
HAL Id: hal-00136664
https://hal.science/hal-00136664

Submitted on 14 Mar 2007

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

The Octagon Abstract Domain
Antoine Miné

To cite this version:

Antoine Miné. The Octagon Abstract Domain. Oct 2001, pp.310-319. �hal-00136664�

https://hal.science/hal-00136664
https://hal.archives-ouvertes.fr

ha
l-0

01
36

66
4,

 v
er

si
on

 1
 -

 1
4

M
ar

 2
00

7
1

The Octagon Abstract Domain
Antoine Miné

École Normale Supérieure de Paris, France,
mine@di.ens.fr,

http://www.di.ens.fr/~mine

Abstract— This article presents a new numerical abstract
domain for static analysis by abstract interpretation. It extends
a former numerical abstract domain based on Difference-Bound
Matrices and allows us to represent invariants of the form
(±x ± y ≤ c), where x and y are program variables and c

is a real constant.
We focus on giving an efficient representation based on

Difference-Bound Matrices—O(n2) memory cost, where n is
the number of variables—and graph-based algorithms for all
common abstract operators—O(n3) time cost. This includes a
normal form algorithm to test equivalence of representation and
a widening operator to compute least fixpoint approximations.

Index Terms— abstract interpretation, abstract domains, linear
invariants, safety analysis, static analysis tools.

I. I NTRODUCTION

This article presents practical algorithms to represent and
manipulate invariants of the form(±x ± y ≤ c), where x
andy are numerical variables andc is a numeric constant. It
extends the analysis we previously proposed in our PADO-II
article [1]. Sets described by such invariants are special kind of
polyhedra calledoctagonsbecause they feature at most eight
edges in dimension 2 (Figure 2). Using abstract interpretation,
this allows discovering automatically common errors, suchas
division by zero, out-of-bound array access or deadlock, and
more generally to prove safety properties for programs.

Our method works well for reals and rationals. Integer
variables can be assumed, in the analysis, to be real in order
to find approximate but safe invariants.

Example. The very simple program described in Figure
1 simulatesM one-dimensional random walks ofm steps
and stores the hits in the arraytab. Assertions in curly
braces are discovered automatically by a simple static analysis
using our octagonal abstract domain. Thanks to the invariants
discovered, we have the guarantee that the program does not
perform out-of-bound array access at lines 2 and 10. The
difficult point in this example is the fact that the bounds of
the arraytab are not known at the time of the analysis; thus,
they must be treated symbolically.

For the sake of brevity, we omit proofs of theorems in this
article. The complete proof for all theorems can be found in
the author’s Master thesis [2].

II. PREVIOUS WORK

A. Numerical Abstract Domains.

Static analysis has developed a successful methodology,
based on the abstract interpretation framework—see Cousot

1 int tab[−m . . .m];
2 for i = −m to m tab[i] = 0; {−m ≤ i ≤ m}
3 for j = 1 to M do
4 int a = 0;
5 for i = 1 to m
6 { 1 ≤ i ≤ m; −i + 1 ≤ a ≤ i− 1 }
7 if rand(2) = 0
8 then a = a + 1; { −i + 1 ≤ a ≤ i }
9 elsea = a− 1; { −i ≤ a ≤ i− 1 }

10 tab[a] = tab[a] + 1; { −m ≤ a ≤ m }
11 done;

Fig. 1. Simulation of a random walk. The assertions in curly brackets{. . .}
are discovered automatically and prove that this program does not perform
index out of bound error when accessing the arraytab.

and Cousot’s POPL’77 paper [3]—to build analyzers that
discover invariants automatically: all we need is anabstract
domain, which is a practical representation of the invariants
we want to study, together with a fixed set of operators and
transfer functions (union, intersection, widening, assignment,
guard, etc.) as described in Cousot and Cousot’s POPL’79
article [4].

There exists manynumerical abstract domains. The most
used are the lattice ofintervals (described in Cousot and
Cousot’s ISOP’76 article [5]) and the lattice ofpolyhedra
(described in Cousot and Halbwachs’s POPL’78 article [6]).
They represent, respectively, invariants of the form(v ∈
[c1; c2]) and (α1v1 + · · · + αnvn ≤ c), wherev, v1, . . . , vn

are program variables andc, c1, c2, α1, . . . , αn are constants.
Whereas the interval analysis is very efficient—linear memory
and time cost—but not very precise, the polyhedron analysisis
much more precise (Figure 2) but has a huge memory cost—in
practice, it is exponential in the number of variables.

Remark that the correctness of the program in Figure 1
depends on the discovery of invariants of the form(a ∈
[−m, m]) where m must not be treated as a constant, but
as a variable—its value is not known at analysis time. Thus,
this example is beyond the scope of interval analysis. It can
be solved, of course, using polyhedron analysis.

B. Difference-Bound Matrices.

Several satisfiability algorithms for set of constraints involv-
ing only two variables per constraint have been proposed in
order to solveConstraint Logic Programming (CLP)problems.
Pratt analyses, in [7], the simple case of constraints of the

2

form (x − y ≤ c) and (±x ≤ c) which he calledseparation
theory. Shostak then extends, in [8], this to aloop residue
algorithm for the case(αx+βy ≤ c). However, the algorithm
is complete only for reals, not for integers. Recently, Harvey
and Stuckey proposed, in their ACSC’97 article [9], a complete
algorithm, inspired from [8], for integer constraints of the form
(±x± y ≤ c).

Unlike CLP, when analyzing programs, we are not only
interested in testing the satisfiability of constraint sets, we also
need to manipulate them and apply operators that mimic the
one used to define the semantics of programs (assignments,
tests, control flow junctions, loops, etc.).

The model-checkingcommunity has developed a practical
representation, calledDifference-Bound Matrices (DBMs), for
constraints of the form(x−y ≤ c) and (±x ≤ c), together with
many operators, in order to model-checktimed automata(see
Yovine’s ES’98 article [10] and Larsen, Larsson, Pettersson,
and Yi’s RTSS’97 article [11]). These operators are tied to
model checking and do not meet the abstract interpretation
needs. This problem was addressed in our PADO-II article [1]
and in Shaham, Kolodner, and Sagiv’s CC2000 article [12]
which propose abstract domains based on DBMs, featuring
widenings and transfer functions adapted to real-live program-
ming languages. All these works are based on the concept of
shortest-path closurealready present in Pratt’s article [7] as
the base of the satisfiability algorithm for constraints of the
form (x−y ≤ c). The closure also leads to a normal form that
allows easy equality and inclusion testing. Good understanding
of the interactions between closure and the other operatorsis
needed to ensure the best precision possible and termination of
the analysis. These interactions are described in our PADO-II
article [1].

