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An improvement of Gurson-type models of porous materials
by using Eshelby-like trial velocity fields
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Laboratoire de mécanique de Lille-UMR CNRS 8107, université de sciences et technologies de Lille, cité scientifique, 
59655 Villeneuve d’Ascq cedex, France

Abstract

New expressions of the macroscopic criteria of perfectly plastic rigid matrix containing prolate and oblate cavities are presented. 
The proposed approach, derived in the framework of limit analysis, consists in the consideration of Eshelby-like trial velocity 
fields for the determination of the macroscopic dissipation. It is shown that the obtained results significantly improve existing 
criteria for ductile porous media. Moreover, for low stress triaxialities, these new results also agree perfectly with the (nonlinear) 
Hashin–Shtrikhman bound established by Ponte-Castañeda and Suquet. 

Résumé

Une amélioration des modèles de type Gurson pour les mileux poreux par utilisation des champs tests d’Eshelby. On 
présente de nouvelles expressions du critère macroscopique de milieux poreux constitués d’une matrice rigide parfaitement plas-
tique contenant des cavités allongées ou aplaties. L’approche proposée, formulée dans le cadre de l’analyse limite, repose sur la 
considération de champs test de vitesse de type Eshelby pour la détermination de la dissipation macroscopique. On démontre 
que les résultats obtenus améliorent de manière significative les critères de milieux poreux ductiles existants. De plus, pour les 
faibles triaxialités de contrainte, ces nouveaux résultats s’accordent aussi parfaitement avec les bornes (non linéaires) d’Hashin–
Shtrikhman établies par Ponte-Castañeda et par Suquet.
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1. Introduction

Since three decades, the modelling of the behavior of ductile porous media has been the subject of important re-
searches in non linear mechanics of materials. In his pioneering work, Gurson [1] developed a limit analysis approach
of a hollow sphere. The plastic matrix is assumed to obey the von Mises criterion:

f (σ ) = σeq − σ0 � 0; with: σeq =

√
3

2
σ̄ : σ̄ (1)

where σ denotes the microscopic stress field, σ̄ its deviatoric part and σeq the microscopic von Mises equivalent stress.
σ0 represents the yield stress in tension. More specifically, Gurson obtained a macroscopic criterion which, in the case
of spherical voids, reads:

Σ2
eq

σ 2
0

+ 2f cosh

{
3Σh

2σ0

}
− 1 − f 2 = 0 (2)

Σh denotes the hydrostatic stress and f the porosity. Σeq is the macroscopic von Mises equivalent stress. It has been
demonstrated (see for instance [2]), that the yield surface defined by (2) constitutes an upper bound for Hashin’s well-
known composite spheres assemblage and gives the exact result for purely hydrostatic macroscopic loading. Later,
using variational techniques, Ponte-Castañeda [3] and Suquet [4] obtained a rigorous nonlinear Hashin–Shtrikhman
upper bound which, for spherical voids, takes the following form1:

(
1 +

2

3
f

)
Σ2

eq

σ 2
0

+
9

4
f Σ2

h − (1 − f )2 = 0 (3)

An important observation is that the Gurson model (Eq. (2)) violates this upper bound for low values of the stress
triaxiality T = Σh/Σeq. However, its predominance over the Hashin–Shtrikhman bound is still observed for high
stress triaxialities. A possible method to improve the predictions of the original limit analysis approach of Gurson
and in fact the subsequent models consists in considering refined trial velocity fields (see for instance [6] and [7]).
Still, due to the limitation of trial velocity fields which have been explored, few significant improvements have been
obtained in the past studies.

Therefore, the main objective of the present Note is to develop a limit analysis approach based on Eshelby-like
velocity fields and to derive new expression of the yield function. The calculations will be performed in the general
case of prolate and oblate voids (Sections 2 and 3). In this way, it is expected that the new approach will also provide
an improved version and a generalization of the results obtained by [8] and [9]. In order to provide simple illustrations
of the obtained approximate criterion, some specific cases such as spherical or cylindrical voids will be examined
(Section 4).

