
HAL Id: hal-00136661
https://hal.science/hal-00136661

Submitted on 14 Mar 2007

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Symbolic Methods to Enhance the Precision of
Numerical Abstract Domains

Antoine Miné

To cite this version:
Antoine Miné. Symbolic Methods to Enhance the Precision of Numerical Abstract Domains. Jan
2006, pp.348-363. �hal-00136661�

https://hal.science/hal-00136661
https://hal.archives-ouvertes.fr


ha
l-

00
13

66
61

, v
er

si
on

 1
 -

 1
4 

M
ar

 2
00

7

Symbolic Methods to Enhance the Precision of

Numerical Abstract Domains⋆

Antoine Miné

École Normale Supérieure, Paris, France,
mine@di.ens.fr,

http://www.di.ens.fr/∼mine

Abstract We present lightweight and generic symbolic methods to im-
prove the precision of numerical static analyses based on Abstract In-
terpretation. The main idea is to simplify numerical expressions before
they are fed to abstract transfer functions. An important novelty is that
these simplifications are performed on-the-fly, using information gathered
dynamically by the analyzer.
A first method, called“linearization,”allows abstracting arbitrary expres-
sions into affine forms with interval coefficients while simplifying them.
A second method, called “symbolic constant propagation,” enhances the
simplification feature of the linearization by propagating assigned expres-
sions in a symbolic way. Combined together, these methods increase the
relationality level of numerical abstract domains and make them more
robust against program transformations. We show how they can be in-
tegrated within the classical interval, octagon and polyhedron domains.
These methods have been incorporated within the Astrée static ana-
lyzer that checks for the absence of run-time errors in embedded critical
avionics software. We present an experimental proof of their usefulness.

1 Introduction

Ensuring the correctness of software is a difficult but important task, especially
in embedded critical applications such as planes or rockets. There is currently
a great need for static analyzers able to provide invariants automatically and
directly on the source code. As the strongest invariants are not computable in
general, such tools need to perform sound approximations at the expense of
completeness. In this article, we will only consider the properties of numerical
variables and work in the Abstract Interpretation framework. A static analyzer
is thus parameterized by a numerical abstract domain, that is, a set of computer-
representable numerical properties together with algorithms to compute the se-
mantics of program instructions.

There already exist quit a few numerical abstract domains. Well-known ex-
amples include the interval domain [5] that discovers variable bounds, and the
polyhedron domain [8] for affine inequalities. Each domain achieves some cost

⋆ This work was partially supported by the Astrée RNTL project and the APRON
project from the ACI “Sécurité & Informatique.”



X ← [−10, 20];
Y ← X;
if (Y ≤ 0) { Y ← −X; }
// here, Y ∈ [0, 20]

Figure1. Absolute value computation example.

X ← [0, 1];
Y ← [0, 0.1];
Z ← [0, 0.2];
T ← (X × Y )− (X × Z) + Z;
// here, T ∈ [0, 0.2]

Figure2. Linear interpolation computation example.

versus precision balance. In particular, non-relational domains—e.g., the interval
domain—are much faster but also much less precise than relational domains—
able to discover variable relationships. Although the interval information seem
sufficient—it allows expressing most correctness requirements, such as the ab-
sence of arithmetic overflows or out-of-bound array accesses—relational invari-
ants are often necessary during the course of the analysis to find tight bounds.
Consider, for instance, the program of Fig. 1 that computes the absolute value of
X . We expect the analyzer to infer that, at the end of the program, Y ∈ [0, 20].
The interval domain will find the coarser result Y ∈ [−20, 20] because it cannot
exploit the information Y = X during the test Y ≤ 0. The polyhedron domain
is precise enough to infer the tightest bounds, but results in a loss of efficiency.
In our second example, Fig. 2, T is linearly interpolated between Y and Z, thus,
we have T ∈ [0, 0.2]. Using plain interval arithmetics, one finds the coarser result
T ∈ [−0.2, 0.3]. As the assignment in T is not affine, the polyhedron domain
cannot perform any better.

In this paper, we present symbolic enhancement techniques that can be ap-
plied to abstract domains to solve these problems and increase their robustness
against program transformations. In Fig. 1, our symbolic constant propagation is
able to propagate the information Y = X and discover tight bounds using only
the interval domain. In Fig. 2, our linearization technique allows us to prove
that T ∈ [0, 0.3] using the interval domain (this result is not optimal, but still
much better than T ∈ [−0.2, 0.3]). The techniques are generic and can be applied
to other domains, such as the polyhedron domain. However, the improvement
varies greatly from one example to another and enhanced domains do not enjoy
best abstraction functions. Thus, our techniques depend upon strategies, some
of which are proposed in the article.

Related Work. Our linearization can be related to affine arithmetics , a technique
introduced by Vińıcius et al. in [16] to refine interval arithmetics by taking into
account existing correlations between computed quantities. Both use a symbolic
form with linear properties to allow basic algebraic simplifications. The main
difference is that we relate directly program variables while affine arithmetics



expr ::= X X ∈ V
| [a, b] a ∈ I ∪ {−∞}, b ∈ I ∪ {+∞}, a ≤ b
| expr ⋄ expr ⋄ ∈ {+,−,×, / }

inst ::= X ← expr X ∈ V
| expr ⊲⊳ 0 ? ⊲⊳ ∈ {=, 6=, <,≤,≥, > }

Figure3. Syntax of our simple language.

introduces synthetic variables. This allows us to treat control flow joins and
loops, and to interact with relational domains, which is not possible with affine
arithmetics. Our linearization was first introduced in [13] to abstract floating-
point arithmetics. It is presented here with some improvements—including the
introduction of several strategies.