Again, proof of the correctness of the program in Figure
1 is beyond the scope of the DBM-based abstract domains
presented in [1], [12] because the invariant(−a−m ≤ 0) we
need does not match(x− y ≤ c).

C. Our Contribution.

Our goal is to propose a numerical abstract domain that is
between, in term of expressiveness and cost, the interval and
the polyhedron domains. The set of invariants we discover
can be seen as special cases of linear inequalities; but the
underlying algorithmic is very different from the one used in
the polyhedron domain [6], and much more efficient.

In this article, we show that DBMs can be extended to
describe invariants of the form(±x ± y ≤ c). We build a
new numerical abstract domain, called theoctagon abstract
domain, extending the abstract domain we presented in our
PADO-II article [1] and detail algorithms implementing all
operators needed for abstract interpretation. Most algorithms
are adapted from [1] but some are much more complex. In
particular, the closure algorithm is replaced by astrong closure
algorithm.

It is very important to understand that an abstract domain
is only a brick in the design of a static analyzer. For the
sake of simplicity, this paper presents an application of our
domain on a simple forward analysis of a toy programming

x

y

��������
��������
��������
��������
��������
��������
��������
��������

��������
��������
��������
��������
��������
��������
��������
��������

x

y

(a) (b)

��������
��������
��������
��������
��������
��������
��������

��������
��������
��������
��������
��������
��������
��������

x

y

��������
��������
��������
��������
��������
��������
��������

��������
��������
��������
��������
��������
��������
��������

y

x

(c) (d)

Fig. 2. A set of points (a), and its best approximation in the interval (b),
polyhedron (c), and octagon (d) abstract domains.

language. However, one could imagine toplug this domain
in various analyses, such as Bourdoncle’s SYNTOX analyzer
[13], Deutsch’s pointer analysis [14], Dor, Rodeh, and Sagiv’s
string cleanness checking [15], etc.

Section III recalls the DBM representation forpotential
constraints(x − y ≤ c). Section IV explains how DBMs
can be used to represent a wider range of constraints: interval
constraints(±x ≤ c), and sum constraints(±x± y ≤ c). We
then stick to this last extension, as it is the core contribution of
this article, and discuss in Section V about normal form and
in Section VI about operators and transfer functions. Section
VII builds two lattice structures using these operators. Section
VIII presents some practical results and gives some ideas for
improvement.

III. D IFFERENCE-BOUND MATRICES

In this section, we recall some definitions and simple facts
about Difference-Bound Matrices (DBMs) and their use in
order to represent sets of invariants of the form(x − y ≤ c).
DBMs are described in [11], [10] from a model-checking point
of view and in [1] for abstract interpretation use.

Let V = {v0, . . . , vN−1} be a finite set of variables with
value in a numerical setI (which can beZ, Q or R). We extend
I to I by adding the+∞ element; the standard operations≤,
=, +, min andmax are extended toI as usual.

A. Potential Constraints, DBMs.

A potential constraint overV is a constraint of the form
(vi − vj ≤ c), with vi, vj ∈ V and c ∈ I. Let C be a set
of potential constraint overV . We suppose, without loss of
generality, that there do not exist two constraints(vi−vj ≤ c)
and(vi−vj ≤ d) in C with c 6= d. Then,C can be represented
uniquely by aN ×N matrix m with elements inI :

3

v0 v1 v2

v0 +∞ 4 3
v1 −1 +∞ +∞
v2 −1 1 +∞

v0
4

3

v1

−1

v2

−1

1

(a) (b)

v1

v2

v0

(c)

Fig. 3. A DBM (a), its potential graph (b) and itsV-domain (c).

mij
△
=

{

c if (vj − vi ≤ c) ∈ C,
+∞ elsewhere.

m is called aDifference-Bound Matrix (DBM).

B. Potential Graph.

It is convenient to considerm as the adjacency matrix of a
weighted graphG(m) = {V ,A, w}, called itspotential graph,
and defined by:

A ⊆ V × V ,

A
△
= {(vi, vj) |mij < +∞},

w ∈ A 7→ I,

w((vi, vj))
△
= mij .

We will denote by〈i1, . . . , ik〉 a finite set of nodes repre-
senting apath from nodevi1 to nodevik

in G(m). A cycle is
a path such thati1 = ik.

C. P Order.

The≤ order onI induces a point-wise partial orderP on
the set of DBMs:

m P n
△
⇐⇒ ∀i, j, mij ≤ nij .

The corresponding equality relation is simply the matrix
equality=.

D. V-domain.

Given a DBM m, the subset ofV 7→ I (which will be
often assimilated to a subset ofIN) verifying the constraints
∀i, j, vj−vi ≤mij will be denoted byD(m) and calledm’s
V-domain:

D(m)
△
= {(s0, . . . , sN−1) ∈ IN | ∀i, j, sj − si ≤mij} .

By extension, we will callV-domainany subset ofV 7→ I

which is theV-domain of some DBM.

Remark 1:We havem P n =⇒ D(m) ⊆ D(n), but
the converse is false. As a consequence, representation ofV-
domains is not unique and we can haveD(m) = D(n) but
m 6= n (Figure 4).

v0 v1 v2

v0 +∞ 4 3
v1 −1 +∞ +∞
v2 −1 1 +∞

v0 v1 v2

v0 0 5 3
v1 −1 +∞ +∞
v2 −1 1 +∞

(a) (b)

Fig. 4. Two different DBMs with the sameV-domain. Remark that (a) and
(b) are not even comparable with respect toP.

IV. EXTENDING DIFFERENCE-BOUND MATRICES

Discovering invariants of the single potential form(x −
y ≤ c) is not very interesting; however DBMs can be used
to represent broader constraint forms. In this section, we first
present briefly how to add interval constraints(±x ≤ c). This
extension is not new: [11], [1] use it instead of pure DBM.
We then present our new extension allowing representation of
the more general constraints(±x± y ≤ c).

A. Representing intervals.

Given a finite set of variablesV0 = {v0, . . . , vN−1}, in
order to represent constraints of the form(vi − vj ≤ c) and
(±vi ≤ c), we simply add toV0 a special variable, named
0, which is supposed to be always equal to 0. Constraints of
the form (vi ≤ c) and (vj ≥ d) can then be rewritten as
(vi − 0 ≤ c) and (0 − vj ≤ −d), which are indeed potential
constraints over the setV = {0, v0, . . . , vN−1}.

We will use a0 superscript to denote that a DBM overV
represents a set of extended constraints overV0. Given such a
DBM m

0, we will not be interested in itsV-domain,D(m0),
which is a subset ofV 7→ I, but in itsV0-domain, denoted by
D0(m0) and defined by:

D0(m0)
△
=

{

(s0, . . . , sN−1) ∈ IN |
(0, s0, . . . , sN−1) ∈ D(m0)

}

⊆ V0 7→ I .

