates a strong charge cor-
relation between the island charges in N and S, fluctuating by
two units in opposite directions. In other terms, the attractive
potential present in the S island leads to an attractive potential
(“negative-U”[10]) in N which overcomes the Coulomb re-
pulsion between charges in N. After increasing by two units,
nN must necessarily decrease by one unit, such thatnN as
a function ofNN has an average slope equal to one. There-
fore, together with charge skipping at integer values ofNN , a
negative differential capacitance (NDCA)Cdiff = CgN

dnN

dNN

occurs at half-integer values ofNN . In addition to the al-
ready known “insulating” and “metallic” behaviors, this phe-
nomenon signals an overscreening of the charge repulsion in
N due to pair fluctuations in S. Strikingly, the total number of
steps, both positive and negative, is doubled with respect to the
usual case. Both “charge skipping” and NDCA effects occur
above the dotted line indicated in the inset in Fig. 3 displaying
a(b, r) diagram. This line can be determined by a simple mag-
netic analogy: defining charge pseudospinsσz

S = 2(nS−NS)
andσz

N = nN − NN for NS = 0.5 andNN integer,EC

can be rewritten asEC = ECN [(σz
N )2 + 2r

√
b σz

Nσz
S + b],

thus with an anisotropy and an antiferromagnetic coupling be-
tween charge pseudospins . Ifr

√
b > 1

2 , the “antiferromag-
netic” solutionσz

N = ±1, σz
S = ∓1 is favored, e.g. skip-

ping the statenN = NN (σz
N = 0). Notice that in the limit

r = b = 1, EC = ECN (n − N)2, whereN = NN + 2NS

andn = nN + 2nS, is a conserved quantity. This case (C0

infinite) where the two islands can be considered as a single
capacitor is infinitely degenerate. As a result, forr → 1 – pro-
vided such a regime can be reached – a large number of charge
configurations are very close in energy, leading to huge charge
fluctuations in the system.

To go beyond a purely electrostatic consideration, let us
now write the full Hamiltonian of the open NS system:

H = EC +
∑

kσ

εk c†kR,σ ckR,σ +
∑

qσ

εq c†qN,σ cqN,σ

+
∑

kqσ

Tk,q c†kR,σ cqN,σ + H.c. − EJ

2
(|nS + 1〉〈nS | + H.c.) ,(2)

wherek (q) denotes electron states in the normal reservoir R
(grain N), and the Coulomb interactionEC is given by Eq.
(1). The total charge in N isnN =

∑

qσ
c†qN,σ cqN,σ. Assum-

ing constant densities of states in N and R, the single-electron
transition rate from R to N is given in the golden rule approx-

imation byΓ(+1) =
δE

(+1)

C

e2RN
[exp (δE

(+1)
C /kBT ) − 1]−1.

Considering first the case of smallEJ , we perform a T-
matrix calculation of the transition rates from(0, 1̄) to (2, 0̄)
(close toNN = 1) and from(2, 0̄) to (1, 1̄) (close toNN =
1.5). For the first transition, we take into account three con-
figuration paths involving higher-energy states:(0, 1̄) −→
(1, 1̄) −→ (2, 1̄) −→ (2, 0̄), (0, 1̄) −→ (1, 1̄) −→ (1, 0̄) −→
(2, 0̄), and (0, 1̄) −→ (0, 0̄) −→ (1, 0̄) −→ (2, 0̄). For
the second transition, only one excited state is involved:
(2, 0̄) −→ (1, 0̄) −→ (1, 1̄) and(2, 0̄) −→ (2, 1̄) −→ (1, 1̄).
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The shape of each step is calculated at finite temperature by
solving the master equation governing the dynamics of the
probabilitiesp(0, 1̄), p(2, 0̄) for the positive step andp(2, 0̄),
p(1, 1̄) for the negative one. The master equation reads as
usualṗ(a) = Γb→ap(b)−Γa→bp(a) with p(b) = 1−p(a) for
the main statesa, b involved in the transition. Here, the prob-
abilities of other states are neglected, e.g., close toNN = 1
or NN = 1.5. This is a valid assumption if the steps are suffi-
ciently narrow. The calculated steps are shown in Fig. 3.