Our symbolic constant propagation technique is similar to the classical con-
straint propagation proposed by Kildall in [11] to perform optimization. However,
scalar constants are replaced with expression trees, and our goal is not to im-
prove the efficiency but the precision of the abstract execution. It is also related
to the work of Colby: he introduces, in [4], a language of transfer relations to
propagate, combine and simplify, in a fully symbolic way, sequences of transfer
functions. We are more modest as we do not handle disjunctions symbolically
and do not try to infer symbolic loop invariants. Instead, we rely on the un-
derlying numerical abstract domain to perform most of the semantical job. A
major difference is that, while Colby’s framework statically transforms the ab-
stract equation system to be solved by the analyzer, our framework performs
this transformation on-the-fly and benefits from the information dynamically
inferred by the analyzer.

Overview of the Paper. The paper is organised as follows. In Sect. 2, we introduce
a language—much simplified for the sake of illustration—and recall how to per-
form a numerical static analysis parameterized by an abstract domain. Sect. 3
then explains how symbolic expression manipulations can be soundly incorpo-
rated within the analysis. Two symbolic methods are then introduced: expression
linearization, in Sect. 4, and symbolic constant propagation, in Sect. 5. Sect. 6
discusses our practical implementation within the Astrée static analyzer and
presents some experimental results. We conclude in Sect. 7.

2 Framework

In this section, we briefly recall the classical design of a static analyzer using
the Abstract Interpretation framework by Cousot and Cousot [6, 7]. This design
is specialised towards the automatic computation of numerical invariants, and
thus, is parameterized by a numerical abstract domain.

2.1 Syntax of the Language

For the sake of presentation, we will only consider in this article a very sim-
plified programming language focusing on manipulating numerical variables.



JX K(ρ)
def

= { ρ(X) }

J [a, b] K(ρ)
def

= { x ∈ I | a ≤ x ≤ b }

J e1 ⋄ e2 K(ρ)
def

= { x ⋄ y | x ∈ J e1 K(ρ), y ∈ J e2 K(ρ) } ⋄ ∈ {+,−,×}

J e1/e2 K(ρ)
def

= { truncate(x/y) | x ∈ J e1 K(ρ), y ∈ J e2 K(ρ), y 6= 0 } if I = Z

J e1/e2 K(ρ)
def

= { x/y | x ∈ J e1 K(ρ), y ∈ J e2 K(ρ), y 6= 0 } if I 6= Z

{|X ← e |}(R)
def

= { ρ[X 7→ v] | ρ ∈ R, v ∈ J e K(ρ) }

{| e ⊲⊳ 0 ? |}(R)
def

= { ρ | ρ ∈ R and ∃ v ∈ J e K(ρ), v ⊲⊳ 0 holds }

Figure4. Concrete semantics.

We suppose that a program manipulates only a fixed, finite set of n variables,

V
def

= {V1, . . . , Vn}, with values within a perfect mathematical set, I ∈ {Z, Q, R}.
A program P ∈ P(L × inst × L) is a single control-flow graph where nodes are
program points, in L, and arcs are labelled by instructions in inst. We denote
by e the entry program point. As described in Fig. 3, only two types of instruc-
tions are allowed: assignments (X ← expr) and tests (expr ⊲⊳ 0 ?), where expr
are numerical expressions and ⊲⊳ is a comparison operator. In the syntax of ex-
pressions, classical numerical constants have been replaced with intervals [a, b]
with constant bounds—possibly +∞ or −∞. Such intervals correspond to a non-
deterministic choice of a new value within the bounds each time the expression
is evaluated. This will be key in defining the concept of expression abstraction in
Sects. 3–5. Moreover, interval constants appear naturally in programs that fetch
input values from an external environment, or when modeling rounding errors
in floating-point computations.

Affine forms play an important role in program analysis as they are easy
to manipulate and appear frequently as program invariants. We enhance affine
forms with the non-determinism of intervals by defining interval affine forms as
the expressions of the form: [a0, b0] +

∑

k ([ak, bk]× Vk).

2.2 Concrete Semantics of the Language

The concrete semantics of a program is the most precise mathematical expression
of its behavior. Let us first define an environment as a function, in V → I,
associating a value to each variable. We choose a simple invariant semantics
that associates to each program point l ∈ L the set of all environments Xl ∈
P(V → I) that can hold when l is reached. Given an environment ρ ∈ (V → I),
the semantics J expr K(ρ) of an expression expr , shown in Fig. 4, is the set of values
the expression can evaluate to. It outputs a set to account for non-determinism.
When I = Z, the truncate function rounds the possibly non-integer result of the
division towards an integer by truncation, as it is common in most computer
languages. Divisions by zero are undefined, that is, return no result; for the
sake of simplicity, we have not introduced any error state. The semantics of
assignments and tests is defined by transfer functions {| inst |} : P(V → I) →
P(V → I) in Fig. 4. The assignment transfer function returns environments where



one variable has changed its value (ρ[V 7→ x] denotes the function equal to ρ on
V \ {V } and that maps V to x). The test transfer function filters environments
to keep only those that may satisfy the test. We can now define the semantics
(Xl)l∈L of a program P as the smallest solution of the following equation system:







Xe = V → I

Xl =
⋃

(l′,i,l)∈P

{| i |}(Xl′ ) when l 6= e (1)

It describes the strongest invariant at each program point.