We will call V0-domain any subset ofV0 7→ I which is
theV0-domain of some DBMm

0. As before,m0 P n
0 =⇒

D0(m0) ⊆ D0(n0), but the converse is false.

B. Representing sums.

We suppose thatV+ = {v0, . . . , vN−1} is a finite set of
variables. The goal of this article is to present a new DBM
extension adapted to represent constraints of the form(±vi±
vj ≤ c), with vi, vj ∈ V+ andc ∈ I.

In order to do this, we consider that each variablevi in V+

comes in two flavors: a positive formv+
i and a negative form

v−i . We introduce the setV = { v+
0 , v−0 , . . . , v+

N−1, v−N−1 }
and consider DBMs overV . Within a potential constraint, a
positive variablev+

i will be interpreted as+vi, and a negative
variablev−i as−vi; thus it is possible to represent(vi+vj ≤ c)
by (v+

i −v−j ≤ c). More generally, any set of constraints of the
form (±vi ± vj ≤ c), with vi, vj ∈ V+ can be represented by
a DBM overV , following the translation described in Figure
5.

Remark 2:We do not need to add a special variable0 to
represent interval constraints as we did before. Constraints of

4

constraint overV+ constraint(s) overV
vi − vj ≤ c (i 6= j) v+

i − v+
j ≤ c, v−j − v−i ≤ c

vi + vj ≤ c (i 6= j) v+
i − v−j ≤ c, v+

j − v−i ≤ c

−vi − vj ≤ c (i 6= j) v−j − v+
i ≤ c, v−i − v+

j ≤ c

vi ≤ c v+
i − v−i ≤ 2c

vi ≥ c v−i − v+
i ≤ −2

Fig. 5. Translation between extended constraints overV+ and potential
constraints overV .

the form (vi ≤ c) and (vi ≥ c) can be represented as(v+
i −

v−i ≤ 2c) and (v−i − v+
i ≤ −2c).

C. Index Notation.

We will use a+ superscript to denote that a DBM overV
represents a set of extended constraints overV+. Such a DBM
m

+ is a 2N × 2N matrix with the following convention: a
row or column index of the form2i, i < N corresponds to
the variablev+

i and an index of the form2i + 1, i < N
corresponds to the variablev−i .

We introduce the· 7→ · operator on indices defined bȳı
△
=

i⊕ 1—where⊕ is thebit-wise exclusive oroperator—so that,
if i corresponds tov+

j , then ı̄ corresponds tov−j and if i

corresponds tov−j , then ı̄ corresponds tov+
j .

D. Coherence.

Figure 5 shows that some constraints overV+ can be
represented by different potential constraints overV . A DBM
m

+ will be said to becoherentif two potential constraints
overV corresponding to the same constraint overV+ are either
both represented inm+, or both absent. Thanks to the· 7→ ·
operator we introduced, coherence can be easily characterized:

Theorem 1:m+ is coherent ⇐⇒ ∀i, j, m
+
ij = m

+
̄ ı̄ .

�

In the following, DBMs with a + superscript will be
assumed to be coherent.

E. V+-domain.

As for the simple interval extension, theV-domain of a
DBM m

+ is not of interest: we need to get back inV+ 7→
I and take into account the fact that variables inV are not
independent but related byv+

i = −v−i . Thus, we define the
V+-domainof m

+ and denote byD+(m+) the set:

D+(m+)
△
=

{

(s0, . . . , sN−1) ∈ IN |
(s0,−s0, . . . , sN−1,−sN−1) ∈ D(m+)

}

.

We will call octagonany subset ofV+ 7→ I which is the
V+-domain of some coherent DBMm+. As before,m+ P
n

+ =⇒ D+(m+) ⊆ D+(n+), but the converse is false.

v+
0

0

v−1

0

3

v+
1

−3

v−03
������
������
������
������
������
������

������
������
������
������
������
������

������
������
������
������
������
������

������
������
������
������
������
������

���������������������
���������������������
���������������������
���������������������

���������������������
���������������������
���������������������
���������������������

v1 − v0 ≤ 0 v0 + v1 ≤ 3

v0

2v1 ≥ 3

v1

(a) (b)

Fig. 6. A potential graphG(m+) in Z with no strictly negative cycle (a) and
the correspondingV+-domain (b)D+(m+) = {(3

2
, 3

2
)} which is empty in

Z2.

V. EMPTINESSTEST AND NORMAL FORMS

We saw in Figure 4 that two different DBMs can have the
sameV-domain. Fortunately, there exists a normal form for
DBMs representing non-empty octagons.

In this section, we first recall the normal form for classical
DBMs m, and then show how it can be adapted to DBMsm

+

representing non-empty octagons. Unfortunately, our adapta-
tion does not work very well with integers.

The potential graph interpretation of DBMs will be very
helpful to understand the algorithms presented.

A. Emptiness Test.

The following graph-oriented theorem allows us to perform
emptiness testing forV-domains,V0-domains and octagons:

Theorem 2:

1) D(m) = ∅ ⇐⇒ G(m) has a cycle with a strictly
negative weight.

2) D(m0) = ∅ ⇐⇒ D0(m0) = ∅.
3) If I 6= Z, thenD(m+) = ∅ ⇐⇒ D+(m+) = ∅.

If I = Z, thenD(m+) = ∅ =⇒ D+(m+) = ∅, but the
converse is false (Figure 6).

�

If I 6= Z, in order to check whether theV+-domain of
a DBM m

+ is empty, we simply have to check for cycles
with a strictly negative weight inG(m+) using, for example,
the well-knownBellman-Ford algorithmwhich runs inO(N3)
time and is described in Cormen, Leiserson and Rivest’s
classical algorithmic textbook [16, §25.3].

Figure 6 gives an example where our algorithm fails when
dealing with integers. Indeed, we haveD(m+) = {(3+x, 3−
x, 3 + y, 3− y) | ∀x, y ∈ Z} which is not empty, but all these
solutions over{v+

0 , v−0 , v+
1 , v−1 } correspond to the singleton

{(3/2, 3/2)} when we get back to{v0, v1}, which is not
an acceptable solution inZ2, soD+(m+) should be empty.
The problem is that a DBMm+ with coefficients inZ can
represent constraints that use not only integers, but also half-
integers constants—such asv1 ≥ 3/2 in Figure 6.

