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Abstract— This article presents a new numerical abstract 1 int tab][-m...m];
domain for static analysis by abstract interpretation. It extends 2 fori=—-mtom tabli]=0;, {-m <i<m}
a former numerical abstract domain based on Difference-Bond 3 fori—=1to M do

h - . J

Matrices and allows us to represent invariants of the form . .
(xz +y < ¢), where z and y are program variables and ¢ 4 Int a= 0;
is a real constant. 5 fori=1tom

We focus on giving an efficient representation based on 6 {1<i<m; —i+1<a<i-—1}
Difference-Bound Matrices—O(n?) memory cost, wheren is 7 if rand(2) =0
the number of variables—and grSaph-based algor.lth.ms for all 8 thena=a+1; {—i+1<a<i}
common abstract operators—(n°) time cost. This includes a 9 | —a—1 Ci<a<i-1
normal form algorithm to test equivalence of representatiom and elsea =a—1; {~i<a<i-1}
a widening operator to compute least fixpoint approximatiors. 10 tabla] = tabla] +1; {-m<a<m}

Index Terms— abstract interpretation, abstract domains, linear 11 done

invariants, safety analysis, static analysis tools.
Fig. 1. Simulation of a random walk. The assertions in curlgckets{. ..}
are discovered automatically and prove that this prograes dmt perform
|. INTRODUCTION index out of bound error when accessing the araly.

This article presents practical algorithms to represent an

manipulate invariants of the forrt=a £y < ¢), wherez 504 Cousot's POPL'77 paper [3]—to build analyzers that
andy are numerical variables andis a numeric constant. It giscover invariants automatically: all we need is atstract
extends the analysis we previously proposed in our PADOdbmain which is a practical representation of the invariants
article [1]. Sets described by such invariants are spemaléf o \want to study, together with a fixed set of operators and
polyhedra calledbctagonsbecause they feature at most €ighfyansfer functions (union, intersection, widening, assignt,
edges in dimension 2 (Figure 2). Using abstract interpt#tat g,arq, etc.) as described in Cousot and Cousot's POPL'79
this allows discovering automatically common errors, sash 5icie [4].
division by zero, out-of-bound array access or deadlocl, an Tnere ‘exists manywumerical abstract domainsThe most
more generally to prove safety properties for programs.  seq are the lattice ointervals (described in Cousot and
Our method works well for reals and rationals. Integ&foysot's ISOP'76 article [5]) and the lattice gblyhedra
variables can be assumed, in the analysis, to be real in Or?(?éscribed in Cousot and Halbwachs's POPL'78 article [6]).

to find approximate but safe invariants. . ~_ They represent, respectively, invariants of the fofm €
E_xample. The very S|mp_le program described in F|gur§cl;02]) and (ayvy + - - + anv, < c), wherewv, vy, ..., v,
1 simulatesM one-dimensional random walks ofi steps 5. program variables andci, c2, a, . .., o, are constants.

and stores the hits in the arrayb. Assertions in curly \whereas the interval analysis is very efficient—linear mgmo

braces are discovered automatically by a simple statiyaisal 5 time cost—but not very precise, the polyhedron analgsis

using our octagonal abstract domain. Thanks to the inv&iap, ,ch more precise (Figure 2) but has a huge memory cost—in

discovered, we have the guarantee that Fhe program doesﬁ’l‘%tice, it is exponential in the number of variables.

perform out-of-bound array access at lines 2 and 10. Theremark that the correctness of the program in Figure 1

difficult point in this example is the fact that the bounds Otgepends on the discovery of invariants of the fofm €

the arraytab are not known at the time of the analysis; thusI,_mvm]) where m must not be treated as a constant, but

they must be treated symbolically. ~as a variable—its value is not known at analysis time. Thus,
For the sake of brevity, we omit proofs of theorems in thigyis example is beyond the scope of interval analysis. It can

article. The complete proof for all theorems can be found solved, of course, using polyhedron analysis.
the author’'s Master thesis [2].

B. Difference-Bound Matrices.
I1. PREVIOUS WORK P : S
Several satisfiability algorithms for set of constraintgoin-

ing only two variables per constraint have been proposed in
Static analysis has developed a successful methodologrder to solveConstraint Logic Programming (CLRyroblems.
based on the abstract interpretation framework—see CouBoatt analyses, in [7], the simple case of constraints of the