2.3 Abstract Interpretation and Numerical Abstract Domains

The concrete semantics is very precise but cannot be computed fully automat-
ically by a computer. We will only try to compute a sound overapproximation,
that is, a superset of the environments reached by the program. We use Abstract
Interpretation [6, 7] to design such an approximation.

Numerical Abstract Domains. An analysis is parameterized by a numerical ab-
stract domain that allows representing and manipulating selected subsets of en-
vironments. Formally it is defined as:

– a set of computer-representable abstract elements D♯,

– a partial order ⊑♯ on D♯ to model the relative precision of abstract elements,

– a monotonic concretization γ : D♯ → P(V → I), that assigns a concrete
property to each abstract element,

– a greatest element ⊤♯ for ⊑♯ such that γ(⊤♯) = (V → I),

– sound and computable abstract versions {| inst |}♯ of all transfer functions,

– sound and computable abstractions ∪♯ and ∩♯ of ∪ and ∩,
– a widening operator ▽

♯ if D♯ has infinite increasing chains.

The soundness condition for the abstraction F ♯ : (D♯)n → D♯ of a n−ary op-

erator F is: F (γ(X♯
1), . . . , γ(X♯

n)) ⊆ γ(F ♯(X♯
1, . . . , X

♯
n)). It ensures that F ♯ does

not forget any of F ’s behaviors. It can, however, introduce spurious ones.

Abstract Analysis. Given an abstract domain, an abstract version (1♯) of the
equation system (1) can be derived as:











X ♯
e = ⊤♯

X ♯
l ⊑

♯
⋃♯

(l′,i,l)∈P

{| i |}♯(X ♯
l′) when l 6= e (1♯)

The soundness condition ensures that any solution of (1♯) satisfies ∀ l ∈

L, γ(X ♯
l ) ⊇ Xl. The system can be solved by iterations, using a widening op-

erator ▽
♯ to ensure termination. We refer the reader to Bourdoncle [2] for an

in-depth description of possible iteration strategies. The computed X ♯
l is almost

never the best abstraction—if it exists—of the concrete solution Xl. Unavoid-
able losses of precision come from the use of convergence acceleration ▽

♯, non-
necessarily best abstract transfer functions, and the fact that the composition of
best abstractions is generally not a best abstraction. This last issue explains why
even the simplest semantics-preserving program transformations can drastically



affect the quality of a static analysis.

Existing Numerical Domains. There exists many numerical abstract domains. We
will be mostly interested in those able to express variable bounds. Such abstract
domains include the well-known interval domain [5] (able to express invariants of
the form

∧

i Vi ∈ [ai, bi]), and the polyhedron domain [8] (able to express affine
inequalities

∧

i

∑

j αijVi ≥ βj). More recent domains, in-between these two in
terms of cost and precision, include the octagon domain [12] (

∧

ij ±Vi±Vj ≤ cij),
the octahedron domain [3] (

∧

j

∑

i αijVi ≥ βj where αij ∈ {−1, 0, 1}), and the
Two Variable Per Inequality domain [15] (

∧

i αiVki
+ βiVli ≤ ci).

3 Incorporating Symbolic Methods

We suppose that we are given a numerical abstract domain D♯. The gist of
our method is to replace, in the abstract transfer functions {|X ← e |}♯ and

{| e ⊲⊳ 0 ? |}♯, each expression e with another one e′, in a sound way.

Partial Order on Expressions. To define formally the notion of sound expression
abstraction, we first introduce an approximation order � on expressions. A nat-
ural choice is to consider the point-wise ordering of the concrete semantics J · K

defined in Fig. 4, that is: e1 � e2
def

⇐⇒ ∀ ρ ∈ (V → I), J e1 K(ρ) ⊆ J e2 K(ρ).
However, requiring the inclusion to hold for all environments is quite restrictive.
More aggressive expression transformations can be enabled by only requiring
soundness with respect to selected sets of environments. Our partial order � is
now defined “up to” a set of environments R ∈ P(V → I):

Definition 1 R |= e1 � e2
def

⇐⇒ ∀ ρ ∈ R, J e1 K(ρ) ⊆ J e2 K(ρ).

We denote by R |= e1 = e2 the associated equality relation.

Sound Symbolic Transformations. We wish now to abstract some transfer func-
tion, e.g., {|V ← e |}, on an abstract environment R♯ ∈ D♯. The following theorem
states that, if e′ overapproximates e on γ(R♯), it is sound to replace e with e′ in
the abstract transfer functions:

Theorem 1 If γ(R♯) |= e � e′, then:

• ({|V ← e |} ◦ γ)(R♯) ⊆ (γ ◦ {|V ← e′ |}♯)(R♯),

• ({| e ⊲⊳ 0 ? |} ◦ γ)(R♯) ⊆ (γ ◦ {| e′ ⊲⊳ 0 ? |}♯)(R♯).

4 Expression Linearization

Our first symbolic transformation is an abstraction of arbitrary expressions into
interval affine forms i0 +

∑

k(ik × Vk), where the i’s stand for intervals.

