
HAL Id: hal-00136650
https://hal.science/hal-00136650

Submitted on 14 Mar 2007

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Field-Sensitive Value Analysis of Embedded C Programs
with Union Types and Pointer Arithmetics

Antoine Miné

To cite this version:
Antoine Miné. Field-Sensitive Value Analysis of Embedded C Programs with Union Types and Pointer
Arithmetics. Jun 2006, pp.54-63. �hal-00136650�

https://hal.science/hal-00136650
https://hal.archives-ouvertes.fr

ha
l-

00
13

66
50

, v
er

si
on

 1
 -

 1
4

M
ar

 2
00

7

Field-Sensitive Value Analysis of Embedded C Programs
with Union Types and Pointer Arithmetics

Antoine Miné

École Normale Supérieure, Paris, France

mine@di.ens.fr

Abstract

We propose a memory abstraction able to lift existing nu-
merical static analyses to C programs containing union
types, pointer casts, and arbitrary pointer arithmetics. Our
framework is that of a combined points-to and data-value
analysis. We abstract the contents of compound variables in
a field-sensitive way, whether these fields contain numeric or
pointer values, and use stock numerical abstract domains to
find an overapproximation of all possible memory states—
with the ability to discover relationships between variables.
A main novelty of our approach is the dynamic mapping
scheme we use to associate a flat collection of abstract cells
of scalar type to the set of accessed memory locations, while
taking care of byte-level aliases—i.e., C variables with in-
compatible types allocated in overlapping memory locations.
We do not rely on static type information which can be mis-
leading in C programs as it does not account for all the uses
a memory zone may be put to.

Our work was incorporated within the Astrée static
analyzer that checks for the absence of run-time-errors in
embedded, safety-critical, numerical-intensive software. It
replaces the former memory domain limited to well-typed,
union-free, pointer-cast free data-structures. Early results
demonstrate that this abstraction allows analyzing a larger
class of C programs, without much cost overhead.

Categories and Subject Descriptors D.2.4 [Software
Engineering]: Software/Program Verification—Assertion
checkers, Formal methods, Validation; D.3.1 [Programming
Languages]: Formal Definitions and Theory—Semantics;
F.3.1 [Logics and Meanings of Programs]: Specifying and
Verifying and Reasoning about Programs—Assertions, In-
variants, Mechanical verification; F.3.2 [Logics and Mean-
ings of Programs]: Semantics of Programming Languages—
Program analysis

General Terms Reliability, Experimentation, Languages,
Theory, Verification

Keywords Abstract Interpretation, Points-to Analysis,
Numerical Analysis, Critical Software

Permission to make digital or hard copies of all or part of this work
for personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advantage
and that copies bear this notice and the full citation on the first page.
To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

LCTES’06 June 14–16, 2006, Ottawa, Ontario, Canada.
Copyright c© 2006 ACM 1-59593-362-X/06/0006. . . $5.00.

1. Introduction

In embedded critical software, the slightest programming er-
ror can have the most disastrous consequences. Even when
the high-level specification of a software is correct, its ac-
tual implementation using efficient but unsafe low-level lan-
guages can introduce new kinds of bugs, such as run-time
errors triggered by integer wrap-around or invalid floating-
point operations—witness the demise of the Ariane launcher
in 1996 [8]. Hence, there is a demand for tools able to check
for potential run-time errors in low-level programs, in an
automatic and sound way. To this end, we focus here on de-
riving the set of values the variables of a C program can take
during all its executions. We allow sound but generally in-
complete approximations to ensure an efficient analysis. This
way, we are able to report a set of alarms that encompasses
all possible run-time error situations. Hopefully, when the
analysis is sufficiently precise, there are zero alarms which
actually proves formally the absence of run-time errors.

Unfortunately, the weak type system of the C program-
ming language complicates value analysis greatly. In the
presence of union types, pointer arithmetics or pointer casts,
the same sequence of memory bytes can be manipulated as
values of distinct types. Most existing analyses avoid the
problem by either restricting the input language or by being
overly conservative about the contents of memory locations
that can be accessed with incompatible types—i.e., treat
them in a field-insensitive way. We found these solutions to
be insufficient to analyze actual embedded C codes provided
by industrial end-users. As they exploit some knowledge of
the bit-representation of values and the low-level semantics
of operators, tracking precisely the manipulated values is
required to prove the absence of run-time errors.