A. Numerical Abstract Domains.



form (z — y < ¢) and (2 < ¢) which he calledseparation | Y Y
theory Shostak then extends, in [8], this tol@op residue
algorithmfor the cas€ax + Sy < ¢). However, the algorithm x
is complete only for reals, not for integers. Recently, Hgrv X
and Stuckey proposed, in their ACSC’97 article [9], a cortgle %
algorithm, inspired from [8], for integer constraints oétform X
(z+y <c). X
Unlike CLP, when analyzing programs, we are not only X
interested in testing the satisfiability of constraint sets also (@) (b)
need to manipulate them and apply operators that mimic the
one used to define the semantics of programs (assignments, y y
tests, control flow junctions, loops, etc.). ’
The model-checkinggommunity has developed a practical
representation, calleDifference-Bound Matrices (DBMsfor
constraints of the forMe—y < ¢) and &z < ¢), together with
many operators, in order to model-chdgked automatgsee
Yovine’s ES’98 article [10] and Larsen, Larsson, Pettemssq | o
and Yi's RTSS’97 article [11]). These operators are tied fo LLoX L X
model checking and do not meet the abstract interpretation
needs. This problem was addressed in our PADO-II article [1] (© (d)
and in Shaham, Kolodner, and Sagiv’s CC2000 article [12] _ _ o _
which propose abstract domains based on DBMs, fea\turiﬁg'y 2. A set of points (a), and its best approximation in thterval (b),
. . . . potyhedron (c), and octagon (d) abstract domains.
widenings and transfer functions adapted to real-live oy
ming languages. All these works are based on the concept of
shortest-path closuralready present in Pratt’s article [7] asanguage. However, one could imagine fitug this domain
the base of the satisfiability algorithm for constraints lo¢ t in various analyses, such as Bourdonclelsn§ox analyzer
form (x —y < ¢). The closure also leads to a normal form thgt 3], Deutsch’s pointer analysis [14], Dor, Rodeh, and 8agi
allows easy equality and inclusion testing. Good undedst@n string cleanness checking [15], etc.
of the interactions between closure and the other operiors Section Il recalls the DBM representation fotential
needed to ensure the best precision possible and termirwdtioconstraints (z — y < ¢). Section IV explains how DBMs
the analysis. These interactions are described in our PADCean be used to represent a wider range of constraints: aiterv
article [1]. constraintg+x < ¢), and sum constraintstx +y < ¢). We
Again, proof of the correctness of the program in Figurghen stick to this last extension, as it is the core contigioubf
1 is beyond the scope of the DBM-based abstract domaithds article, and discuss in Section V about normal form and
presented in [1], [12] because the invarignie —m < 0) we in Section VI about operators and transfer functions. acti
need does not matctxr — y < ¢). VIl builds two lattice structures using these operatortida
VIII presents some practical results and gives some ideas fo
improvement.

C. Our Contribution.

Our goal is to propose a numerical abstract domain that is I1l. DIFFERENCEBOUND MATRICES
between, in term of expressiveness and cost, the intereal an |, this section, we recall some definitions and simple facts

the polyhedron domains. The set of invariants we discovghqt Difference-Bound Matrices (DBMs) and their use in
can be_seen as spgm_al cases of linear inequalities; but. $8er to represent sets of invariants of the fom- y < c).
underlying algorithmic is very different from the one used ipgs are described in [11], [10] from a model-checking point
the polyhedron domain [6], and much more efficient. of view and in [1] for abstract interpretation use.

In this article, we show that DBMs can be extended to o . ]
describe invariants of the forrftez + y < ¢). We build a L8tV = {vo,...,un—1} be a finite set of variables with
new numerical abstract domain, called tbetagon abstract Value in a numerical sét(which can beZ, Q or R). We extend
domain extending the abstract domain we presented in obif0 I by adding the+oco element; the standard operations
PADO-II article [1] and detail algorithms implementing all= +» min andmax are extended td as usual.
operators needed for abstract interpretation. Most dlyos
are adapted from [1] but some are much more complex. £ Potential Constraints, DBMs.
particular, the closure algorithm is replaced bst@ng closure A potential constraint ovel is a constraint of the form
algorithm. (vi —vj < ¢), with v;,v; € V andc € . Let C' be a set

It is very important to understand that an abstract domadf potential constraint ovey. We suppose, without loss of
is only a brick in the design of a static analyzer. For thgenerality, that there do not exist two constraifits—v; < c)
sake of simplicity, this paper presents an application af oand(v; —v; < d) in C with ¢ # d. Then,C' can be represented
domain on a simple forward analysis of a toy programmingniquely by aN x N matrix m with elements inl :



Vo V1 | Yo U1 V2 | Vo U1 U2
o0 | oo 1 v | 00 4 3 v | O 5 3
U(IJ 1 4o 4oo v | —1 400 400 v | —1 400 +oo
vy | —1 1 +00 vy | —1 1 +o00
V2 -1 1
(a) (a) (b)

Fig. 4. Two different DBMs with the sam¥-domain. Remark that (a) and
(b) are not even comparable with respectgto

IV. EXTENDING DIFFERENCEBOUND MATRICES
(c) Discovering invariants of the single potential forfm —

y < ¢) is not very interesting; however DBMs can be used
to represent broader constraint forms. In this section, ve¢ fi
present briefly how to add interval constraifits: < ¢). This
extension is not new: [11], [1] use it instead of pure DBM.
We then present our new extension allowing representafion o
m 2 { ¢ if (v; —v;<e¢)eC, the more general constraintsz + y < ¢).

7 | 400 elsewhere.

Fig. 3. A DBM (a), its potential graph (b) and it8-domain (c).

A. Representing intervals.

Given a finite set of variable¥" = {vg,...,vnx_1}, in
. order to represent constraints of the fofm — v; < ¢) and
B. Ffotentlal G.raph. . _ _ (£v; < ¢), we simply add toV® a special variable, named
Itis convenient to considen as the adjacency matrix of a0, which is supposed to be always equal to 0. Constraints of
weighted grapl§i(m) = {V, A, w}, called itspotential graph  the form @; < ¢) and (v; > d) can then be rewritten as

m is called aDifference-Bound Matrix (DBM)

and defined by: (v; =0 < ¢) and (0 — v; < —d), which are indeed potential
CVxV, c I, constraints over the sét = {O,vo, C S UN-1}-

A A * weAs A We will use a0 superscript to denote that a DBM ovgr

A = {(vi,v5) [ my; < +oof, w((vi,v5)) = mi; represents a set of extended constraints ®eiGiven such a