4.1 Definitions

Interval Affine Form Operators. We first introduce a few operators to manipulate
interval affine forms in a symbolic way. Using the classical interval arithmetic



operators—denoted with a I superscript—we can define point-wisely the addi-
tion ⊞ and subtraction ⊟ of affine forms, as well as the multiplication ⊠ and
division � of an affine form by a constant interval:

Definition 2

• (i0 +
∑

k ik × Vk) ⊞ (i′0 +
∑

k i′k × Vk)
def

= (i0 +I i′0) +
∑

k(ik +I i′k)× Vk,

• (i0 +
∑

k ik × Vk) ⊟ (i′0 +
∑

k i′k × Vk)
def

= (i0 −I i′0) +
∑

k(ik −I i′k)× Vk,

• i ⊠ (i0 +
∑

k ik × Vk)
def

= (i×I i0) +
∑

k (i×I ik)× Vk,

• (i0 +
∑

k ik × Vk) � i
def

= (i0/
I i) +

∑

k (ik/I i)× Vk.

where the interval arithmetic operators are defined classically as:

• [a, b] +I [a′, b′]
def

= [a + a′, b + b′], • [a, b]−I [a′, b′]
def

= [a− b′, b− a′],

• [a, b]×I [a′, b′]
def

= [min(aa′, ab′, ba′, bb′), max(aa′, ab′, ba′, bb′)],

• [a, b]/I [a′, b′]
def

=






[−∞, +∞] if 0 ∈ [a′, b′]
[min(a/a′, a/b′, b/a′, b/b′), max(a/a′, a/b′, b/a′, b/b′)] when I 6= Z

[⌊min(a/a′, a/b′, b/a′, b/b′)⌋, ⌈max(a/a′, a/b′, b/a′, b/b′)⌉] when I = Z

The following theorem states that these operators are always sound and, in some
cases, complete—i.e., � can be replaced by =:

Theorem 2 For all interval affine forms l1, l2 and interval i, we have:
• IV |= l1 + l2 = l1 ⊞ l2, • IV |= l1 − l2 = l1 ⊟ l2,
• IV |= i× l1 = i ⊠ l1, if I 6= Z, • IV |= i× l1 � i ⊠ l1, otherwise,
• IV |= l1/i = l1 � i, if I 6= Z and 0 /∈ i, • IV |= l1/i � l1 � i, otherwise.

When I = Z, we must conservatively round upper and lower bounds respectively
towards +∞ and −∞ to ensure that Thm. 2 holds. The non-exactness of the
multiplication and division can then lead to some precision degradation. For
instance, (X � 2)⊠ 2 evaluates to [0, 2]×X as, when computing X � 2, the non-
integral value 1/2 must be abstracted into the integral interval [0, 1]. One solution
is to perform all computations in R, keeping in mind that, due to truncation,
l/[a, b] should be interpreted when 0 /∈ [a, b] as (l � [a, b]) ⊞ [−1 + x, 1 − x],
where x = 1/ min(|a|, |b|). We then obtain the more precise result X + [−1, 1].

We now introduce a so-called “intervalization”operator, ι, to abstracts inter-
val affine forms into intervals. Given an abstract environment, it evaluates the
affine form using interval arithmetics. Suppose that D♯ provides us with projec-
tion operators πk : D♯ → P(I) able to return an interval overapproximation for
each variable Vk. We define ι as:

Definition 3 ι(i0 +
∑

k(ik × Vk))(R♯)
def

= i0 +I
∑I

k (ik ×I πk(R♯)),
where each πk(R♯) is an interval containing { ρ(Vk) | ρ ∈ γ(R♯) }.

The following theorem states that ι is a sound operator with respect to R♯:

Theorem 3 γ(R♯) |= l � ι(l)(R♯).



As πk performs a non-relational abstraction, ι incurs a loss of precision whenever
D♯ is a relational domain. Consider, for instance R♯ such that γ(R♯) = { ρ ∈
({V1, V2} → [0, 1]) | ρ(V1) = ρ(V2) }. Then, J ι(V1 − V2)(R

♯) K is the constant
function [−1, 1] while JV1 − V2 K is 0.

Linearization. The linearization L e M(R♯) of an arbitrary expression e in an ab-
stract environment R♯ can now be defined by structural induction as follows:

Definition 4

• LV M(R♯)
def

= [1, 1]× V , • L [a, b] M(R♯)
def

= [a, b],

• L e1 + e2 M(R♯)
def

= L e1 M(R♯) ⊞ L e2 M(R♯),

• L e1 − e2 M(R♯)
def

= L e1 M(R♯) ⊟ L e2 M(R♯),

• L e1/e2 M(R♯)
def

= L e1 M(R♯) � ι(L e2 M(R♯))(R♯),

• L e1 × e2 M(R♯)
def

=

{

either ι(L e1 M(R♯))(R♯) ⊠ L e2 M(R♯)
or ι(L e2 M(R♯))(R♯) ⊠ L e1 M(R♯)

(see Sect. 4.3)

The ι operator is used to deal with non-linear constructions: the right argu-
ment of a division and either argument of a multiplication are intervalized. As a
consequence of Thms. 2 and 3, our linearization is sound:

Theorem 4 γ(R♯) |= e � L e M(R♯).

Obviously, L · M generally incurs a loss of precision with respect to �. Also, L e M is
not monotonic in its e argument. Consider for instance X/X in the environment
R♯ such that πX(R♯) = [1, +∞]. Although γ(R♯) |= X/X � [1, 1], we do not have
γ(R♯) |= LX/X M(R♯) � L [1, 1] M(R♯) as LX/X M(R♯) = [0, 1]×X . It is important
to note that there is no useful notion of best abstraction of expressions for �.