B. Closure.

Given a DBM m, the V-domain of which is not empty,
G(m) has no strictly negative cycle, so itsshortest-path

5

m0
△
= m,

mk+1
△
= Ck(mk) ∀k, 0 ≤ k < N,

m
∗ △

= mN ,

whereCk is defined,∀k, by:

{

[Ck(n)]ii
△
= 0,

[Ck(n)]ij
△
= min(nij ,nik + nkj) ∀i 6= j .

Fig. 7. Closure algorithm derived from theFloyd-Warshall shortest-path
algorithm.

closure—or simply closure—m
∗ is well-defined by:

m
∗
ii

△
= 0,

m
∗
ij

△
= min

1≤M
〈i=i1,i2,...,iM=j〉

M−1
∑

k=1

mikik+1
if i 6= j .

The idea of closure relies on the fact that, if〈i =
i1, i2, . . . , iM = j〉 is a path fromvi to vj , then the constraint
vj − vi ≤

∑M−1
k=1 mikik+1

can be derived fromm by adding
the potential constraintsvik+1

− vik
≤ mikik+1

, 1 ≤ k ≤
M − 1. This is animplicit potential constraint as it does not
appear directly inm. In the closure, we replace each potential
constraintvj −vi ≤mij by the tightest implicit constraint we
can find by summation over paths ofG(m) if i 6= j, or by 0
if i = j (0 is indeed the smallest value taken byvi − vi).

We have the following theorem:

Theorem 3:
1) m = m

∗ ⇐⇒ ∀i, j, k, mij ≤ mik + mkj and
∀i, mii = 0 (Local Definition).

2) ∀i, j, if m
∗
ij 6= +∞, then ∃(s0, . . . , sN−1) ∈ D(m)

such thatsj − si = m
∗
ij (Saturation).

3) m
∗ = infP{n | D(n) = D(m)} (Normal Form).

�

Theorem 3.2 proves that the closure is indeed a normal
form. Theorem 3.1 leads to a closure algorithm inspired by
the Floyd-Warshallshortest-path algorithm. This algorithm is
described in Figure 7 and runs inO(N3) time. Theorem 3.2
is crucial to analyze precision of some operators (such as
projection and union).

Remark 3:The closure is also a normal form for DBMs
representing non-emptyV0-domains:
(m0)∗ = infP{n0 | D0(n0) = D0(m0)}.

C. Strong Closure.

We now focus on finding a normal form for DBMs rep-
resenting non-empty octagons. The solution presented above
does not work because two different DBMs can have the
sameV+-domain but differentV-domains, and so the closure
(m+)∗ of m

+ is not the smallest DBM—with respect to the
P order—that represents the octagonD+(m+). The problem
is that the set of implicit constraints gathered by summation
of constraints over paths ofG(m+) is not sufficient. Indeed,

we would like to deduce(v+
i − v−j ≤ (c + d)/2) from

(v+
i − v−i ≤ c) and (v+

j − v−j ≤ d), which is not possible
because the set of edges{(v−i , v+

i), (v−j , v+
j)} does not form

a path (Figure 9).
Here is a more formal description of a normal form, called

the strong closure, adapted from the closure:

Definition 1: m
+ is strongly closedif and only if

• m
+ is coherent: ∀i, j, m

+
ij = m

+
̄ ı̄;

• m
+ is closed: ∀i, m

+
ii = 0 and∀i, j, k, m

+
ij ≤ m

+
ik +

m
+
kj ;

• ∀i, j, m
+
ij ≤ (m+

i ı̄ + m
+
̄j)/2.

�

From this definition, we derive thestrong closure algorithm
m

+ 7→ (m+)• described in Figure 8. The algorithm looks a
bit like the closure algorithm of Figure 7 and also runs in
O(N3) time. It uses two auxiliary functionsC+

k andS+. The
C+

k function looks like theCk function used in the closure al-
gorithm except it is designed to maintain coherence; eachC+

k

application is a step toward closure. TheS+ function ensures
that ∀i, j, [S+(m+)]ij ≤ ([S+(m+)]i ı̄ + [S+(m+)]̄j)/2
while maintaining coherence.

There is no simple explanation for the complexity ofC+
k ;

the five terms in themin statement appear naturally when
trying to prove that, when interleavingC+

k andS+ steps, what
was gained before will not be destroyed in the next step.

The following theorem holds forI 6= Z:

Theorem 4:
1) m

+ = (m+)• ⇐⇒ m
+ is strongly closed.

2) ∀i, j, if (m+)•ij 6= +∞, then ∃(s0, . . . , s2N−1) ∈
D(m+) such that∀k, s2k = −s2k+1 and sj − si =
(m+)•ij (Saturation).

3) (m+)• = infP{n
+ | D+(n+) = D+(m+)} (Normal

Form).
�

This theorem is very similar to Theorem 3. It states that,
when I 6= Z, the strong closure algorithm gives a strongly
closed DBM (Theorem 4.1) which is indeed a normal form
(Theorem 4.3). The nice saturation property of Theorem 4.2
is useful to analyze the projection and union operators.

D. Discussions aboutZ.

Classical DBMs and the interval constraint extension work
equally well on reals, rationals and integers. However, our
extension does not handle integers properly.

When I = Z, the strong closure algorithm does not lead to
the smallest DBM with the sameV+-domain. For example,
knowing thatx is an integer, the constraint2x ≤ 2c should be
deduced from2x ≤ 2c+1, which the strong closure algorithm
fails to do. More formally, Definition 1 is not sufficient;
our normal form should also respect:∀i, m

+
i ı̄ is even. One

can imagine to simply add to the strong closure algorithm a
rounding phaseR+ defined by[R+(m+)]i ı̄ = 2⌊m+

i ı̄/2⌋ and
[R+(m+)]ij = m

+
ij if i 6= ̄, but it is tricky to makeR+

andC+
k interact correctly so we obtain a DBM which isboth

closed and rounded. We were unable, at the time of writing,
to design such an algorithm and keep aO(N3) time cost.

6

m
+
0

△
= m

+,

m
+
k+1

△
= S+(C+

2k(m+
k)) ∀k, 0 ≤ k < N,

(m+)•
△
= m

+
N ,

whereC+
k is defined,∀k, by:

[

C+
k (n+)

]

ii

△
= 0,

[

C+
k (n+)

]

ij

△
= min(n

+
ij , (n+

ik + n
+
kj),

(n+
ik̄

+ n
+
k̄j

),

(n+
ik + n

+
kk̄

+ n
+
k̄j

),

(n+
ik̄

+ n
+
k̄k

+ n
+
kj))

andS+ is defined by:

[S+(n+)]ij
△
= min(n

+
ij , (n+

i ı̄ + n
+
̄j)/2) .