We will denote by(i, ..., i) afinite set of nodes repre- DBM m”, we will not be interested inOits;?-dor_nain,D(mO),
senting apathfrom nodev;, to nodev;, in G(m). A cycleis Wl(‘J]IChOIS a subsgt oP — I, but in its VY-domain denoted by
a path such that; = iy. D°(m”) and defined by:

L SN— I
S bewor

C. < Order. ( ) (0750""’31\7—1) ED(mO) o

The < order onl induces a point-wise partial ordeg on We will call V°-domainany subset o — T which is
the set of DBMs: the V°-domain of some DBMm®. As beforem’ < n’ —

A D%(m?) C D(n®), but the converse is false.
mdn <~ \V/i,j, mijgnij .

The corresponding equality relation is simply the matri®. Representing sums.

equality =. We suppose that™ = {vg,...,on_1} is a finite set of
variables. The goal of this article is to present a new DBM
extension adapted to represent constraints of the farm +

D. V-domain. )
. . _ vj < ¢), with v;,v; € VT andc € L.

Given a DBM m, the subset oft’ — 1T (which will be  “ |5 grder to do this, we consider that each variahlén V*
often assimilated to a subset BY) verifying the constraints comes in two flavors: a positive foraj and a negative form
Vi, 4, vj —v; < mj; will be denoted byD(m) and calledm’s v We introduce the s&¢ = { vJ", vy, ..., vi 4, vy, }
V-domain and consider DBMs ovep. Within a potential constraint, a

A o » . o ; ‘ X
D(m) 2 {(s0,...,s5-1) €IV | Vi, j, s; — s; <my} . positive variabley;” will be interpreted as-v;, and a negative

variablev;” as—u;; thus it is possible to represeft+v; < ¢)
By extension, we will call’>-domainany subset o’ — I by (v;r—v; < ¢). More generally, any set of constraints of the
which is theY-domain of some DBM. form (£v; £ v; < ¢), with v;,v; € V't can be represented by

Remark 1:We havem < n —> D(m) C D(n), but a DBM overV, following the translation described in Figure

the converse is false. As a consequence, representativn OP'
domains is not unique and we can haém) = D(n) but Remark 2:We do not need to add a special variabléo
m # n (Figure 4). represent interval constraints as we did before. Conssrain



constraint ovel) ™ constraint(s) ovel

vi—v; <c (i#}]) UT‘_—’U;_SC, v, —v; <c

vitv; <c (i#}7) vj—v-_gc, vj—v-_gc
J

J
—v;—v;<c (1#7) v-—vg"gc, vi—v;'gc
v; <c vj —v;, <2c
v; > cC v, — vj < -2
. ) . ) — g < <
Fig. 5. Translation between extended constraints avér and potential vi—v <0 b vt <3
constraints ovel. (b)

Fig. 6. A potential graplg(m) in Z with no stnctly negative cycle (a) and
the corresponding’*-domain (b)D+(m*) = {(2, 2)} which is empty in
Z2.

the form (v; < ¢) and (v; > ¢) can be represented &s;” — 3:3)

v; < 2¢) and (v; — v < —2¢).

V. EMPTINESSTEST AND NORMAL FORMS

C. Index Notation. We saw in Figure 4 that two different DBMs can have the

We will use a+ superscript to denote that a DBM over same)V-domain. Fortunately, there exists a normal form for
represents a set of extended constraints ®erSuch a DBM DBMs representing non-empty octagons.
mt is a2N x 2N matrix with the following convention: a  In this section, we first recall the normal form for classical
row or column index of the forn2i, i < N corresponds to DBMs m, and then show how it can be adapted to DBMS
the variablev;” and an index of the forn2i + 1, i < N representing non-empty octagons. Unfortunately, our @dap
corresponds to the variablg . tion does not work very well with integers.
The potential graph interpretation of DBMs will be very

We introduce the — ~ operator on indices defined by 2
__.helpful to understand the algorithms presented.

1@ 1—whered is thebit-wise exclusive ooperator—so that,
if ¢ corresponds ta;+ then 7 corresponds ta; and if ¢
corresponds ta; then 7 corresponds t@ﬂr A. Emptiness Test.

The following graph-oriented theorem allows us to perform

emptiness testing for-domains,)’°-domains and octagons:
D. Coherence.
Theorem 2:

Figure 5 shows that some constraints ovwér can be 1) Dim) = 0 < G
represented by different potential constraints oveA DBM negative weight.
m™ will be said to becoherentif two potential constraints 2) D(m®) =) += DO
over) corresponding to the same constraint overare either 3) If [ # Z, thenD(m™*
both represented im™, or both absent. Thanks to the- - 1= Z’ thenD(m™) =
operator we introduced, coherence can be easily charzateri

m) has a cycle with a strictly

(m?%) = 0.
)=0 < DT (m")=10.
) = DT (m™) = 0, but the
converse is false (Figure 6).
O
Theorem 1:m™ is coherent < Vi, j, mf ; . If I # Z, in order to check whether thg#*-domain of
K O a DBM m™ is empty, we simply have to check for cycles
In the following, DBMs with a + superscript will be With a strictly negative weight igj(m™) using, for example,
assumed to be coherent. the well-knownBellman-Ford algorithmwhich runs inO(N?)
time and is described in Cormen, Leiserson and Rivest’s
classical algorithmic textbook [16, §25.3].
E. V*+-domain. Figure 6 gives an example where our algorithm fails when
dealing with integers. Indeed, we ha@¥m™) = {(3+ 2,3 —
As for the simple interval extension, thé-domain of a 2, 3+y,3—y) | Va,y € Z} which is not empty, but all these
DBM m™ is not of interest: we need to get back i —  solutions over{v;, vy ,v; ,v; } correspond to the singleton
I and take into account the fact that variablesVimare not {(3/2,3/2)} when we get back to{vy,v;}, which is not