4.2 Integration With a Numerical Abstract Domain

Given an abstract domain, D♯, we can now derive a new abstract domain with
linearization, D♯

L
, identical to D♯ except for the following transfer functions:

{|V ← e |}♯
L
(R♯)

def

= {|V ← L e M(R♯) |}♯(R♯)

{| e ⊲⊳ 0 ? |}♯
L
(R♯)

def

= {| L e M(R♯) ⊲⊳ 0 ? |}♯(R♯)
The soundness of these transfer functions is guaranteed by Thms. 1 and 4.

Application to the Interval Domain. As all non-relational domains, the interval
domain [5], is not able to exploit the fact that the same variable occurs several
times in an expression. Our linearization performs some symbolic simplification,
and so, is able to partly correct this problem. Consider, for instance, the assign-
ment {|Y ← 3 ×X −X |} in an abstract environment such that X ∈ [a, b]. The
regular interval domain DI will assign [3a− b, 3b− a] to Y , while DI

L will assign
[2a, 2b] as L 3 ×X −X M(R♯) = 2 ×X . This last answer is strictly more precise
whenever a 6= b. Using the exactness of Thm. 2, one can prove that, when I 6= Z,
the assignment in DI

L
is always more precise than in DI . This may not be the

case for a test, or when I = Z.

Application to the Octagon Domain. The octagon domain [12] is more precise



than the interval one, but it is more complex. As a consequence, it is quite difficult
to design abstract transfer functions for non-linear expressions. This problem can
be solved by using our linearization in combination with the efficient and rather
precise interval affine form abstract transfer functions proposed in our previous
work [14]. The octagon domain with linearization is able to prove, for instance,
that, after the assignment X ← T × Y in an environment such that T ∈ [−1, 1],
we have −Y ≤ X ≤ Y .

Application to the Polyhedron Domain. The polyhedron domain [8] is more pre-
cise than the octagon domain but cannot deal with full interval affine forms—
only the constant coefficient may safely be an interval. To solve this problem,
we introduce a function µ to abstract interval affine forms further by making
all variable coefficients singletons. For the sake of conciseness, we give a formula
valid only for I 6= Z and finite interval bounds:

Definition 5

µ ([a0, b0] +
∑

k[ak, bk]× Vk) (R♯)
def

=
(

[a0, b0] +I
∑I

k [(ak − bk)/2, (bk − ak)/2]×I πk(R♯)
)

+
∑

k ((ak + bk)/2)× Vk

µ works by “distributing” the weight bk − ak of each variable coefficient into the
constant component, using variable bounds information from R♯. One can prove
that µ is sound, that is, γ(R♯) |= l � µ(l)R♯.

Application to Floating-Point Arithmetics. Real-life programming languages do
not manipulate rationals or reals, but floating-point numbers, which are much
more difficult to abstract. Pervasive rounding must be taken into account. As
most classical properties of arithmetic operators are no longer true, it is generally
not safe to feed floating-point expressions to relational domains. One solution
is to convert such expressions into real-valued expressions by making rounding
explicit. Rounding is highly non-linear but can be abstracted using intervals. For
instance, X + Y in the floating-point world can be abstracted into [1 − ǫ1, 1 +
ǫ1]×X +[1− ǫ1, 1+ ǫ1]×Y +[−ǫ2, ǫ2] using small constants ǫ1 and ǫ2 modeling,
respectively, relative and absolute errors. This fits in our linearization framework
which can be extended to treat soundly floating-point arithmetics. We refer the
reader to related work [13] for more information.

4.3 Multiplication Strategies

When encountering a multiplication e1 × e2 and neither L e1 M(R♯) nor L e2 M(R♯)
evaluates to an interval, we must intervalize either argument. Both choices are
valid, but influence greatly the precision of the result.

All-Cases Strategy. A first idea is to try both choices for each multiplication; we
get a set of linearized expressions. We have no notion of greatest lower bound
on expressions, so, we must evaluate a transfer function for all expressions in
parallel, and take the intersection ∩♯ of the resulting abstract elements in D♯.
Unfortunately, the cost is exponential in the number of multiplications in the
original expression, hence the need for deterministic strategies that always select



one interval affine form.

Interval-Size Strategy. A simple strategy is to intervalize the affine form that will
yield the narrower interval. This greedy approach tries to limit the amplitude
of the non-determinism introduced by multiplications. The extreme case holds
when the amplitude of one interval is zero, meaning that the sub-expression
is semantically a constant; intervalizing it will not result in any precision loss.
Finally, note that the relative amplitude (b− a)/|a + b| may be more significant
than the absolute amplitude b−a if we want to intervalize preferably expressions
that are constant up to some small relative rounding error.

Simplification-Driven Strategy. Another idea is to maximize the amount of sim-
plification by not intervalizing, when possible, sub-expressions containing vari-
ables appearing in other sub-expressions. For instance, in X − (Y ×X), Y will
be intervalized to yield [1−maxY, 1−min Y ]×X . Unlike the preceding greedy
approach, this strategy is global and treats the expression as a whole.