2. Basic concepts and methodology

2.1. The studied cell

As in [6], consider a spheroidal (axisymmetric) prolate or oblate cavity with semi-axes a1 (along e 3), and b1 (along
e1 and e 2) embedded in a cell which has the shape of a confocal spheroid with the semi-axes a2 (along e 3), and b2

(along e1 and e 2). a1 > b1 corresponds to a prolate cavity while b1 > a1 is associated to an oblate one. Let us denote
c the focal distance and e1 the eccentricity defined by:

c =

√
a2

1 − b2
1; e1 =

c

a1
(prolate); c =

√
b2

1 − a2
1; e1 =

c

b1
(oblate) (4)

It is convenient to introduce the spheroidal coordinates characterized by λ,β, θ , and defined in the cylindrical frame
(coordinates ρ, θ, z) by ρ = b sinβ , z = a cosβ . The iso-λ surface defines confocal spheroids, with semi-axes a =

1 Similar results for fluid saturated porous media with a Drucker–Prager matrix can be found in [5].
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c cosh(λ), b = c sinh(λ) and eccentricity e = c/a, for prolate. An oblate spheroid is associated to semi-axes a =

c sinh(λ), b = c cosh(λ) and eccentricity c/b. The unit vectors of the new base are:

eλ =
1

Lλ

{
a sin(β)e ρ + b cos(β)e z

}
; eβ =

1

Lλ

{
b cos(β)e ρ − a sin(β)e z

}
; e θ = e θ (5)

with Lλ =

√
a2 sin2(β) + b2 cos2(β), θ ∈ [0,2π ], β ∈ [0,π] and e ρ = cos(θ)e1 + sin(θ)e 2.

2.2. The Eshelby-like velocity field

The velocity field, v, in the matrix, is classically decomposed into a uniform velocity field, A.x, and an heteroge-
neous velocity field, vE , as follows: v = A.x + vE . For vE , we consider the exterior point Eshelby solution (see [10])
adapted here to an incompressible viscous fluid containing a spheroidal inclusion. For convenience, this solution (see
also [11]) can be put in the form:

vE =

r=6∑

r=1

vrd∗
r (6)

where d∗
r = d∗ : Qr/(Qr : Qr). Tensor d∗ is an eigenstrain in the inhomogeneity and Qr are defined by:

Q1 = 1; Q2 = 1 − 3e 3 ⊗ e 3; Q3 = e 2 ⊗ e 2 − e1 ⊗ e1; Q4 = e1 ⊗ e 2 + e 2 ⊗ e1

Q5 = e1 ⊗ e 3 + e 3 ⊗ e1; Q6 = e 2 ⊗ e 3 + e 3 ⊗ e 2
(7)

with the property Qr : Qs = 0 if r �= s. The quantities d∗
r are then related to the components of d∗ by:

d∗
1 =

1

3
(d∗

11 + d∗
22 + d∗

33); d∗
2 =

1

3

[
d∗

11 + d∗
22

2
− d∗

33

]

d∗
3 =

d∗
22−d∗

11
2 ; d∗

4 = d∗
12; d∗

5 = d∗
13; d∗

6 = d∗
23

(8)

The velocity fields vr for r = 1,6 are given in Appendix A, in the spheroidal frame.
Note that v1 and v2 are two axisymmetric velocity fields; they are independent of the coordinate θ and the com-

ponent vθ = 0. The first field v1 is the one used by [8] and by [9] for the determination of the macroscopic yield
function of a plastic matrix containing prolate and oblate voids respectively. Due to some limitations of v1, it has been
proposed in [6] to incorporate a supplementary velocity field which does not appear in the Eshelby velocity field.

Garajeu and Suquet [7] have also derived an expression for the macroscopic yield function of the porous material
in the case of prolate cavities by using a truncated expression of the velocity fields v1 and v2 which corresponds to
f1(λ) = g1(λ) = 0 (see Appendix A). It is also interesting to mention that v1 and v2 are contained in the general
axisymmetric velocity fields proposed by Lee and Mear [12]. However, the other fields v r for r = 3,6, considered in
this study, are nonaxisymmetric and are not contained in the Lee and Mear fields.