Fig. 8. Strong Closure algorithm.

v+
0 v−1

4

v−0

2

v+
1

=⇒

v+
0 v−1

4

3

v−0

2

3
v+
1

(a) (b)

Fig. 9. A DBM (a) and its strong closure (b). Note that (a) is closed, and
that (a) and (b) have the sameV+-domain but not the sameV-domain. In
(b), we deduced(v0 + v1 ≤ 3) from (2v0 ≤ 2) and (2v1 ≤ 4), so it is
smaller than (a) with respect toP.

This problem was addressed by Harvey and Stuckey in
their ACSC’97 article [9]. They propose a satisfiability al-
gorithm mixing closure and tightening steps that can be
used to test emptiness and build the normal form(m+)• =
infP{n+ | D+(n+) = D+(m+)} we need. Unfortunately,
this algorithm has aO(N4) time cost in the worst case. This
algorithm has the advantage of being incremental—O(N2)
time cost per constraint changed in the DBM—which is useful
for CLP problems but does not seem interesting in static
analysis because many operators are point-wise and change
all (2N)2 constraints in a DBM at once.

In practice, we suggest to analyze integer variables inQ or
R, as it is commonly done for polyhedron analysis [6]. This
method will addnoisesolutions, which is safe in the abstract
interpretation framework because we are only interested inan
upper approximation of program behaviors.

VI. OPERATORS ANDTRANSFERFUNCTIONS

In this section, we describe how to implement the abstract
operators and transfer functions needed for static analysis.

These are the generic ones described in [5] for the interval
domain, and in [6] for the polyhedron domain: assignments,
tests, control flow junctions and loops. See Section VIII
for an insight on how to use theses operators to actually

build an analyzer. If our abstract numerical domain is used
in a more complex analysis or in a parameterized abstract
domain (backward and interprocedural analysis, such as in
Bourdoncle’s SYNTOX analyzer, Deutsch’s pointer analysis
[14], etc.), one may need to add some more operators.

All the operators and transfer functions presented in this
section obviously respect coherence and are adapted from our
PADO-II article [1].

A. Equality and Inclusion Testing.

We distinguish two cases. If one or bothV+-domains are
empty, then the test is obvious. If none are empty, we use the
following theorem which relies on the properties of the strong
closure:

Theorem 5:

1) D+(m+) ⊆ D+(n+) ⇐⇒ (m+)• P n
+;

2) D+(m+) = D+(n+) ⇐⇒ (m+)• = (n+)•.

�

B. Projection.

Thanks to the saturation property of the strong closure, we
can easily extract from a DBMm+ representing a non-empty
octagon, the interval in which a variablevi ranges :

Theorem 6:
{ t | ∃(s0, . . . , sN−1) ∈ D+(m+) such thatsi = t }

= [−(m+)•2i 2i+1/2, (m+)•2i+1 2i/2]
(interval bounds are included only if finite).

�

C. Union and Intersection.

The max and min operators onI lead to point-wise least
upper bound∨ and greatest lower bound∧ (with respect to
the P order) operators on DBMs:

[m+ ∧ n
+]ij

△
= min(m+

ij ,n
+
ij);

[m+ ∨ n
+]ij

△
= max(m+

ij ,n
+
ij) .

These operators are useful to compute intersections and
unions of octagons:

Theorem 7:

1) D+(m+ ∧ n
+) = D+(m+) ∩ D+(n+).

2) D+(m+ ∨ n
+) ⊇ D+(m+) ∪ D+(n+).

3) If m
+ andn

+ represent non-empty octagons, then:
((m+)•) ∨ ((n+)•) =

infP{o+ | D+(o+) ⊇ D+(m+) ∪ D+(n+)}.
�

Remark that the intersection is always exact, but the union
of two octagons is not always an octagon, so we compute
an upper approximation. In order to get the best—smallest—
approximation for the union, we need to use the strong closure
algorithm, as stated in Theorem 7.3.

Another consequence of Theorem 7.3 is that if the two
arguments of∨ are strongly closed, then the result is also
strongly closed. Dually, the arguments of∧ do not need to
be strongly closed in order to get the best precision, but the

7

result is seldom strongly closed—even if the arguments are.
This situation is similar to what is described in our PADO-
II article [1]. Shaham, Kolodner, and Sagiv fail to analyze
this result in their CC2000 article [12] and perform a useless
closure after the union operator.

D. Widening.

Program semantics often usefixpoints to model arbitrary
long computations such asloops. Fixpoints are not computable
in the octagon domain—as it is often the case for abstract
domains—because it is of infinite height. Thus, we define
a widening operator, as introduced in P.Cousot’s thesis [17,
§4.1.2.0.4], to compute iteratively an upper approximation
of the least fixpoint

∨

i∈N
F i(m+) greater thanm+ of an

operatorF :

[

m
+
▽n

+
]

ij

△
=

{

m
+
ij if n

+
ij ≤m

+
ij ,

+∞ elsewhere.

The idea behind this widening is to remove inm+ the
constraints that are notstable by union with n

+; thus it is
very similar to the standard widenings used on the domains
of intervals [5] and polyhedra [6]. [12] proposes a similar
widening on the set of DBMs representingV-domains.

The following theorem proves that▽ is a widening in the
octagon domain:

Theorem 8:

1) D+(m+
▽n

+) ⊇ D+(m+) ∪D+(n+).
2) For all chains(n+

i)i∈N, the chain defined by induction:

m
+
i

△
=

{

(n+
0)• if i = 0,

m
+
i−1▽((n+

i)•) elsewhere,

is increasing, ultimately stationary, and with a limit
greater than

∨

i∈N
(n+

i)•.

�

As for the union operator, the precision of the▽ operator is
improved if its right argument is strongly closed; this is why
we ensure the strong closure ofn

+
i when computingm+

i in
Theorem 8.2.

One can be tempted to force the strong closure of the left
argument of the widening by replacing the induction step in
Theorem 8.2 by:m+

i = (m+
i−1▽((n+

i)•))• if i > 0. However,
we cannot do this safely as Theorem 8.2 is no longer valid:
one can build a strictly increasing infinite chain(m+

i)i∈N (see
Figure 10) which means that fixpoints using this induction
may not be computable! This situation is similar to what is
described in our PADO-II article [1]. Shaham, Kolodner, and
Sagiv fail to analyze this problem in their CC2000 article
[12] and pretend all their computation are performed with
closed DBMs. If we want our analysis to terminate, it is
very importantnot to closethe (m+

i)i∈N in the induction
computation.