Homogeneity Strategy. We now consider the linear interpolation of Fig. 2. In
order to achieve the best precision, it is important to intervalize X in both mul-
tiplications. This yields T ← [0, 1]×Y + [0, 1]×Z and we are able to prove that
T ≥ 0—however, we find that T ≤ 0.3 while in fact T ≤ 0.2. The interval-size
strategy would choose to intervalize Y and Z that have smaller range than X ,
which yields the imprecise assignment T ← [−0.2, 0.1]×X + [0, 0.2]. Likewise,
the simplification-driven strategy may choose to keep X that appears in two
sub-expressions and also intervalize both Y and Z. To solve this problem, we
propose to intervalize the smallest set of variables that makes the expression
homogeneous, that is, arguments of + and − operators should have the same
degree. In order to make the (1 −X) sub-expression homogeneous, X is inter-
valized. This last strategy is quite robust: it keeps working if we change the
assignment into the equivalent T ← X × Y − X × Z + Z, or if we consider
bi-linear interpolations or interpolations with normalization coefficients.

4.4 Concluding Remark

Our linearization is not equivalent to a static program transformation. To cope
with non-linearity as best as we can, we exploit the information dynamically
inferred by the analysis: first, in the intervalization ι, then, in the multiplica-
tion strategy. Both algorithms take as argument the current numerical abstract
environment R♯. As, dually, the linearization improves the precision of the next
computed abstract element, the dynamic nature of our approach ensures a pos-
itive feed-back.

5 Symbolic Constant Propagation

The automatic symbolic simplification implied by our linearization allows us to
gain much precision when dealing with complex expressions, without the burden
of designing new abstract domains tailored for them. However, the analysis is



still sensitive to program transformations that decompose expressions and in-
troduce new temporary variables—such as common sub-expression elimination
or register spilling. In order to be immune to this problem, one must generally
use an expressive, and so, costly, relational domain. We propose an alternate,
lightweight solution based on a kind of constant domain that tracks assignments
dynamically and propagate symbolic expressions within transfer functions.

5.1 The Symbolic Constant Domain

Enriched Expressions. We denote by C the set of all syntactic expressions, en-
riched with one element ⊤C denoting ‘any value.’ The flat ordering ⊑C is defined
as X ⊑C Y ⇐⇒ Y = ⊤C or X = Y . The concrete semantics J · K of Fig. 4 is ex-
tended to C as J⊤C K(ρ) = I. We also use two functions on expression trees: occ :
C → P(V) that returns the set of variables occurring in an expressing, and subst :
C ×V ×C → C that substitutes, in its first argument, every occurrence of a given
variable by its last argument. Their definition on non−⊤C elements is quite stan-

dard and we do not present it here. They are extended to C as follows: occ(⊤C)
def

=
∅, subst(e, V,⊤C) equals e when V /∈ occ(e) and ⊤C when V ∈ occ(e).

Abstract Symbolic Environments. The symbolic constant domain is the set

DC def

= V → C restricted as follows: there must be no cyclic dependencies
in a map SC ∈ DC , that is, pair-wise distinct variables V1, . . . , Vn such that
∀i, Vi ∈ occ(SC(Vi+1)) and Vn ∈ occ(SC(V1)). The partial order ⊑C on DC is the
point-wise extension of that on C. Each element SC ∈ DC represents the set of
environments compatible with the symbolic information:

Definition 6 γC(SC)
def

= { ρ ∈ (V → I) | ∀k, ρ(Vk) ∈ JSC(Vk) K(ρ) }.

Main Theorem. Our approach relies on the fact that applying a substitution
from SC to any expression is sound with respect to γC(SC):

Theorem 5 ∀e, V, SC , γC(SC) |= e � subst(e, V, SC(V )).

Abstract Operators. We now define the following operators on DC :

Definition 7

• {|V ← e |}C(SC)(Vk)
def

=

{

subst(e, V, SC(V )) if V = Vk

subst(SC(Vk), V, SC(V )) if V 6= Vk

• {| e ⊲⊳ 0 ? |}C(SC)
def

= SC,

• (SC ∪C T C)(Vk)
def

=

{

SC(Vk) if SC(Vk) = T C(Vk)
⊤C otherwise

• SC ∩ T C def

= SC

Our assignment V ← e first substitutes V with SC(V ) in SC and e before adding
the information that V maps to the substituted e. This is necessary to remove
all prior information on V (no longer valid after the assignment) and prevent
the apparition of dependency cycles. As we are only interested in propagating
assignments, tests are abstracted as the identity, which is sound but coarse. Our



union abstraction only keeps syntactically equal expressions. This corresponds
to the least upper bound with respect to ⊑C. Our intersection keeps only the
information of the left argument. All these operators respect the non-cyclicity
condition. Note that one could be tempted to refine the intersection by mixing
information from the left and right arguments in order to minimize the number
of variables mapping to ⊤C . Unfortunately, careless mixing may break the non-
cyclicity condition. We settled, as a simpler but safe solution, to keeping the
left argument. Finally, we do not need any widening: at each abstract iteration,
unstable symbolic expressions are directly replaced with ⊤C when applying ∪C ,
and so, become stable.

5.2 Integration With a Numerical Abstract Domain

Given a numerical abstract domain D♯, the domain D♯×C is obtained by com-
bining D♯

L
with DC the following way:

Definition 8

• D♯×C def

= D♯ ×DC ,

• ⊑♯×C, ∪♯×C and ∩♯×C are defined pair-wise, and ▽
♯×C def

= ▽
♯ × ∪C,

• γ♯×C(R♯, SC)
def

= γ♯(R♯) ∩ γC(SC),

• {|V ← e |}♯×C
(R♯, SC)

def

= ({|V ← strat(e, SC) |}♯
L
(R♯), {|V ← e |}C(SC))

• {| e ⊲⊳ 0 ? |}♯×C
(R♯, SC)

def

= ({| strat(e, SC) ⊲⊳ 0 ? |}♯
L
(R♯), {| e ⊲⊳ 0 ? |}C(SC))

Where strat(e, SC) is a substitution strategy that may perform sequences of sub-
stitutions of the form f 7→ subst(f, V, SC(V )) in e, for any variables V .