independent but related by = . Thus, we define the an acceptable solution i, so D*(m*) should be empty.
V*-domainof m* and denote b)DJ“(er) the set: The problem is that a DBMn™ with coefficients inZ can
represent constraints that use not only integers, but @#fe h
DHm*) 2 { (505---,sn-1) €IV | _ integers constants—such as> 3/2 in Figure 6.
(80, =805+ --y8N—1,—SN—1) € D(m™)

We will call octagonany subset oV™ — T which is the B. Closure.

V*-domain of some coherent DBWh™'. As before,m™ < Given a DBM m, the V-domain of which is not empty,
nt = Dt (m™) C DT (n™), but the converse is false. G(m) has no strictly negative cycle, so itshortest-path



mo 2 we would like to deduce(v,” — v; < (c+d)/2) from
A 7 (v;f —v; < ¢) and (v —v; < d), which is not possible
my = Cip(mg) Vk, 0<k<N, K ¢ J J _
*“ N () because the set of edgés; ,v;), (v;,v])} does not form
m = my, a path (Figure 9).
. . Here is a more formal description of a normal form, called
whereCy, is defined vk, by: the strong closure adapted from the closure:
A Definition 1: m™ is strongly closedf and only if
Cry(m)];; =0 + I +.
[Cr(n)];; A « m" is coherentVi, j, m;; = mj3;
(Crx(n)];; = min(n;;, ng +ny;) Vi#Ej . « m* is closed Vi, m}} = 0 andVi, j, k, m; < mj, +
+.
my;
Fig. 7. Closure algorithm derived from tHeloyd-Warshall shortest-path o Vi jj mt < (m't 4 mf)/2.
algorithm. Ty = A 7 0
From this definition, we derive thgtrong closure algorithm
closure—or simply closure—m* is well-defined by: m* — (m¥)* described in Figure 8. The algorithm looks a
A bit like the closure algorithm of Figure 7 and also runs in
m); = 0, O(N?3) time. It uses two auxiliary function§;” andS+. The
. A . ML o C;t function looks like theCy, function used in the closure al-
m;; = o Z My iy ifizj . gorithm except it is designed to maintain coherence; €ach
(i=i1yin,oin=5) k=1 application is a step toward closure. TH& function ensures
: . i +(m+ +(m+ +(m+
The idea of closure relies on the fact that, (f = thatVi.j, [ST(m™); < ([ST(mT)];; + [ST(m™T)];;)/2
i1,i2,...,90 = j) iS a path fromv; to v;, then the constraint while maintaining coherence.

v — % < 224:711 m,,;,,, can be derived fronm by adding There is no simple explanation for the complexity @f ;
the potential constraints;, ,, — v;, < mi,,,, 1 < k < the five terms in themin statement appear naturally when

o CONSHAlIE : : . = i - . +
M — 1. This is animplicit potential constraint as it does not"Yind to prove that, when interleavir@,” and.5™ steps, what
appear directly inn. In the closure, we replace each potentié.’f’ashgaf'nlfd t_’ef"fhe wil nort] tl)s dfestroye.d in the next step.
constraint; — v; < m;; by the tightest implicit constraintwe ' "€ following theorem holds fof 7 Z:

can find by summation over paths @fm) if ¢ # j, or by 0 Theorem 4:

if ¢ =7 (0 is indeed the smallest value taken ty— v,). 1) m* = (m*)* < mt is strongly closed.
We have the following theorem: 2) Vi, j, if (m+);j # +oo, then I(sp,...,50n_1) €
Theorem 3: D(m“‘) such thath, Sok = —S82k+1 and S; — 8 =

(m*)?; (Saturation)

3) (m")®* = infg{n™ | DT (n") = D" (m™)} (Normal

*

1) m = m* < Vijk m;; < my + myg and
Vi, m;; = 0 (Local Definition)

2) Wi, j, if m, # oo, thenI(so,...,sx 1) € D(m) Form).
such thats; — s; = mj; (Saturation) . _ o -
3) m* = infq{n | D(n) = D(m)} (Normal Form) This theorem is very similar to Theorem 3. It states that,

O whenl # Z, the strong closure algorithm gives a strongly
Theorem 3.2 proves that the closure is indeed a nor %%sed DBM (Theorem 4.1) which is indeed a normal form
eorem 4.3). The nice saturation property of Theorem 4.2

form. Theorem 3.1 leads to a closure algorithm inspired g/ ful t | th acti d uni "
the Floyd-Warshallshortest-path algorithm. This algorithm jg> uselulto analyze the projection and union operators.

described in Figure 7 and runs A(N?) time. Theorem 3.2

is crucial to analyze precision of some operators (such Qs
projection and union). Classical DBMs and the interval constraint extension work
equally well on reals, rationals and integers. However, our
extension does not handle integers properly.