FIG. 3: Coulomb staircase in the smallEJ regime forr = 0.8, b =

1, EJ/ECN = 0.5, kBT/ECN = 3 · 10
−2, RN/RK = 10.

Charge skipping occurs forr > 1

2
√

b
(dotted line in the inset).

FIG. 4: Coulomb staircase in the largeEJ regime forEJ/ECN = 2

(the other parameters are the same as in Fig. 3). The constraint
for charge skipping depends onEJ . T inset shows the minimumr
values forEJ/ECN = 1 (dotted),EJ/ECN = 2 (dashed), and
EJ/ECN = 4 (dash-dot).

For the parameters indicated in the caption of Fig. 3, a pos-
itive step (where the charge numbernN = 1 is skipped) and a
consecutive negative step are stabilized. Notice that contrary
to the usual staircase, where all real transitions betweenn and
n±1 can be treated by the same master equation [11], here the
rates are of higher order and the virtual states involved in one
transition (positive step) become real states for the next (neg-
ative) one, preventing from such a simple treatment. A full
treatment is at least similar in complexity to a master equation
treatment of cotunneling in single dots [12] and is beyond the
scope of this Letter.

Let us now turn to the case of a large Josephson energy,
EJ > ECS = e2/2CΣS(1−r2). Then one can rely on an adi-
abatic assumption [9], and setting the phase difference to be
φ across the JJ, one can solve the Hamiltonian (2) neglecting
the normal electron tunneling term. The adiabatic Hamilto-
nianHad = EC −EJ cosφ describes a Cooper pair box with
an effective gate voltage, which is an adiabatic function of

nN . In the tight-binding limitEJ/ECN ≫ b, assuming that
the junction dynamics is confined to the lowest Bloch-band,
one obtains:

Had = ECN (1 − r2)(nN − NN )2

−∆0 cos[2π(NS − r

2
√

b
(nN − NN ))] , (3)

where the bandwidth is given by

∆0 = 16

√

2

π
b ECN

(

EJ

2bECN

)3/4

e−
√

8EJ/bECN . (4)

The second term inHad represents an effective screening po-
tential acting on the charge in N. ChoosingNS which controls
the phase of the cosine term, one can achieve a negative cur-
vature ofHad, seen as an effective charging energyEeff

CN for
the gauged charge in N,nN − NN . A necessary condition
for this is π2

2
r2

b(1−r2)∆0 > 1, yielding the frontier lines in the
inset in Fig. 4.

One notices that a largeEJ puts a strong constraint on
the coupling capacitanceC0, requiring values ofr closer to
one than in the case of smallEJ . If this is satisfied, one
can calculate the shape of the charge skipping and nega-
tive steps using a master equation based on transition rates
between charge statesnN = 0, 2 or nN = 2, 1, respec-
tively. The adiabatic transition rates are given byΓad =
δEeff

CN

e2RN
[exp (δEeff

CN /kBT ) − 1]−1. The corresponding steps
are shown in Fig. 4, and are flatter than in the smallEJ case.

To operate in the Coulomb blockade regime, the tempera-
ture must be sufficiently low to suppress thermal excitations.
The energy difference between two charge states depends onr
- a largerr facilitates charge skipping. However, a too strong
coupling spoils it since the system virtually becomes one is-
land and the energy no longer depends on the location of the
charge. For these reasons,r should be close to0.75 (for b = 1)
for small Josephson energies. In this case, the requirementfor
Coulomb blockade iskBT < ECN/4. The factor1/4 is due
to the doubling of the number of steps and the charging en-
ergies’ quadratic dependence on charges and gate charges. In
the step calculations, the valuer = 0.8 was used to accommo-
date for both the small and large Josephson energy cases. Fur-
thermore, a temperature ofT ∼ 30 mK and a typical charging
energy ofECN ∼ 1 · 10−4 eV were used. For the symmetric
case whereb = 1, this charging energy givesCN = CS ∼ 2
fF. Furthermore, if we assume, e.g.,CgN = CgS = 0.02
fF, then the gate chargesNS = 0.5 andNN = 0.75 − 2.75
correspond toVgS = 4 mV andVgN = 6 − 22 mV, respec-
tively. The value ofr chosen for the calculations corresponds
to C0 = 4CN = 8 fF. The second requirement for Coulomb
blockade is that the tunnel resistanceRN must be larger than
the resistance quantumRK = h/e2 ≈ 25.8 kΩ. In the calcu-
lations of the transition rates,RN/RK = 10 was used. This
gives a first order tunneling rate ofΓ ∼ 109 s−1. The second
and third order tunneling rates are107 s−1 and5 · 103 s−1,
respectively.