All information in DC and D♯ are computed independently, except that the
symbolic information is used in the transfer functions for D♯

L
. The next section

discusses the choice of a strategy strat . Note that, although we chose in this
presentation to abstract the semantics of Fig. 4, our construction can be used on
any class of expressions, including floating-point and non-numerical expressions.

5.3 Substitution Strategies

Any sequence of substitutions extracted from the current symbolic constant in-
formation is sound, but some give better results than others. As for the inter-
valization of Sect. 4.3, we rely on carefully designed strategies.

Full Propagation. Thanks to the non-cyclicity of elements SC ∈ DC , we can
safely perform all substitutions f 7→ subst(f, V, SC(V )) for all V in any order,
and reach a normal form. This gives a first basic substitution strategy. However,
because our goal is to perform linearization-driven simplifications, it is important
to avoid substituting with variable-free expressions or we may lose correlations
between multiple occurrences of variables. For instance, full substitution in the
assignment Z ← X − 0.5× Y with the environment SC = [X 7→ [0, 1], Y 7→ X ]
results in Z ← [0, 1] − 0.5 × [0, 1], and so, Z ∈ [−0.5, 1]. Avoiding variable-free
substitutions, this gives Z ← X − 0.5 ×X , and so, Z ∈ [0, 0.5], which is more



precise. This refined strategy also succeeds in proving that Y ∈ [0, 20] in the
example of Fig. 1 by substituting Y with X in the test Y ≤ 0.

Enforcing Determinism and Linearity. Non-determinism in expressions is a ma-
jor source of precision loss. Thus, a strategy is to avoid substituting V with
SC(V ) whenever #(JSC(V ) K ◦ γ)(X♯) > 1. As this property is not easily com-
puted, we propose the following sufficient syntactic criterion: SC(V ) should not
be ⊤C nor contain a non-singleton interval. This strategy gives the expected
result in the example of Fig. 1. Likewise, one may wish to avoid substituting
with non-linear expressions, as they must be subsequently intervalized, which is
a cause of precision loss. However, disabling too many substitutions may prevent
the linearization step to exploit correlations. Suppose that we break the last as-
signment of Fig. 2 in three parts: U ← X × Y ; V ← (1 −X)× Z; T ← U − V .
Then, the interval domain with linearization and symbolic constant propagation
will not be able to prove that T ∈ [0, 0.3] unless we allow substituting, in T , U
and V with their non-linear symbolic value.

Gaining More Precision. More precision can be achieved by slightly altering
the definition of D♯×C . A simple but effective idea is to allow several strategies,
compute several transfer functions in D♯ in parallel, and take the abstract inter-
section ∩♯ of the results. Another idea is to perform reductions from DC to D♯

after each transfer function: X♯ is replaced with {|Vk − SC(Vk) = 0 ? |}♯(X♯) for
some k. Reductions can be iterated to increase the precision, following Granger’s
local iterations scheme [10].

6 Application to the Astrée Analyzer

Astrée is an efficient static analyzer focusing on the detection of run-time errors
for programs written in a subset of the C programming language, excluding re-
cursion, dynamic memory allocation and concurrent executions. It aims towards
a degree of precision sufficient to actually prove the absence of run-time errors.
This is achieved by specializing the analyzer towards specific program families,
introducing various abstract domains, and setting iteration strategy parameters.
Currently, the considered family of programs is that of safety, critical, embedded,
fly-by-wire avionic software, featuring large reactive loops running for billions of
iterations, thousands of global state variables, and pervasive floating-point arith-
metics. We refer the reader to [1] for more detailed informations on Astrée.

Integrating the Symbolic Methods. Astrée uses a partially reduced product of
several numerical abstract domains, together with both our two symbolic en-
hancement methods. Relational domains, such as the octagon [12] or digital
filtering [9] domains, rely on the linearization to abstract complex floating-point
expressions into interval affine forms on reals. The interval domain is refined by
combining three versions of each transfer function. Firstly, using the expression
unchanged. Secondly, using the linearized expression. Thirdly, applying symbolic
constant propagation followed by linearization. We use the simplification-driven
multiplication strategy, as well as the full propagation strategy—not propagating



variable-free expressions.

Experimental Results. We present analysis results on a several programs. All the
analyses have been carried on an 64-bit AMD Opteron 248 (2 GHz) worksta-
tion running Linux, using a single processor. The following table compares the
precision and efficiency of Astrée before and after enabling our two symbolic
methods:

without enhancements with enhancements

code size
in lines

analysis
time

nb. of
iters.

memory alarms
analysis

time
nb. of
iters.

memory alarms

370 1.8s 17 16 MB 0 3.1s 17 16 MB 0
9 500 90s 39 80 MB 8 160s 39 81 MB 8

70 000 2h 40mn 141 559 MB 391 1h 16mn 44 582 MB 0

226 000 11h 16mn 150 1.3 GB 141 6h 36mn 86 1.3 GB 1
400 000 22h 9mn 172 2.2 GB 282 13h 52mn 96 2.2 GB 0

The precision gain is quite impressive as up to hundreds of alarms are re-
moved. In two cases, this increase in precision is sufficient to achieve zero alarm,
which actually proves the absence of run-time errors. Moreover, the increase in
memory consumption is negligible. Finally, in our largest examples, our enhance-
ment methods save analysis time: although each abstract iteration is more costly
(up to 25%) this is compensated by the reduced number of iterations needed to
stabilize our invariants as a smaller state space is explored.