Whenl = Z, the strong closure algorithm does not lead to
the smallest DBM with the sam®*-domain. For example,
knowing thatz is an integer, the constrai@t: < 2¢ should be
C. Strong Closure. deduced fron2z < 2¢+ 1, which the strong closure algorithm

We now focus on finding a normal form for DBMs rep-fails to do. More formally, Definition 1 is not sufficient;
resenting non-empty octagons. The solution presentedeabour normal form should also respesti, m;; is even. One
does not work because two different DBMs can have tlg@n imagine to simply add to the strong closure algorithm a
sameV*-domain but different’-domains, and so the closurerounding phase?* defined by[R™(m™)],, = 2|m;,/2| and
(m*)* of m* is not the smallest DBM—uwith respect to thel Rt (m*)],; = m;; if i # j, but it is tricky to makeR"
< order—that represents the octagbr (m™). The problem and O,j interact correctly so we obtain a DBM which li®th
is that the set of implicit constraints gathered by sumnmati@losed and rounded. We were unable, at the time of writing,
of constraints over paths &f(m™) is not sufficient. Indeed, to design such an algorithm and kee@aN?) time cost.

Discussions abouf.

Remark 3:The closure is also a normal form for DBMs
representing non-empfy’-domains:
(m%)* = info{n® | D°(n’) = D°(m")}.



mT Ea— build an analyzer. If our abstract numerical domain is used
i A N ' T in a more complex analysis or in a parameterized abstract
My z ST(Cop(my)) vk, 0 <k <N, domain (backward and interprocedural analysis, such as in
(m™)* = mj, Bourdoncle’s SNTox analyzer, Deutsch’s pointer analysis
[14], etc.), one may need to add some more operators.
whereC;’ is defined vk, by: All the operators and transfer functions presented in this
section obviously respect coherence and are adapted from ou
[Cf ()] =) PADO-II article [1].
i A ’
C(mh)].. = min( nf, (n} +n),
(G ()] g ( (I;Jt :_;f+) ki) A. Equality and Inclusion Testing.
(nff T n’i{ il—nj_) We distinguish two cases. If one or both"-domains are
" N Kk N @)’) empty, then the test is obvious. If none are empty, we use the
(njf + g, ) following theorem which relies on the properties of the stro
. , closure:
and ST is defined by:
Theorem 5:
[S*(nt)],, £ min(nf;, (f, +n})/2) . 1) D (m") C D (n") < (m")* <n";
: : : 2) D*(m*) =D (n") <= (m™)* =(n")*
Fig. 8. Strong Closure algorithm. U
@ @ B. Projection.
Thanks to the saturation property of the strong closure, we
2 4 = can easily extract from a DBNn™ representing a non-empty

octagon, the interval in which a variable ranges :

@ @ Theorem 6:

3
(a) (b) {t|3(s0,...,5v_1) € DT (m™) such thats; =t }
= [—(m+)5i 2i+1/2a_(m+)§i+1 21/2] o
Fig. 9. A DBM (a) and its strong closure (b). Note that (a) isseld, and (interval bounds are included only if finite).
that (a) and (b) have the sam&t-domain but not the sam¥-domain. In 0
(b), we deducedvg + v1 < 3) from (2v9 < 2) and (2v1 < 4), so it is
smaller than (a) with respect td.

C. Union and Intersection.

. . The max and min operators orl lead to point-wise least
This problem was addressed by Harvey and Stuckey in .
: ! : - upper boundv and greatest lower bound (with respect to
their ACSC'97 article [9]. They propose a satisfiability al; i

. - ) . the < order) operators on DBMs:
gorithm mixing closure and tightening steps that can be

used to test emptiness and build the normal fdwat)® = [m* Ant].. 2 min(m;", n}");
infg{n™ | D*(nt) = D*(m™)} we need. Unfortunately, R Y A li Zi
this algorithm has &(N*) time cost in the worst case. This [m* Vo'l = max(mgj, nj)

algorithm has the advantage of being increment@{»?) These operators are useful to compute intersections and
time cost per constraint changed in the DBM—which is usefuhions of octagons:
for CLP problems but does not seem interesting in static
: - - 'Iéheorem 7

analysis because many operators are point-wise and chang - N - -
all (2N)? constraints in a DBM at once. 1) D+(m+ A n+) = D+(m+) N D+(n+)-

In practice, we suggest to analyze integer variable® ior 2) D (T v n+) 2D (m™)UDT(n"). _
R, as it is commonly done for polyhedron analysis [6]. This 3) If m™ andn™ represent non-empty octagons, then:

method will addnoisesolutions, which is safe in the abstract ((m*)*) \j{ ((ni)')jf - Lo
interpretation framework because we are only interestezhin infq{o® [ DT (0") 2 DF(m™*) UD*(n")}.
upper approximation of program behaviors. O

Remark that the intersection is always exact, but the union
of two octagons is not always an octagon, so we compute
an upper approximation. In order to get the best—smallest—

In this section, we describe how to implement the abstraapproximation for the union, we need to use the strong céosur
operators and transfer functions needed for static asalysi algorithm, as stated in Theorem 7.3.

These are the generic ones described in [5] for the intervalAnother consequence of Theorem 7.3 is that if the two
domain, and in [6] for the polyhedron domain: assignmentatguments ofv are strongly closed, then the result is also
tests, control flow junctions and loops. See Section VIHtrongly closed. Dually, the arguments afdo not need to
for an insight on how to use theses operators to actuabg strongly closed in order to get the best precision, but the

VI. OPERATORS ANDTRANSFERFUNCTIONS



result is seldom strongly closed—even if the arguments a
This situation is similar to what is described in our PADO
Il article [1]. Shaham, Kolodner, and Sagiv fail to analyz¢
this result in their CC2000 article [12] and perform a usgleg
closure after the union operator.