The microscopic plastic strain rate is defined by

d = A +

r=6∑

r=1

drd∗
r

in which dr = ∇sv
r . The microscopic dissipation reads π(d) = σ0deq where deq =

√
2
3 d̄ : d̄ is the equivalent plastic

strain rate defined by:

d2
eq = A2

eq + 2
r=6∑

r=1

d∗
r A : dr +

r=6∑

r=1

s=6∑

s=1

d∗
r d∗

s dr : ds (9)

Since the Eshelby-like velocity field introduced by (6) does not comply with the uniform strain on the cell boundary,
we propose to use the classical average rule which relates the macroscopic strain rate tensor D to d . This allows us to
relate d∗ to D by:

D =
1

|Ω|

∫

Ω

d dV = A + f S(e2) : d∗ (10)
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where |Ω| = 4πa2b
2
2/3 denotes the volume of the studied cell (matrix + void) and S(e) is the Eshelby tensor corre-

sponding to a spheroidal cavity of eccentricity e embedded in an incompressible medium; the components of S(e) are
expressed in Appendix B. By combining then (B.1) and (10), one obtains:

d∗
1 =

Dh

f
; A33 = D33(1 − α2) − (D11 + D22)α2 + εf

2α2a
2
2 + (α2 − 1)b2

2

2c2
d∗

2

A22 − A11 = D22 − D11 − εf
2a2

2 + 3b2
2(α2 − 1)

4c2
d∗

3 ; A12 = D12 − εf
2a2

2 + 3b2
2(α2 − 1)

8c2
d∗

4 (11)

A13 = D13 − εf
a2

2 + b2
2

4c2
(1 − 3α2)d

∗
5 ; A23 = D23 − εf

a2
2 + b2

2

4c2
(1 − 3α2)d

∗
6

in which Dh1 represents the spherical part of D and the convention ε = 1 for prolate voids and ε = −1 for oblate
voids is adopted. α2 = α(e2) where α(e) is function of eccentricity e and is given by (A.2).

It is readily seen that the complete velocity field is defined by 11 parameters, the components of A and the scalar d∗
r

for r = 1,6. Condition (10), detailed in (11) together with (A.2), gives six relations between the different parameters.
Still, their remains five unknown parameters which have to be determined.2 These are the d∗

r for r = 2,6 or equiva-
lently the components of d̄∗ (the deviatoric part of d∗). It is interesting to note that, by putting d∗

r = 0 for r = 2,6, and
choosing A axisymmetric in (11), the homogeneous boundary strain rate conditions obtained by [8,9] are recovered.

2.3. The macroscopic dissipation Π(D) and the minimization principle

Due to the dependence of the velocity field d with the following unknown kinematic parameters d̄∗, let us now
introduce Π̃(D, d̄∗) defined by:

Π̃
(
D, d̄∗

)
=

σ0

|Ω|

∫

Ω−ω

deq dV (12)

where ω denotes the volume of the void. It is readily understood that the searched expression of the macroscopic
dissipation, Π(D), is derived from a minimization procedure of Π̃(D, d̄∗) with respect to d̄∗:

Π(D) = min
d̄∗

[
Π̃

(
D, d̄∗

)]
(13)

The yield surface, related to the macroscopic dissipation, is then assumed to be given by:

Σ =
∂Π

∂D
(14)

In fact such consideration can be interpreted as the condition of the necessary coherence of the energy definition at
the two scales.

Due to the difficulty of integrating (12), some approximations are needed either for prolate and oblate voids in
order to determine the macroscopic dissipation and then the macroscopic yield function.

3. Approximate expression of Π̃(D, d̄∗) and determination of the macroscopic yield locus

We now aim to derive the expression of Π̃(D, d∗
r ) by using the same type of approximations as in [13]. Let us first

recall the expression of Π̃(D, d∗
r ) in the spheroidal frame.

Π̃
(
D, d̄∗

)
=

σ0

|Ω|

λ=λ2∫

λ=λ1

β=π∫

β=0

θ=2π∫

θ=0

deqbL2
λ sinβ dλdβ dθ (15)

The following approximations are made:

2 Note that the components of A could also be chosen as unknowns but this does not change the final results.
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A1: deq is replaced by a mean value {〈d2
eq〉E }1/2 on each confocal ellipsoid E .