Discussion. It is possible to use the symbolic constant propagation also in rela-
tional domains, but this was not needed in our examples to remove alarms. Our
experiments show that, even though the linearization and constant propagation
techniques on intervals are not as robust as fully relational abstract domains,
they are quite versatile thanks to their parametrization in terms of strategies,
and much simpler to implement than even a simple relational abstract domain.
Moreover, our methods exhibit a near-linear time and memory cost, which is
much more efficient than relational domains.

7 Conclusion

We have proposed, in this article, two techniques, called linearization and sym-
bolic constant propagation, that can be combined together to improve the preci-
sion of numerical abstract domains. In particular, we are able to compensate for
the lack of non-linear transfer functions in the polyhedron and octagon domains,
and for a weak or inexistent level of relationality in the octagon and interval
domains. Finally, they help making abstract domains robust against program
transformations. Thanks to their parameterization in terms of strategies, they
can be finely tuned to take into account semantics as well as syntactic program
features. They are also very lightweight in terms of both analysis and develop-
ment costs. We found out that, in many cases, it is easier and faster to design a
couple of linearization and symbolic propagation strategies to solve a local loss of
precision in some program, while keeping the interval abstract domain, than to



develop a specific relational abstract domain able to represent the required local
properties. Strategies also proved reusable on programs belonging to the same
family. Practical results obtained within the Astrée static analyzer show that
our methods both increase the precision and save analysis time. They were key
in proving the absence of run-time errors in real-life critical embedded avionics
software.

Future Work. Because the precision gain strongly depends upon the multiplica-
tion strategy used in our linearization and the propagation strategy used in the
symbolic constant domain, a natural extension of our work is to try and design
new such strategies, adapted to different practical cases. A more challenging task
would be to provide theoretical guarantees that some strategies make abstract
domains immune to given classes of program transformations.

Acknowledgments. We would like to thank all the former and present members
of the Astrée team: B. Blanchet, P. Cousot, R. Cousot, J. Feret, L. Mauborgne,
D. Monniaux and X. Rival. We would also like to thank the anonymous referees
for their useful comments.

References

[1] B. Blanchet, P. Cousot, R. Cousot, J. Feret, L. Mauborgne, A. Miné, D. Monniaux,
and X. Rival. A static analyzer for large safety-critical software. In ACM PLDI’03,
volume 548030, pages 196–207. ACM Press, 2003.

[2] F. Bourdoncle. Efficient chaotic iteration strategies with widenings. In FMPA’93,
volume 735 of LNCS, pages 128–14. Springer, 1993.

[3] R. Clarisó and J. Cortadella. The octahedron abstract domain. In SAS’04, volume
3148 of LNCS, pages 312–327. Springer, 2004.

[4] C. Colby. Semantics-Based Program Analysis via Symbolic Composition of Trans-
fer Relations. PhD thesis, School of Computer Science, Carnegie Mellon Univer-
sity, Pittsburgh, PA, USA, 1996.

[5] P. Cousot and R. Cousot. Static determination of dynamic properties of programs.
In ISOP’76, pages 106–130. Dunod, Paris, France, 1976.

[6] P. Cousot and R. Cousot. Abstract interpretation: a unified lattice model for
static analysis of programs by construction or approximation of fixpoints. In
ACM POPL’77, pages 238–252. ACM Press, 1977.

[7] P. Cousot and R. Cousot. Abstract interpretation and application to logic pro-
grams. Journal of Logic Programming, 13(2–3):103–179, 1992.

[8] P. Cousot and N. Halbwachs. Automatic discovery of linear restraints among
variables of a program. In ACM POPL’78, pages 84–97. ACM Press, 1978.

[9] J. Feret. Static analysis of digital filters. In ESOP’04, volume 2986 of LNCS.
Springer, 2004.

[10] P. Granger. Improving the results of static analyses programs by local decreasing
iteration. In FSTTCS, volume 652 of LNCS, pages 68–79. Springer, 1992.

[11] G. Kildall. A unified approach to global program optimization. In ACM POPL’73,
pages 194–206. ACM Press, 1973.

[12] A. Miné. The octagon abstract domain. In AST 2001 in WCRE 2001, IEEE,
pages 310–319. IEEE CS Press, 2001.

[13] A. Miné. Relational abstract domains for the detection of floating-point run-time
errors. In ESOP’04, volume 2986 of LNCS, pages 3–17. Springer, 2004.



[14] A. Miné. Weakly Relational Numerical Abstract Domains. PhD thesis, École
Polytechnique, Palaiseau, France, dec 2004.

[15] A. Simon, A. King, and J. Howe. Two variables per linear inequality as an abstract
domain. In LOPSTR’02, volume 2664 of LNCS, pages 71–89. Springer, 2002.

[16] M. Vińıcius, A. Andrade, J. L. D. Comba, and J. Stolfi. Affine arithmetic. In
INTERVAL’94, 1994.