D. Widening.

Program semantics often usepointsto model arbitrary
long computations such é&sops Fixpoints are not computable
in the octagon domain—as it is often the case for abstrg
domains—because it is of infinite height. Thus, we defin
a widening operator as introduced in P.Cousot’s thesis [17
84.1.2.0.4], to compute iteratively an upper approxinrati
of the least fixpoint\/._, F*(m*) greater thanm™* of an

) ieN Fig. 10. Example of an infinite strictly increasing chain defi bymO =
operatorf™: (n)*, m{ = (m},v((n})*)*. Remark that the nodeuy , v; , vy }
+ + are not represented here due to lack of space; this part dBMs can be
[er Vn+] = m,; if n;; < ngv easily figured out by coherence.
“ 400 elsewhere.

The idea behind this widening is to remove in™ the
constraints that are nattable by union with n™; thus it is

Given a DBMm™ that represents a set of possible values of
the variable’* at a program point, an arithmetic comparison

very similar to the standard widenings used on the domaipsa variablev; € V*, and an arithmetic expressian we

of intervals [5] and polyhedra [6]. [12] proposes a similagenote bym+) andm
(g

widening on the set of DBMs representiigdomains.
The following theorem proves that is a widening in the
octagon domain:

Theorem 8:

1) DT (m*vnt) D DT (m*)UDt(nh).

2) For all chains(nj)ieN, the chain defined by induction:
if ©=0,
elsewhere

m" 2 { (ngt). (a))
’ m;", V((n;)*

is increasing, ultimately stationary, and with a limi
greater than\/, . (n;")°.
O
As for the union operator, the precision of thieoperator is

it

) DBMs representing respectively
the set of possible values oft if the testg succeeds and
after the assignment; «— e(vp,...,vn—1). Since the exact
representation of the resulting set is, in general, imjpbessi
we will only try to compute an upper approximation:

Property 1:
1) D*(m +)) ) {s € DT (m™) | s satisfiesg}.
2) D*(m 2 {s[si —e(s)] | s € DT (m™)}

(v o)
(where s[s; < ] meanss with its ith component
changed intar).
O

Here is an example definition:

Definition 2:

improved if its right argument is strongly closed; this isywh 1) [ UHUZQ)} 2

\_/rvreee)nesrl;reé t2he strong closure nf when computingm;" in { mlf(mf;’c) it (j,i) € {(2k, 20+ 1); (20, 2k + 1)},
One can be tempted to force the strong closure of the left Mij +e|sewhere

argument of the widening by replacing the induction step in and similarly form(vk—vzﬁc) andm —vr—u<c)

Theorem 8.2 bym;” = (m;” , v((n;)*))* if i > 0. However,

we cannot do this safely as Theorem 8.2 is no longer valid: 2) m ?;,kgc) = m?;k+yk§2c)’ and

one can build a strictly increasing infinite chdim; );cy (see mT 2 mt )

Figure 10) which means that fixpoints using this induction (vr2e) (~vs—vp<=20)

may not be computable! This situation is similar to what is A +

described in our PADO-II article [1]. Shaham, Kolodner, and 3) m (vk+vl o (m(ik“lﬁc))(‘”k‘”lg‘c)'

Sagiv fail to analyze this problem in their CC2000 article and similarly form(vk—vi:c) :

[12] and pretend all their computation are performed with A

closed DBMs. If we want our analysrs to terminate, it is 4) [ uwvw«:)} = my; + (aij + Bij)e, with
)

very importantnot to closethe (m; );cy in the induction +1 if j =2k
computation. Qi 2 -1 if j=2k+1,
0 elsewhere
i and
E. Guard and Assignment. R _1 if i — 2k,
In order to analyze programs, we need to model the effect Bij = +1 if i =2k+1,
of testsand assignments 0 elsewhere .



5) [mam_vﬁc)} = A. Coherent DBMs Lattice.
c K if (4,4) € {(2k,20); (2014 1,2k + 1)}, The setM™ of coherent DBMs, together with therder
—c if (j,4) € {(21,2k); (2k + 1,21 + 1) jrelation < and the point-wiséeast upper bound andgreatest
(m*)s; if i,7 ¢ {2k, 2k + 1}, lower boundh, is almost a lattice. It only needdeast element
+00 elsewhere 1, so we extendd, vV and A to MT = M* U{L} in an
for k #£ 1. obvious way to get, LI andrl. Thegreatest element is the

) DBM with all its coefficients equal tetroo.
6) In all other cases, we simply choose:

A Theorem 9:
M) = M N : .
N A (m*)8,  if 0,5 ¢ {2k, 2k + 1}, 1) (ML,Q,_I‘I,Q,J_,T) is a _Iattlce._
[ (U,ﬁe)L_ = too elsewhere 2) This lattice is complete ifl, <) is complete [ = Z or
! ' 0 R, but notQ).
Remark that the assignment destroys informations about O

v, and this could result in some implicit constraints about There are, however, two problems with this lattice. First,
other variables being destroyed as well. To avoid precisithis lattice is not isomorphic to a sub-lattice B{V* — I)
degradation, we use constraints from the strongly closed foas two different DBMs can have the sadié-domain. Then,
(m*);j in Definitions 2.5 and 2.6. the least upper bound operatoiis not the most precise upper
Remark also that the guard and assignment transfer fuapproximation of the union of two octagons because we do
tions are exact, except in the last—general—case of De&fimitinot force the arguments to be strongly closed.
2. There exists certainly many ways to improve the precision
of Definition 2.6. For example, in order to handle arbitraré
assignmentv, < e, one can use the projection operator’
to extract the interval where the variables range, then usel0 overcome these difficulties, we build another lattice,
a simple interval arithmetic to compute an approximatiod@sed on strongly closed DBMs. First, consider the/set
interval [—e~ /2, e* /2] where ranges the result of strongly closed DBMs\M*®, with aleast element ® added.
Now, we define ayreatest element®, apartial order relation

Strongly Closed DBMs Lattice.

e et —(m*)® +e
[memset]2el | (m+)91’ ()], e C*, aleast upper boundi® and agreatest lower bound® in
(M) N g on—1: (MF)Sy_1 oy o] ) M as follows:
and put back this information intm™: e
o Te 2 0 if i = j,
(m*)?; if i,7 & {2k, 2k + 1}, W =\ +oo  elsewhere
[ N } a ) et if (i,7) = (2k + 1,2k), S
(wre=e) |, — Y e~ it (i,5) = (2k,2k + 1) 4 e 4 LA { either mt = 1°,
ij ; ) ) m™LC°n" <— °
+oo elsewhere. - or mt,nt # 1° mt <n",
Finally, remark that we can extend easily the guard operator m+ if nt = 1°
to boolean formulawith the following definition: mtL®nt 2 nt if mt=1°,
Definition 3: mtVvnT elsewhere
+ 2 mt + . . e
1) m(, and ga) = m ) A, e B 1 if ¢+ eimﬂiﬁ} or
2) miy oy, = ((mi))*) V((me,)"); e + Ant)e |D (Ln S
3) mz:gl) is settled by the classical transformation: (m n’) eisewnere.
“(grand g2) — (=g1) or (g2) Thanks to Theorem 5.2, every non-empty octagon has a
“(grorga)  — (g1) and (~g2) - unique representation itM®; L* is the representation for

the empty set. We build aneaning functiory which is an

VII. L ATTICE STRUCTURES extension of — D¥ () to M1

In this section, we design two lattice structures: one on the (m+) A [0 if m™=_1°,
set of coherent DBMs and one on the set of strongly closed me) = Dt (m™) elsewhere.
DBMs. The first one is useful to analyze fixpoint transfers
between abstract and concrete semantics, and the second ofitieorem 10:
allows us to design a meaning function—or even a Galois 1) (MS$,C®,n®,L®, L*, T*) is a lattice andy is one-to-

connection—linking the set of octagons to the concretéctatt one.
P(Vt — I, following the abstract interpretation framework 2) If (I, <) is complete, this lattice is complete andis
described in Cousot and Cousot’s POPL'79 article [4]. meet-preservingy([]° X) = N{v(z) | = € X}. We

Lattice structures and Galois connections can be used to
simplify proofs of correctness of static analyses—see, for
example, the author's Master thesis [2] for a proof of the
correctness of the analysis described in Section VIII. PVt 1) $ MY

can—according to Cousot and Cousot [18, Prop. 7]—
build a canonicalGalois insertion



where theabstraction functiony is defined by: thenm," is computed by propagation (m‘l;_ and we set
a(X) =T {zeM} | X ()} . mf,, = ((m)e ) u(mi)r,)
O At the end of this process, eagh; is a valid invariant that

The M lattice features a nice meaning function and Rolds at program locatiofy. This method is callecbstract
precise union approximation; thus, it is tempting to fordle aexecution

our operators and transfer functions to live/rt$ by forcing
strong closure on their result. However, we saw this dogs Practical Results

not work for the widening, so fixpoint computationsustbe _ ) ) )
performed in the/\/lir |lattice. The analysis described above has been implemented in

OCaml and used on a small set of rather simple algorithms.
Figure 11 shows the detailed computation for the lines 5-9
from Figure 1. Remark that the program has been adapted to
In this section, we present the program analysis based the language described in the previous section, and program
our new domain that enabled us to prove the correctnessl@fations/y,... /o have been added. Also, for the sake of
the program in Figure 1. brevity, DBMs are presented in equivalent constraint sehfo
This is only one example application of our domain foand only the useful constraints are shown. Thanks to the
program analysis purpose. It was chosen for its simplicityidening, the fixpoint is reached after only two iterations:
of presentation and implementation. A fully featured todhvariants m;’, ,_, 5 only hold in the first iteration of
that can deal with real-life programs, taking care of pasite the loop ¢ = 1); invariantsm;", ,_, ¢ hold for all loop

procedures and objects is far beyond the scope of this wotiérations(1 < i < m). At the end of the analysis, we have

However, current tools using the interval or the ponhedrO(er <a<m)e (m;r)ﬂ

domains could benefit from this new abstract domain. Our analyzer was also able to prove that the well-known
Bubble sort and Heap sort do not perform out-of-bound error
while accessing array elements and to prove that Lamport’s