To address these problems, we propose a field-sensitive
value analysis for C programs containing union types,
pointer arithmetics and pointer casts. Our main contribu-
tion is an abstraction that maps the memory, viewed as
untyped spans of bytes, to a collection of synthetic cells
with integer or floating-point type. We then rely on existing
alias-unaware numerical analyses—such as intervals [5] or
octagons [15]—to infer numerical invariants on cells. Our
abstraction translates operations on byte-based memory lo-
cations into operations on cells, taking care of byte-level
aliasing between cells. We use a dynamic mapping because,
due to pointer casts, the uses of the memory cannot be
deduced from the static type information only. The sound-
ness of our approach is proved in the Abstract Interpreta-
tion framework. We first construct a non-standard concrete
semantics that gives a formal meaning to unclean C con-
structs. Then, we abstract it to derive a static analysis that
is sound by construction. This makes our design modular—

it can be used with any underlying numerical domain, even
a relational one such as octagons—and extensible—new ab-
stractions based on the same concrete semantics can be
designed. The abstraction is currently limited to programs
without unbounded dynamic memory allocation or recur-
sively. We deliberately left out these features as they are
generally forbidden in critical software. Our work was in-
tegrated within the Astrée analyzer [3] that checks for
run-time errors in embedded critical C code and provides
tight variable bounds, in a few hours of computation time.

Overview of the Paper. Sect. 2 motivates our work by
presenting a few realistic code examples involving union
types and complex pointer arithmetics; they cannot be an-
alyzed soundly without considering byte-level aliasing. In
Sect. 3, we present our solution to this problem in an in-
tuitive way. Sect. 4 then formalizes our approach in the
Abstract Interpretation framework. Sect. 5 presents prelim-
inary experimental results obtained with the Astrée ana-
lyzer. Sect. 6 presents related work. Finally, Sect. 7 discusses
future work and Sect. 8 concludes.

2. The Need for a New Memory Domain

The simplest framework, when performing a value-analysis,
is to consider programs with a statically known set of vari-
ables, each having a scalar type: real (i.e., integer or floating-
point) or pointer type. Such analyses can be lifted to cope
with variables of aggregate1 type—arrays and structures—
by decomposing them into collections of independent cells
of scalar type. Much literature has been devoted to the
problems of abstracting numerical invariants, performing
pointer analysis, or summarizing aggregate variables into
fewer cells—to cope with large arrays or dynamic memory
allocation. We are concerned here with the case where the
basis hypothesis of these works fail: the memory cannot be
decomposed a priori into a set of independent cells. This
happens in a language such as C that permits very low-level
accesses to the memory and the bit-representation of data.

Union Types. Union types declare fields that, unlike ag-
gregate types, share the same memory locations. As a con-
sequence, access paths to cells may be aliased. Consider
Fig. 1 implementing message objects using a dynamic type
tag type. In the process function, m->T.type, m->A.type
and m->B.type all refer to the same cell containing an int.
It is perfectly legal to modify the cell using one access path
and read back its contents using another one [14, §6.5.2.3.5].
This kind of aliasing is quite benign as it does not prevent us
from viewing the memory as a collection of distinct cells—
e.g., using offsets instead of access paths to denote cells.

A programmer may, however, disregard the value of type,
write into m->A.a[0] and read back m->B.x, thus mixing
access paths referring to (partially) overlapping memory
locations of different types. Although such mixing is strongly
discouraged by the C norm [14] and relies on unportable
assumptions on structure layouts and value encodings, it is
surprisingly often performed by programmers. Consider the
variable regs modeling, in Fig. 4, the register state of an
Intel 8086 processor. It is expected that, when modifying the
word register regs.w.ax, its low- and hi-byte components
regs.b.ah and regs.b.al are updated and can safely be
read back. Due to this byte-level aliasing, no partition of the
memory into scalar cells exists.

1 The terms real, scalar, aggregate come from the C norm [14].

struct msgA { int type; int a[2]; };
struct msgB { int type; double x; };

union msg {
struct { int type; } T;
struct msgA A;
struct msgB B;

};

void process(union msg *m) {
switch (m->T.type) {
case 0: {
struct msgA* msga = &(m->A);
int data = msga->a[0]+1;
/* work on msga */

}
case 1: {
struct msgB* msgb = &(m->B);
/* work on msgb */

}

void read_sensor_4(unsigned* m) {
/* put 4 bytes from sensors into m */

}

void main(void) {
unsigned char buf[sizeof(union msg)];
int i;
for (i=0;i<sizeof(buf)/4;i++)
read_sensor_4((unsigned*)buf+i);

process((union msg*)buf);
}

Figure 1. Message manipulation example illustrating the
use of union types.

void
memcopy(void* dst, void* src, unsigned sz) {
unsigned char* s = (unsigned char*) src;
unsigned char* d = (unsigned char*) dst;
unsigned i;
for (i=0;i<sz;i++) d[i] = s[i];

}

int get(unsigned char* buf) {
struct { int *p; · · · } S;
memcopy(&S, buf+16, sizeof(S));
return *(S.p);

}

Figure 2. User-defined generic memory copy procedure.

void
memcopy(void* dst, void* src, unsigned sz) {
char* s = (char*) src;
char* d = (char*) dst;
for (;sz>=8;sz-=8,s+=8,d+=8)
((double)d) = *((double*)s);

for (;sz!=0;sz--,s++,d++) *d = *s;
}

Figure 3. Alternate user-defined memory copy procedure.