It follows that (15) takes the following form:

Π̃
(
D, d̄∗

)
=

σ0

a2b
2
2

λ=λ2∫

λ=λ1

{〈
d2

eq

〉
E

}1/2
b
(
2a2 + b2)dλ (16)

where 〈d2
eq〉E is such that:

〈
d2

eq

〉
E

=
3

4π(2a2 + b2)

β=π∫

β=0

θ=2π∫

θ=0

d2
eq L2

λ sin(β)dβ dθ (17)

Then, from the definition (9), one has:

〈
d2

eq

〉
E

= A2
eq + 2

r=6∑

r=1

d∗
r A : W r(e) +

r=6∑

r=1

s=6∑

s=1

d∗
r d∗

s Prs(e) (18)

in which W r(e) = 2
3 〈dr 〉E and Prs(e) = 2

3 〈dr : ds〉E . Note that W r(e) and Prs(e) also depend on e1. Let us now
introduce the following variables x and y defined by:

x =
a1b

2
1

ab2
; y =

χa1b
2
1

c3 + χab2
(19)

with χ = 3
4

√
π2 + 32

3 . As a unified notation, let us introduce u such that u = x for prolate cavities and u = y for
oblate cavities.

A2: Following [6], the expressions of W r(e) and Prs(e) are replaced by wru
2 and prsu

2 respectively where wr and

prs are constant.

As in [13], parameters prs and tensors wr are respectively determined as the mean values of Prs(e)/u
2 and

W r(e)/u
2 along the interval [u1, u2]:

prs =
1

u2 − u1

u2∫

u1

Prs(e)
du

u2
; wr =

1

u2 − u1

u2∫

u1

W r(e)
du

u2
; for r = 1,6 (20)

u1 = 1 for a prolate cavity and u1 = χa1b
2
1/(c

3 + χa1b
2
1) for an oblate one. This approximation is consistent only if

the obtained values for prs and wr show low variations according to e1 and e2. The explicit determination of prs and
wr is performed by using Maple software; the resulting expressions are given in Appendix C. The quantity 〈d2

eq〉E can
be rewritten as follows:

〈
d2

eq

〉
E

= A2
eq + 2

r=6∑

r=1

A : wrd
∗
r u2 +

r=6∑

r=1

s=6∑

s=1

prsd
∗
r d∗

s u2 = A2
eq + [2A : W : d∗ + d∗ : P : d∗]u2 (21)

where W and P are two fourth order tensors defined in Appendix C. Eq. (21) can also be expressed as follow:
〈
d2

eq

〉
E

= A2
eq − A : W : P

−1 : W
T : Au2 +

[
d∗ + A : W : P

−1] : P :
[
d∗ + P

−1 : W
T : A

]
u2 (22)

where WT represent the transpose of W such that W T
ijkl = Wklij .

A3: Term A : W : P−1 : WT : Au2 is neglected.
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Although this term is not neglected in [9], [6] and [13], its effect on the macroscopic criterion is generally weak3

and motivates the approximation A3. Let us then introduce the following change of variable:

B2 = B : P : B; with: B = d∗ + P
−1 : W

T : A (23)

Π̃(D, d̄∗) (Eq. (16)) takes then the following form:

Π̃
(
D, d̄∗

)
= σ0f

u1∫

u2

{
A2

eq + B2u2}1/2 du

u2
= σ0f

[
B arcsinh

{
uB

Aeq

}
−

√
A2

eq + u2B2

u

]u1

u2

(24)

As previously indicated, the macroscopic yield locus is defined by (14) in which Π(D) corresponds to the minimum
of Π̃(D, d̄∗) with respect to d̄∗, d∗

1 being completely identified and related to Dh (see (11)). The macroscopic criterion
is then obtained by resolution of:

Σ =
∂Π̃(D, d̄∗)

∂D
with:

∂Π̃(D, d̄∗)

∂d̄∗
= 0 (25)

An analytical solution to this system, given in Appendix D, leads to the following generalized approximate criterion
corresponding to prolate and oblate voids4:

Σ̃2
eq

σ 2
0

+ 2(1 + g)(f + g) cosh

{
Σ̃P

σ0

}
− (1 + g)2 − (f + g)2 = 0 (26)

where g is conventionally taken as 0 for a prolate void and is given by g = c2/(χa2b
2
2) for an oblate one. Σ̃P and Σ̃eq

which enters in the criterion (26) are defined by:

Σ̃2
P = Σ : S(e2) : P

−1 : S
T (e2) : Σ; Σ̃2

eq =
3

2
Σ̃ : Σ̃; with: Σ̃ = Σ − W : P

−1 : S(e2) : Σ (27)

where the components of P−1 are given in Appendix C. Eqs. (26) and (27) constitute the most important results of
the present Note. Their new features and advantage over the existing Gurson-type criteria of porous media (see [8]
and [9]) come mainly from the terms introduced by the components of d̄∗. In particular, it is interesting to point out
that, due to Σ̃P , the new criterion introduces a coupling between pure shear stresses and the porosity f which does
not exist in the existing criteria. Note also that the nonlinear Hashin–Shtrikman bound exhibits a coupling of this type
(see [14]).

4. The particular cases of spherical and cylindrical voids

Let us consider, as a first particular illustration, the case of the spherical cavity; this is obtained by putting e1 → 0
and e2 → 0. It follows that W = 0, and then Σ̃eq = Σeq. Coefficients prs are p11 = 4, p12 = 0, p22 = 3p33 = 3p55 =

24/25, and then Σ̃2
P = 9Σ2

h/4 + 2Σ2
eq/3. The resulting macroscopic yield locus5 is given by:

Σ2
eq

σ 2
0

+ 2f cosh

{
1

σ0

√
9

4
Σ2

h +
2

3
Σ2

eq

}
− 1 − f 2 = 0 (28)

In the particular loading case Σeq = 0, the proposed criterion (28) reduces to the Gurson one which gives the exact
solution under purely hydrostatic pressure. Eq. (28) provides also the strongly remarkable property that the deviatoric
equivalent stress Σeq enters with the mean stress Σh in the cosh term which controls the cavity growth process.

Consider now low values of Σh; it can be verified that in this case cosh{ 1
σ0

√
9
4Σ2

h + 2
3Σ2

eq } ≃ 1 + 9
8

Σ2
h

σ 2
0

+ 1
3

Σ2
eq

σ 2
0

.

Reporting this result into (28), one recovers the Hashin–Shtrikman bound (see Eq. (3)). The predictions of the yield
surface by the different models, in the case of spherical voids and for two different porosities, are represented on Fig. 1
and confirm the good performance of the proposed model.

3 However, note that the consideration of these terms does not rise an important computational difficulty in the determination of the macroscopic
yield locus but gives more complex expressions.

4 Obviously, it will be verified that this result generalizes also the Gurson criterion.
5 Note that this result extends to fluid saturated porous media by replacing Σh by Σh + P where P is the fluid pressure.
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Fig. 1. Yield surface of the porous material—case of spherical void: comparison of the proposed model (28), the Gurson yield locus and the
Ponte-Castañeda model. (a) Porosity f = 0.01; (b) porosity f = 0.3.

Fig. 1. Surface de charge des matériaux poreux—cas d’une cavité sphérique : comparaison du modèle proposé (28) avec la surface de Gurson et
avec le modèle de Ponte-Castaneda. (a) Porosité f = 0,01 ; (b) porosité f = 0,3.

It must be recalled that, unlike the studies [1] and [8,9], the results obtained in the present study are based on a
nonkinematical velocity field defined by the condition (10); it is this choice which allows the connection with the
nonlinear homogenization bounds [14].

Let us consider now, as a second illustration, the case of a cylindrical cavity; then e1 → 1, e2 → 1, W = 0, then
Σ̃eq = Σeq. Coefficients prs are p11 = 3, p12 = p22 = 0 and prr = 1/3 for r = 3,6, then Σ̃2

P = (2Σ2
11 + 2Σ2

22 +

4Σ2
12 + 4Σ2

13 + 4Σ2
23)/3. The macroscopic yield surface is described by:

Σ2
eq

σ 2
0

+ 2f cosh

{
1

σ0

√
3

2

(
Σ2

11 + Σ2
22

)
+ 3Σ2

12 + 3Σ2
13 + 3Σ2

23

}
− 1 − f 2 = 0 (29)

As for spherical voids, similar comments can be done for cylindrical cavities: the exact solution under purely hydro-
static pressure is recovered; for low values of Σh/σ0 the criterion leads to the approximation:

Σ2
eq

σ 2
0

+
3f

2

1

σ 2
0

{
Σ2

11 + Σ2
22 + 2Σ2

12 + 2Σ2
13 + 2Σ2

23

}
− (1 − f )2 = 0 (30)

which coincides with the result established by Suquet [4].
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Appendix A. Eshelby velocity field

The exterior point Eshelby solution associated to a spheroidal inclusion in an isotropic matrix, can be found in [10]
or in the textbook [11]; the corresponding velocity field is given as a combination of the following velocities:

v1 =
a1b

2
1

bLλ

[
1 + f1(λ)

1 − 3 cos2(β)

2

]
e λ +

a1b
2
1

bLλ

g1(λ) sin(2β)eβ

v2 =
a1b

2
1

bLλ

[
1 − k2f1(λ)

](
1 − 3 cos2(β)

)
eλ − 2

a1b
2
1

bLλ

g1(λ)k2 sin(2β)eβ

(A.1)
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with:

f1(λ) = 1 − 3α; g1(λ) = −
3

4ab

[
2a2α + b2(α − 1)

]
; k2 = ε

2a2
1 + b2

1

2c2

α(e) =
ab2

c3
arctanh

{
c

a

}
−

b2

c2
(prolate), α(e) = −

ab2

c3
arctan

{
c

a

}
+

b2

c2
(oblate)

(A.2)

The two next velocity fields are given by:

v3 =
a1b

2
1

bLλ

[
f3(λ) sin2(β)e λ +

1

2
g3(λ) sin(2β)eβ

]
cos(2θ) −

a1b
2
1

b2
g3(λ) sin(β) sin(2θ)e θ

v4 =
a1b

2
1

bLλ

[
f3(λ) sin2(β)e λ +

1

2
g3(λ) sin(2β)eβ

]
sin(2θ) +

a1b
2
1

b2
g3(λ) sin(β) cos(2θ)e θ

(A.3)

with:

f3(λ) = 1 +
k3

b2

[
(3α + 1)b2 − 2a2]; g3(λ) =

k3

ab

[
2a2 + 3b2(α − 1)

]
; k3 = ε

b2
1

4c2

The last velocity fields are:

v5 =
a1b

2
1

bLλ

f5(λ) sin(2β) cos(θ)e λ +
a1b

2
1

bLλ

g5(λ)
[
1 + k5 cos(2β)

]
cos(θ)eβ

−
a1b

2
1

b2
G5(λ)(1 + k5) cos(β) sin(θ)e θ

v6 =
a1b

2
1

bLλ

f5(λ) sin(2β) sin(θ)e λ +
a1b

2
1

bLλ

g5(λ)
[
1 + k5 cos(2β)

]
sin(θ)eβ

+
a1b

2
1

b2
g5(λ)(1 + k5) cos(β) cos(θ)e θ

(A.4)

with:

f5(λ) =
1

4ab

[
(3α + 1)(1 + k5)a

2 + 3(1 − α)(1 − k5)b
2]; g5(λ) =

1

2
(3α − 1); k5 = −ε

a2
1 + b2

1

c2

Appendix B. Components of S(e) for a spheroidal inclusion with axis along e 3

S1111(e) = S2222(e) = 3S1122(e) = 3S2211(e) = 3S1212(e) = 3ε
2a2 + 3(α − 1)b2

8c2

S3333 =
ε

c2

(
3αa2 − b2); S1133(e) = S2233(e) = (1 − 3α)

εa2
1

2c2

S3311(e) = S3322(e) = (1 − 3α)
εb2

1

2c2
; S2323(e) = S1313(e) = ε(1 − 3α)

a2
1 + b2

1

4c2

(B.1)

Let us recall that α is function of eccentricity e and is given by (A.2).

Appendix C. Expression of tensor W and P

Qr : P : Qs = prs for r = 1,6; with: prs =
(1 + g)(f + g)

f (1 − f )

[
Hrs(e1) − f Hrs(e2)

]
(C.1)

where the nonnull Hrs(e) are:

H11 = 3(1 + 3α)(1 − α); H12 = 3(1 − 3α)(1 − α − β); H22 = 3(3α + 3β − 1)(1 − α − β)

H33 =
1

12
(1 + 3α − β)(3 − 3α + β); H55 =

1

3
(1 − 3α − 2β)(3α − 3 + 2β)

(C.2)
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Tensor W is given by:

W =
2

3

(1 + g)(f + g)

f (1 − f )

[
S(e2) − S(e1)

]
(C.3)

The nonzero components of tensor P are:

P1111 = P2222 =
1

36
(4p11 + p22 + 9p33 + 4p12); P3333 =

1

9
(p11 + p22 − 2p12)

P1122 =
1

36
(4p11 + p22 − 9p33 + 4p12); P1133 = P2233 =

1

18
(2p11 − p22 − p12)

P1212 =
1

4
p33; P1313 = P2323 =

1

4
p55

(C.4)

from which are easily obtained the components of P−1

Appendix D. Determination of the macroscopic yield locus

Let us introduce the following change of variables (D, d̄∗) ⇒ (A,B) in (25):

Σ =
∂Π̃

∂A
:
∂A

∂D
+

∂Π̃

∂B

∂B

∂D
;

∂Π̃

∂A
:

∂A

∂d̄∗
+

∂Π̃

∂B

∂B

∂d̄∗
= 0 (D.1)

The aim of the following demonstration is to put (D.1) in the form:

Σ̃eq =
∂Π̃

∂Aeq
; Σ̃P =

1

f

∂Π̃

∂B
(D.2)

where Σ̃eq and Σ̃P have to be determined.
Considering (24), Σ̃eq and Σ̃P , defined by (D.2) read:

Σ̃eq =
∂Π̃

∂Aeq
= σ0f

[√
1 + f 2ξ2

f
−

√
1 + ξ2

]

Σ̃P =
1

f

∂Π̃

∂B
= −σ0

[
arcsinh(f ξ) − arcsinh(ξ)

]
(D.3)

with ξ = B/Aeq. Eliminating ξ in relations (D.3), we find:
(

Σ̃eq

σ0

)2

+ 2(1 + g)(f + g) cosh

(
Σ̃P

σ0

)
− (1 + g)2 − (g + f )2 = 0 (D.4)

Recalling that the expression of tensor A is given by (10) and the one of tensor B by (23), one has:

A = D − f S(e2) : d∗; B = d∗ + P
−1 : W

T :
[
D − f S(e2) : d∗

]
; with: d∗ =

Dh

f
+ d̄∗ (D.5)

It follows that Eqs. (D.1) take the form:
⎧
⎨
⎩

Σ = ∂Π̃
∂A

:
[
I − S(e2) : J

]
+ 1

f B
∂Π̃
∂B

B : P :
{
J + f P−1 : WT :

[
I − S(e2) : J

]}

∂Π̃
∂A

: S(e2) : K = 1
f B

∂Π̃
∂B

B : P :
[
K − f P−1 : WT : S(e2) : K

] (D.6)

with J = 1
3 1 ⊗ 1 and K = I − J, I being the symmetric fourth-order identity tensor and 1 the second-order identity

tensor.
For the determination of Σ̃eq and Σ̃P , it is convenient to expressed Σ : S(e2) from the first relation into (D.6), or

more precisely its deviatoric part and its hydrostatic part Σ : S(e2). Using the following properties 1 : S(e2) : 1 = 3
and J : S(e2) : K = 0, one obtains:

⎧
⎨
⎩

Σ : S(e2) : 1 = 1
f B

∂Π̃
∂B

B : P : 1

Σ : S(e2) : K = ∂Π̃
∂A

: S(e2) : K + 1
B

∂Π̃
∂B

B : WT : S(e2) : K

(D.7)
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Combining the second relation into (D.6) and the second relation in (D.7), one obtains:

Σ : S(e2) : K =
1

f B

∂Π̃

∂B
B : P : K (D.8)

Finally from (D.8) and the first relation in (D.7), it is readily seen that:

Σ : S(e2) =
1

f B

∂Π̃

∂B
B : P (D.9)

which leads to the expression of Σ̃P (27). We now come to the determination of Σ̃eq. Considering the deviatoric part
of Σ from (D.6), and noticing that WT : K = WT , we have:

�Σ =
∂Π̃

∂A
+

1

B

∂Π̃

∂B
B : W

T (D.10)

Replacing B by its expression deduced from (D.9), one obtains:

Σ :
[
K − f S(e2) : P

−1 : W
T
]
=

∂Π̃

∂A
(D.11)

and then the searched results (27).
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