, o , , Bakery algorithm [19] for synchronizing two processes is
Our analyzer is very similar to the one described in Cousghrect_however, unlike the example in Figure 1, these-anal

and Halbwachs's POPL'78 article [6], except it uses our neykis \yhere already in the range of our PADO-II article [1].
abstract domain instead of the abstract domain of polyhedra

Here is a sketched description of this analysis—more infor- .
mations, as well as proofs of its correctness can be foundn Precision and Cost.
the author's Master thesis [2]. The computation speed in our abstract domain is limited
We suppose that our program is procedure-free, has ohly the cost of the strong closure algorithm because it is the
numerical variables—no pointers or array—and is solely-corfnost used and the most costly algorithm. Thus, most abstract
posed of assignmentsf, then else fi and while do done oOperators have @(N?) worst case time cost. Because a fully
statements. Syntactic program locatidnsare placed to vi- featured tool using our domain is not yet available, we do not
sualize the control flow: there are locations before andr afténow how well this analysis scales up to large programs.
statements, at the beginning and the endthen and else The invariants computed asdwaysmore precise than the
branches and inner loop blocks; the location at the progra@ifies computed in [1], which gives itself always better rssul
entry point is denoted by. than the widespread intervals domain [5]; but they are less

The analyzer associates to each program goimn element precise than the costly polyhedron analysis [6]. Possdse bf
m; € er At the beginning, allm; are | (meaning precision have three causes: non-exact union, non-exact gu
the control flow cannot pass there) excepg — T. Then, and assignment transfer functions, and widening in loops. T
informations are propagated through the control flow asef tHirst two causes can be worked out by refining Definition 2 and
program were executed: choosing to represent, as abstract state, any finite union of
e For [(I;) vi — e (li41)], we setmy,, = (m})(y,0)- octagons instead of a single one. Promising represensation
« For a test[(l;) if ¢ then (i) o else (;j) 1, we are theCIO(_:k-Dﬁerence D|agram.°{|ntroo_luced in 199_9_by
Mg andm’ = (m) ). ' Larsen, Weise, Yi, anql Pearson [20]) abifference Decision
+ When the control flow merées after a téshen --- (1;) Diagrams (introduced in Mgller, Lichtenberg, Andersen, and
else - (I;) fi (j41)], we setmj*H = ((m})*) U Hulgaard’s CSL'99 paper [21]),wh|ch are tree?basedst_ms_asi
((m;;).)_ : mtroducetdf_ bi/ thg mog;eol—gheck]ng tc):otrr;rr]nunlty (tjo gffm;eptly
- _ . _ represent finite unions af’-domains, but they need adaptation
For a loop] (l;) while g do (I;)--- (I¢) dome (lk+1)],  "or4d e iced in the abstract interpretation framevaark

must be extended to octagons.

VIII. A PPLICATION TO PROGRAM ANALYSIS

A. Presentation of the Analysis.

setm;,; = (m;

we must solve the relatiom; = (m;” Lm; ). We
solve it iteratively using the widening: suppose; is
known and we can deduce m; from any m| by
propagation; we compute the Iiminj of IX. CoNCLUSION

In this article, we presented a new numerical abstract
{ mzo = (m;r)(g) domain that extends, without much performance degradation

m}, , =m, v((my,)?,) the DBM-based abstract domain described in our PADO-II



10

4 (lo) a—0;1—1 (ll) (2]
while ¢ < m do (I2)
7 if ?
8 then (i3) a — a+1 (I4) 13]
9 else(ls) a —a—1 (lg)
fi (I7) [4]
i—i+1(ls)
11 done(ly) [5]
mj =T 6]

mf={i=1a=01-i<a<i-—1}
[7]
(8]
[0l

First iteration of the loop
mj,={i=1a=0;1-i<a<i—1;i<m}

m3+.,0 m;r.,o:m;o
mj,={i=lia=12-i<a<i;i<m}
mi,={i=1a=-1; -i<a<i-—2;i<m}
miy={i=1a€[-1,1; i <a<ii<m}
mi,={i=2ac[-111-i<a<i-1;i<m+1}

[20]

(11]

Second iteration of the loop
+ ot —mt —mT +
m;; =mg; =mg; =My, V (Mg ) i<m)
={1<i<m;1-i<a<i-1}
my, ={1<i<m;2—i<a<i}

[12]

[13]

A

[14]

mi, ={1<i<m; —i<a<i-2}

& [15]
m;; ={1<i<m; —i<a<i}
mi, ={2<i<m+L1-i<a<i-1} .

Third iteration

+ .+
myqo = 1My g

of the loop
(fixpoint reached)

[17]

+ _ ot + _
my =1y, mg = Mg [18]
my ={i=m+1;1-i<a<i-1}

[19]

Fig. 11. Detailed analysis of lines 5-9 from Figure 1. Foresakconciseness
DBMs are shown in their equivalent constraint set form arelass constraints

are not shown. [20]

[21]

article [1]. This domain allows us to manipulate invariaots

the form (+z + y < ¢) with a O(n?) worst case memory
cost per abstract state andn?) worst case time cost per
abstract operation—whereis the number of variables in the
program.

We claim that our approach is fruitful since it allowed
us to prove automatically the correctness of some noratrivi
algorithms, beyond the scope of interval analysis, for almuc
smaller cost than polyhedron analysis. However, our pyptot
implementation did not allow us to test our domain on real-
life programs and we still do not know if it will scale up. It
is the author’s hope that this new domain will be integrated
into currently existing static analyzers as an alternativéne
intervals and polyhedra domains.
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