Let us briefly discuss the issue of phase coherence in such
a strongly coupled NS set-up. As shown above, charge skip-
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ping only requires that pair tunneling occurs between the su-
perconducting reservoir and the S island in order to screen the
repulsive interaction in the normal grain. No phase coherence
is needed, as shown by the first calculation where the Joseph-
son tunneling is treated perturbatively. Here, charge skipping
and NDCA are a result of pair fluctuations in S. As a backac-
tion effect, charge fluctuations in N should strongly act upon S
and reduce the phase coherence. A treatment of this goes be-
yond the adiabatic approximation made in the largeEJ case.
One can anticipate that corrections to the adiabatic behavior
can cause substantial fluctuations in the phaseφ, renormaliz-
ing EJ to a smaller value. In this sense, the small-EJ case is
generic. The study of such feedback effects between strongly
coupled N and S islands is worth interest, but is beyond the
scope of this work.

Let us now comment on the relationship between charge
skipping and proximity effect. The latter manifests the onset
of pairing correlations in a metal, despite the absence of a pair-
ing potential, due to Cooper pair diffusion. Here, in the ab-
sence of any tunneling of electrons between N and S, no phase
coherence can be established whatsoever in N. Charge skip-
ping indicates instead a local attractive (negative-U) poten-
tial capacitively induced in N. Then, adding a small tunneling
termTNS between N and S opens the possibility of establish-
ing a true phase coherence between statesnN , nN + 2. Such
a proximity effect could be studied here in a quite unusual
regime, whereTNS < |U |. More generally, the occurrence of
an attractive correlation in a metallic dot has interestingcon-
sequences, some of them having been theoretically explored
in the context of molecules with polaronic behavior, like pair
tunneling [10, 13], or the possibility of a charge Kondo effect
[14] in the coherent regime of tunneling between N and R.
Another application of the mechanism proposed in this Letter
consists in inducing an attractive correlation between excess

charges in two or more neighboring normal dots capacitively
coupled to the same S island. Such a device could be useful in
quantum information processing based on the charge [15] or
spin [16] degree of freedom of individual electrons in normal
quantum dots.

To finish, we propose a scheme for detecting a capacitively
induced attractive correlation in a normal metallic grain.The
goal is to detect the non-monotonous charging of the N grain.
SETs or point contacts [17] provide very sensitive detection
of the local change in the electrostatic potential (rather than
the charge). In double-dot setups with weak mutual coupling,
the potential fluctuations in each dot can be measured by a
different neighboring point contact [18]. In the present case,
placing a point contact close to N does not measureδnN , but
insteadδVN = e(C−1)NN (eδnN ) + 2e(C−1)NS(δnS) =

e
CΣN(1−r2) [δnN + 2r

√
b δnS ]. If r

√
b > 1

2 , doubling of the
number of steps can be detected, but not the non-monotonous
charging curve. To access the latter, it is necessary to mea-
sureδVS = e

CΣN(1−r2) [r
√

b δnN + 2b δnS] as well, with
a second point contact close to S, and reconstructδnN =
CΣN

e [δVN − r√
b
δVS ]. The parametersCΣN , r, b can be easily

measured from a honeycomb diagram obtained in the normal
(non-superconducting) state in the presence of very weak tun-
neling between N and S. A setup adapting that of Ref. 18
is proposed in Fig. 1, involving a superconducting strip with
a Cooper pair box, coupled laterally to a 2DEG. Notice that
the direction of charge transfer also can be measured [19],
and that other experimental access to the correlation between
charge fluctuation in N and S could be obtained from shot
noise measurements, as in Ref. 20.

The authors are grateful to C. Bruder, T. Martin, M. Fogel-
ström and G. Johansson for useful discussions.
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