E. Guard and Assignment.

In order to analyze programs, we need to model the effect
of testsandassignments.

n
+
0

△
=

v+
0

0

v+
1

0

1 v+
2

1

n
+
i

△
=

v+
0

i
i

v+
1

i

1 v+
2

i

1

m
+
2i =

v+
0

2i
2i+1

v+
1

2i

1 v+
2

2i+1

1

m
+
2i+1 =

v+
0

2i+2
2i+1

v+
1

2i+2

1 v+
2

2i+1

1

Fig. 10. Example of an infinite strictly increasing chain defined bym+

0
=

(n+

0
)•, m

+

i
= (m+

i−1
▽((n+

i
)•)•. Remark that the nodes{v−

0
, v

−

1
, v

−

2
}

are not represented here due to lack of space; this part of theDBMs can be
easily figured out by coherence.

Given a DBMm
+ that represents a set of possible values of

the variablesV+ at a program point, an arithmetic comparison
g, a variablevi ∈ V+, and an arithmetic expressione, we
denote bym+

(g) andm
+
(vi←e) DBMs representing respectively

the set of possible values ofV+ if the test g succeeds and
after the assignmentvi ← e(v0, . . . , vN−1). Since the exact
representation of the resulting set is, in general, impossible,
we will only try to compute an upper approximation:

Property 1:
1) D+(m+

(g)) ⊇ {s ∈ D
+(m+) | s satisfiesg}.

2) D+(m+
(vi←e)) ⊇ {s[si ← e(s)] | s ∈ D+(m+)}

(where s[si ← x] meanss with its ith component
changed intox).

�

Here is an example definition:

Definition 2:

1)
[

m
+
(vk+vl≤c)

]

ij

△
=

{

min(m+
ij , c) if (j, i) ∈ {(2k, 2l + 1); (2l, 2k + 1)},

m
+
ij elsewhere,

and similarly form+
(vk−vl≤c) andm

+
(−vk−vl≤c) .

2) m
+
(vk≤c)

△
= m

+
(vk+vk≤2c), and

m
+
(vk≥c)

△
= m

+
(−vk−vk≤−2c) .

3) m
+
(vk+vl=c)

△
= (m+

(vk+vl≤c))(−vk−vl≤−c),
and similarly form+

(vk−vl=c) .

4)
[

m
+
(vk←vk+c)

]

ij

△
= m

+
ij + (αij + βij)c, with

αij
△
=

+1 if j = 2k,
−1 if j = 2k + 1,
0 elsewhere,

and

βij
△
=

−1 if i = 2k,
+1 if i = 2k + 1,
0 elsewhere .

8

5)
[

m
+
(vk←vl+c)

]

ij

△
=

c if (j, i) ∈ {(2k, 2l); (2l + 1, 2k + 1)},
−c if (j, i) ∈ {(2l, 2k); (2k + 1, 2l + 1)},
(m+)•ij if i, j /∈ {2k, 2k + 1},
+∞ elsewhere,

for k 6= l.

6) In all other cases, we simply choose:

m
+
(g)

△
= m

+,
[

m
+
(vk←e)

]

ij

△
=

{

(m+)•ij if i, j /∈ {2k, 2k + 1},
+∞ elsewhere.

�

Remark that the assignment destroys informations about
vk and this could result in some implicit constraints about
other variables being destroyed as well. To avoid precision
degradation, we use constraints from the strongly closed form
(m+)•ij in Definitions 2.5 and 2.6.

Remark also that the guard and assignment transfer func-
tions are exact, except in the last—general—case of Definition
2. There exists certainly many ways to improve the precision
of Definition 2.6. For example, in order to handle arbitrary
assignmentvk ← e, one can use the projection operator
to extract the interval where the variables range, then use
a simple interval arithmetic to compute an approximation
interval [−e−/2, e+/2] where ranges the result

[−e−, e+] ⊇ e([−(m+)•01, (m
+)•10], . . . ,

[−(m+)•2N−2 2N−1, (m
+)•2N−1 2N−2])

and put back this information intom+:

[

m
+
(vk←e)

]

ij

△
=

(m+)•ij if i, j /∈ {2k, 2k + 1},
e+ if (i, j) = (2k + 1, 2k),
e− if (i, j) = (2k, 2k + 1),
+∞ elsewhere.

Finally, remark that we can extend easily the guard operator
to boolean formulaswith the following definition:

Definition 3:

1) m
+
(g1 and g2)

△
= m

+
(g1)
∧m

+
(g2);

2) m
+
(g1 or g2)

△
= ((m+

(g1))
•) ∨ ((m+

(g2))
•);

3) m
+
(¬g1) is settled by the classical transformation:
¬(g1 and g2) → (¬g1) or (¬g2)
¬(g1 or g2) → (¬g1) and (¬g2) .

�

VII. L ATTICE STRUCTURES

In this section, we design two lattice structures: one on the
set of coherent DBMs and one on the set of strongly closed
DBMs. The first one is useful to analyze fixpoint transfers
between abstract and concrete semantics, and the second one
allows us to design a meaning function—or even a Galois
connection—linking the set of octagons to the concrete lattice
P(V+ 7→ I), following the abstract interpretation framework
described in Cousot and Cousot’s POPL’79 article [4].

Lattice structures and Galois connections can be used to
simplify proofs of correctness of static analyses—see, for
example, the author’s Master thesis [2] for a proof of the
correctness of the analysis described in Section VIII.

A. Coherent DBMs Lattice.

The setM+ of coherent DBMs, together with theorder
relationP and the point-wiseleast upper bound∨ andgreatest
lower bound∧, is almost a lattice. It only needs aleast element
⊥, so we extendP, ∨ and ∧ to M+

⊥ = M+ ∪ {⊥} in an
obvious way to get⊑, ⊔ and⊓. Thegreatest element⊤ is the
DBM with all its coefficients equal to+∞.

Theorem 9:

1) (M+
⊥,⊑,⊓,⊔,⊥,⊤) is a lattice.

2) This lattice is complete if(I,≤) is complete (I = Z or
R, but notQ).

�

There are, however, two problems with this lattice. First,
this lattice is not isomorphic to a sub-lattice ofP(V+ 7→ I)
as two different DBMs can have the sameV+-domain. Then,
the least upper bound operator⊔ is not the most precise upper
approximation of the union of two octagons because we do
not force the arguments to be strongly closed.

B. Strongly Closed DBMs Lattice.

To overcome these difficulties, we build another lattice,
based on strongly closed DBMs. First, consider the setM•⊥
of strongly closed DBMsM•, with a least element⊥• added.
Now, we define agreatest element⊤•, apartial order relation
⊑•, a least upper bound⊔• and agreatest lower bound⊓• in
M•⊥ as follows:

⊤•ij
△
=

{

0 if i = j,
+∞ elsewhere,

m
+ ⊑• n

+ △
⇐⇒

{

either m
+ = ⊥•,

or m
+,n+ 6= ⊥•, m

+ P n
+,

m
+ ⊔• n

+ △
=

m
+ if n

+ = ⊥•,
n

+ if m
+ = ⊥•,

m
+ ∨ n

+ elsewhere,

m
+⊓•n+ △

=

⊥• if ⊥• ∈ {m+,n+} or
D+(m+ ∧ n

+) = ∅,
(m+ ∧ n

+)• elsewhere.