Pointer Arithmetics. Pointer arithmetics encompasses
array indexing. For instance, given the following declaration:

struct { int a[3]; int b; } U, V;

*(U.a+2) is equivalent to U.a[2]. But pointer arithmetics
also allows escaping from an array embedded within a larger
type, breaking standard out-of-bound array analyses. For in-
stance, *(U.a+3) can safely be considered equivalent to U.b
for most compilers. No assumption can generally be made,
however, on the relative position of U and V in memory:
U.a[4] is considered a run-time error and U.a+4 points to
an unspecified location outside U—generally not within V.

Pointer Casts. Pointer casts allow considering any part
of the memory as having any type. Consider the main func-
tion in Fig. 1. It declares buf as an array of unsigned char
but actually uses it both as a reference to an unsigned
int (when calling read_sensor_4) and as a message of type
union msg (when calling process). This achieves the same
effect as a union type, except that the set of possible cell
layouts is no longer embedded within the static type of the
variable. It must be guessed dynamically. An extreme illus-
tration of this problem is given by the generic memory copy
functions memcopy of Fig. 2 (a portable, one-byte-at-a-time
version) and Fig. 3 (an optimized version that copies by
bunches of eight bytes, inspired from actual PowerPC soft-
ware). There, the void* type is used to achieved polymor-
phism. This effectively discards all type information that
would hint at the structure of the memory from src to
src+sz-1. Despite this lack of typing information, we must
be able to copy multi-byte cells from src to dst in a way
consistent with their type. In order to treat precisely the
indirect addressing *(S.p) at the end of the get function in
Fig. 2, it is paramount to copy “as-is” the pointer value hid-
den at offset 16 in buf. We refer the reader to Siff et al. [21]
for more examples of type casts used in real-life C programs.

3. Overview of the Analysis

In this section, we only try to present the gist of our analysis
in an informal way. The next section will be devoted to its
precise, mathematical definition.

3.1 Assumptions

Limitations. Our analysis computes, for each control
state, an overapproximation of the reachable memory states,
where a control state is given by a program point together
with a call-stack. For the sake of simplicity, we place our-
selves in the context of a fully context-sensitive analysis on
code without recursive procedure nor dynamically memory
allocation. Our main hypothesis is that the set Vc of vari-
ables whose contents define the memory state—global and
local variables from all stack frames—is a static function of
the control state c only. In practice, it is valid when ana-
lyzing embedded C code (where malloc and recursion are
prohibited) with a high level of precision (requiring context-
sensitivity). However, we believe that these limitations may
be overcome using summarization techniques which are or-
thogonal to our purpose—e.g., heap abstraction as in [20],
array summarization [10], or procedure summarization [24].

Application Binary Interface. In order to achieve a
high-level of description and discourage unportable prac-
tices, the C norm [14] under-specifies many parts of the lan-
guage. In particular, the exact encoding of scalar types as
well as the layout of fields in structures are mostly left to the

implementor. However, in order to ensure the interoperabil-
ity of compiled programs, libraries, and operating systems,
the precise representation of types is standardized in so-
called implementation-specific Application Binary Interfaces
(or ABI) such as [1]. Although it is possible to write fully
portable, ABI-neutral C code, our purpose here is the anal-
ysis of C programs that make explicit use of architecture-
dependent features—such as embedded programs that need
to be efficient and have a low-level access to the system.
Thus, our analysis is parameterized by ABI functions, such
as sizeof : Vc → N that gives the byte-size of each variable.

Input Language. We suppose that each C function has
been processed into a control-flow graph where basic blocks
are either assignment or guard instructions involving only
side-effect free expressions. Moreover, using our knowledge
of the ABI, all pointer arithmetics has been broken down
to the byte-level. Except for the purpose of dereferencing,
all pointers can be assumed to be pointers to unsigned
char. All memory reads and writes are performed through
pointer dereferencing. We assume that these involve only
scalar types (i.e., integers, floating-points, and pointers).
Likewise, field selection . and -> in struct and union, as
well as array indexes [] have been converted into byte-level
pointer arithmetics and dereferences of values of scalar type.
As these are usual static simplifications performed by most
compilers and analyzer front-ends, we do not present them
in more details. Constructs that do not fit in this simpli-
fied framework (such as function pointers or assignment of
compound values) will be dealt with in Sect. 4.