Thanks to Theorem 5.2, every non-empty octagon has a
unique representation inM•; ⊥• is the representation for
the empty set. We build ameaning functionγ which is an
extension of· 7→ D+(·) toM•⊥:

γ(m+)
△
=

{

∅ if m
+ = ⊥•,

D+(m+) elsewhere.

Theorem 10:

1) (M•⊥,⊑•,⊓•,⊔•,⊥•,⊤•) is a lattice andγ is one-to-
one.

2) If (I,≤) is complete, this lattice is complete andγ is
meet-preserving:γ(

d•
X) =

⋂

{γ(x) | x ∈ X}. We
can—according to Cousot and Cousot [18, Prop. 7]—
build a canonicalGalois insertion:

P(V+ 7→ I) −−−→−→←−−−−
α

γ
M•⊥

9

where theabstraction functionα is defined by:
α(X) =

d• { x ∈ M•⊥ | X ⊆ γ(x) } .

�

TheM•⊥ lattice features a nice meaning function and a
precise union approximation; thus, it is tempting to force all
our operators and transfer functions to live inM•⊥ by forcing
strong closure on their result. However, we saw this does
not work for the widening, so fixpoint computationsmustbe
performed in theM+

⊥ lattice.

VIII. A PPLICATION TO PROGRAM ANALYSIS

In this section, we present the program analysis based on
our new domain that enabled us to prove the correctness of
the program in Figure 1.

This is only one example application of our domain for
program analysis purpose. It was chosen for its simplicity
of presentation and implementation. A fully featured tool
that can deal with real-life programs, taking care of pointers,
procedures and objects is far beyond the scope of this work.
However, current tools using the interval or the polyhedron
domains could benefit from this new abstract domain.

A. Presentation of the Analysis.

Our analyzer is very similar to the one described in Cousot
and Halbwachs’s POPL’78 article [6], except it uses our new
abstract domain instead of the abstract domain of polyhedra.

Here is a sketched description of this analysis—more infor-
mations, as well as proofs of its correctness can be found in
the author’s Master thesis [2].

We suppose that our program is procedure-free, has only
numerical variables—no pointers or array—and is solely com-
posed of assignments,if then else fi and while do done
statements. Syntactic program locationsli are placed to vi-
sualize the control flow: there are locations before and after
statements, at the beginning and the end ofthen and else
branches and inner loop blocks; the location at the program
entry point is denoted byl0.

The analyzer associates to each program pointli an element
m

+
i ∈ M+

⊥. At the beginning, allm+
i are ⊥ (meaning

the control flow cannot pass there) exceptm
+
0 = ⊤. Then,

informations are propagated through the control flow as if the
program were executed:

• For J(li) vi ← e (li+1)K, we setm+
i+1 = (m+

i)(vi←e).
• For a testJ(li) if g then (li+1) · · · else (lj) · · ·K, we

setm+
i+1 = (m+

i)(g) andm
+
j = (m+

i)(¬g).
• When the control flow merges after a testJthen · · · (li)

else · · · (lj) fi (lj+1)K, we setm+
j+1 = ((m+

i)•) ⊔
((m+

j)•).
• For a loopJ (li) while g do (lj) · · · (lk) done (lk+1)K,

we must solve the relationm+
j = (m+

i ⊔m
+
k)(g). We

solve it iteratively using the widening: supposem+
i is

known and we can deduce am+
k from any m

+
j by

propagation; we compute the limitm+
j of

{

m
+
j,0 = (m+

i)(g)

m
+
j,n+1 = m

+
j,n▽((m+

k,n)•(g))

thenm
+
k is computed by propagation ofm+

j and we set
m

+
k+1 = ((m+

i)•(¬g)) ⊔ ((m+
k)•(¬g))

At the end of this process, eachm+
i is a valid invariant that

holds at program locationli. This method is calledabstract
execution.

B. Practical Results.

The analysis described above has been implemented in
OCaml and used on a small set of rather simple algorithms.

Figure 11 shows the detailed computation for the lines 5–9
from Figure 1. Remark that the program has been adapted to
the language described in the previous section, and program
locations l0,. . . ,l9 have been added. Also, for the sake of
brevity, DBMs are presented in equivalent constraint set form,
and only the useful constraints are shown. Thanks to the
widening, the fixpoint is reached after only two iterations:
invariants m

+
k,0, k=2...8 only hold in the first iteration of

the loop (i = 1); invariantsm
+
k,1, k=2...8 hold for all loop

iterations(1 ≤ i ≤ m). At the end of the analysis, we have
(−m ≤ a ≤ m) ∈ (m+

9)•.
Our analyzer was also able to prove that the well-known

Bubble sort and Heap sort do not perform out-of-bound error
while accessing array elements and to prove that Lamport’s
Bakery algorithm [19] for synchronizing two processes is
correct—however, unlike the example in Figure 1, these anal-
ysis where already in the range of our PADO-II article [1].

C. Precision and Cost.

The computation speed in our abstract domain is limited
by the cost of the strong closure algorithm because it is the
most used and the most costly algorithm. Thus, most abstract
operators have aO(N3) worst case time cost. Because a fully
featured tool using our domain is not yet available, we do not
know how well this analysis scales up to large programs.

The invariants computed arealwaysmore precise than the
ones computed in [1], which gives itself always better results
than the widespread intervals domain [5]; but they are less
precise than the costly polyhedron analysis [6]. Possible loss of
precision have three causes: non-exact union, non-exact guard
and assignment transfer functions, and widening in loops. The
first two causes can be worked out by refining Definition 2 and
choosing to represent, as abstract state, any finite union of
octagons instead of a single one. Promising representations
are theClock-Difference Diagrams(introduced in 1999 by
Larsen, Weise, Yi, and Pearson [20]) andDifference Decision
Diagrams(introduced in Møller, Lichtenberg, Andersen, and
Hulgaard’s CSL’99 paper [21]), which are tree-based structures
introduced by the model-checking community to efficiently
represent finite unions ofV0-domains, but they need adaptation
in order to be used in the abstract interpretation frameworkand
must be extended to octagons.

IX. CONCLUSION

In this article, we presented a new numerical abstract
domain that extends, without much performance degradation,
the DBM-based abstract domain described in our PADO-II

10

4 (l0) a← 0; i← 1 (l1)
while i ≤ m do (l2)

7 if ?
8 then (l3) a← a + 1 (l4)
9 else(l5) a← a− 1 (l6)

fi (l7)
i← i + 1 (l8)

11 done(l9)

m
+
0 = ⊤

m
+
1 = {i = 1; a = 0; 1− i ≤ a ≤ i− 1}

First iteration of the loop
m

+
2.0 = {i = 1; a = 0; 1− i ≤ a ≤ i− 1; i ≤ m}

m
+
3,0 = m

+
5,0 = m

+
2.0

m
+
4,0 = {i = 1; a = 1; 2− i ≤ a ≤ i; i ≤ m}

m
+
6,0 = {i = 1; a = −1; −i ≤ a ≤ i− 2; i ≤ m}

m
+
7,0 = {i = 1; a ∈ [−1, 1]; −i ≤ a ≤ i; i ≤ m}

m
+
8,0 = {i = 2; a ∈ [−1, 1]; 1− i ≤ a ≤ i− 1; i ≤ m + 1}

Second iteration of the loop
m

+
2,1 = m

+
3,1 = m

+
5,1 = m

+
2,0 ▽ (m+

8,0)(i≤m)

= {1 ≤ i ≤ m; 1− i ≤ a ≤ i− 1}
m

+
4,1 = {1 ≤ i ≤ m; 2− i ≤ a ≤ i}

m
+
6,1 = {1 ≤ i ≤ m; −i ≤ a ≤ i− 2}

m
+
7,1 = {1 ≤ i ≤ m; −i ≤ a ≤ i}

m
+
8,1 = {2 ≤ i ≤ m + 1; 1− i ≤ a ≤ i− 1}

Third iteration of the loop
m

+
2,2 = m

+
2,1 (fixpoint reached)

m
+
2 = m

+
2,1 m

+
8 = m

+
8,1

m
+
9 = {i = m + 1; 1− i ≤ a ≤ i− 1}

Fig. 11. Detailed analysis of lines 5–9 from Figure 1. For sake of conciseness
DBMs are shown in their equivalent constraint set form and useless constraints
are not shown.

article [1]. This domain allows us to manipulate invariantsof
the form (±x ± y ≤ c) with a O(n2) worst case memory
cost per abstract state and aO(n3) worst case time cost per
abstract operation—wheren is the number of variables in the
program.

We claim that our approach is fruitful since it allowed
us to prove automatically the correctness of some non-trivial
algorithms, beyond the scope of interval analysis, for a much
smaller cost than polyhedron analysis. However, our prototype
implementation did not allow us to test our domain on real-
life programs and we still do not know if it will scale up. It
is the author’s hope that this new domain will be integrated
into currently existing static analyzers as an alternativeto the
intervals and polyhedra domains.

REFERENCES

[1] A. Miné, “A new numerical abstract domain based on difference-bound
matrices,” inPADO II, ser. LNCS, vol. 2053. Springer-Verlag, May
2001, pp. 155–172.

[2] ——, “Representation of two-variable difference or sum constraint
set and application to automatic program analysis,” Master’s thesis,
ENS-DI, Paris, France, 2000, http://www.eleves.ens.fr:8080/home/mine/
stage_dea/.

[3] P. Cousot and R. Cousot, “Abstract interpretation: a unified lattice model
for static analysis of programs by construction or approximation of
fixpoints,” in ACM POPL’77. ACM Press, 1977, pp. 238–252.

[4] ——, “Systematic design of program analysis frameworks,” in ACM
POPL’79. ACM Press, 1979, pp. 269–282.

[5] ——, “Static determination of dynamic properties of programs,” in
ISOP’76. Dunod, Paris, France, 1976, pp. 106–130.

[6] P. Cousot and N. Halbwachs, “Automatic discovery of linear restraints
among variables of a program,” inACM POPL’78. ACM Press, 1978,
pp. 84–97.

[7] V. Pratt, “Two easy theories whose combination is hard,”Massachusetts
Institute of Technology. Cambridge., Tech. Rep., September 1977.

[8] R. Shostak, “Deciding linear inequalities by computingloop residues,”
Journal of the ACM, vol. 28, no. 4, pp. 769–779, October 1981.

[9] W. Harvey and P. Stuckey, “A unit two variable per inequality integer
constraint solver for constraint logic programming,” inACSC’97, vol. 19,
February 1997, pp. 102–111.

[10] S. Yovine, “Model-checking timed automata,” inEmbedded Systems, ser.
LNCS, no. 1494. Springer-Verlag, October 1998, pp. 114–152.

[11] K. Larsen, F. Larsson, P. Pettersson, and W. Yi, “Efficient verification
of real-time systems: Compact data structure and state-space reduction,”
in IEEE RTSS’97. IEEE CS Press, December 1997, pp. 14–24.

[12] R. Shaham, E. Kolodner, and M. Sagiv, “Automatic removal of array
memory leaks in java,” inCC2000, ser. LNCS, vol. 1781, April 2000.

[13] F. Bourdoncle, “Abstract debugging of higher-order imperative lan-
guages,” inACM PLDI’93. ACM Press, June 1993, pp. 46–55.

[14] A. Deutsch, “Interprocedural may-alias analysis for pointers: Beyond
k-limiting,” in ACM PLDI’94. ACM Press, 1994, pp. 230–241.

[15] N. Dor, M. Rodeh, and M. Sagiv, “Cleanness checking of string
manipulations in C programs via integer analysis,” inSAS’01, ser. LNCS,
no. 2126, July 2001.

[16] T. Cormen, C. Leiserson, and R. Rivest,Introduction to Algorithms.
The MIT Press, 1990.

[17] P. Cousot, “Méthodes itératives de construction et d’approxima-tion de
points fixes d’opérateurs monotones sur un treillis, analyse sémantique
de programmes,” Thèse d’état ès sciences mathématiques, Université
scientifique et médicale de Grenoble, France, 1978.

[18] P. Cousot and R. Cousot, “Abstract interpretation and application to
logic programs,”Journal of Logic Programming, vol. 13, no. 2–3, pp.
103–179, 1992.

[19] L. Lamport, “A new solution of Dijkstra’s concurrent programming
problem,” Communications of the ACM, vol. 8, no. 17, pp. 453–455,
August 1974.

[20] K. Larsen, C. Weise, W. Yi, and J. Pearson, “Clock difference diagrams,”
Nordic Journal of Computing, vol. 6, no. 3, pp. 271–298, October 1999.

[21] J. Møller, J. Lichtenberg, R. Andersen, H., and H. Hulgaard, “Difference
decision diagrams,” inCSL’99, ser. LNCS, vol. 1683. Springer-Verlag,
September 1999, pp. 111–125.