Numerical Analysis Parameter. Our analysis is param-
eterized by a standard numerical analysis. Following the Ab-
stract Interpretation framework [5], we suppose that it is
given in the form of a numerical abstract domain, i.e., an
abstract representation of invariants together with abstract
transfer functions to mimic, in the abstract, the effect of
instructions and control-flow joins. In theory, such an anal-
ysis outputs an invariant Ic on Vc at each program point c.
However, it supposes that variables are unaliased and have
real type (i.e., integer or floating-point), which is not the
case for Vc. Thus, we do not use the numerical domain di-
rectly on Vc but on some collection Cc of synthetic cells of
real type. We provide an abstraction of the memory layout
that drives the numerical analysis by dynamically managing
Cc, translating instructions over Vc into instructions over Cc,
and taking care of byte-level aliasing between cells in Cc.

3.2 Abstract Memory Layout

Each variable V is viewed as an unstructured sequence of
sizeof(V) contiguous bytes. Its layout in Cc is initially
empty. It will be populated with possibly overlapping cells of
scalar type as V is accessed. Abstracting a program instruc-
tion is done in three steps. First, we enrich the layout by
adding all cells targeted by a dereference in the instruction.
Secondly, we evaluate, in the numerical domain. the instruc-
tion where all dereferences have been replaced with cells.
Thirdly, we remove all cells invalidated by alias-induced side-
effects. When a layout Cc is changed, the corresponding cells
are created or deleted in the numerical invariant Ic.

We illustrate this mechanism on the example of Fig. 4.
Fig. 5 gives the abstract memory layouts C1 to C7 of the
variable regs at program points (1) to (7).

• The assignment regs.w.ax = X first creates a new cell,
named ax, of type uint16, occupying offsets 0 and 1 in
the variable regs—see the top of Fig. 5. Supposing that

static union {
struct { uint8 al,ah,bl,bh,... } b;
struct { uint16 ax,bx,... } w;

} regs;

regs.w.ax = X; (1)
if (!regs.b.ah) (2) regs.b.bl = regs.b.al; (3)
else (4) regs.b.bh = regs.b.al; (5)
(6) regs.b.al = X; (7)

Figure 4. Register state of an Intel 8086 processor and
sample code to manipulate it. (1) to (7) represent program
points of interest—see Fig. 5.

Figure 5. Memory layouts C1 to C7 for the variable regs
at program points (1) to (7) when analyzing Fig. 4.

X corresponds to cell X, the assignment is then evaluated
as ax← X in the numerical domain to yield I1.

• Before executing the test !regs.b.ah, the cell ah of type
uint8 is created at offset 1 in regs. If the ABI tells
us that the computer uses a little-endian byte-ordering,
the cell can be initialized using the constraint ah =
ax/256 on I1. Finally, the test is executed by adding
the constraint ah = 0. When backed by a sufficiently
powerful numerical domain, we may be able to infer that
X/256 = ax/256 = ah = 0, i.e., X ∈ [0, 255], at (2).

• Let us now consider the control-flow join following the
conditional branches (3) and (5). As C3 6= C5, we must
unify cell sets. This is done by adding missing cells: bh is
added to C3 and bl to C5. As regs is declared static, its
bytes are initialized to 0—according to the C norm [14].
Thus, we add the constraint bh = 0 to I3 and bl = 0 to
I5. The control-flow join is then performed safely in the
numerical domain, using the cell set C6 = C3 ∪ C5.

• The last assignment, regs.b.al = X, can be directly
evaluated as al ← X in the numerical domain because
all the cells involved exist. However, modifying al also
modifies ax, a fact the numerical domain is not aware
of. We correct the invariant I7 by deleting, after the
assignment, all cells that overlap the modified cells. Thus,
ax /∈ C7. Note that ax will be back when regs.w.ax is
accessed next and its contents will be synthesized using
fresh information from the overlapping cells ah and al.

• In the presence of loops, we iterate the abstract compu-
tation until it stabilizes. Numerical domains usually use
special joint-like binary operators ▽

♯, so called widenings
[5], to accelerate fixpoint computations. As for control-
flow joints, we first unify the cells layouts of the argu-
ments, and then apply ▽

♯ in the numerical domain.

3.3 Pointer Abstraction

Numerical domains can only abstract directly environments
over cells of real type, not pointer type. Thankfully, a pointer
value can be viewed as a pair (V, o) ∈ Vc × N, which
represents the offset o, in bytes, from the beginning of the
variable V . We abstract each component independently: one
cell of integer type is allocated in the numerical domain for
each pointer cell to represent its possible offsets while we
maintain, in the memory layout, a map associating a set
of base variables to each pointer cell. Pointer arithmetics
in expressions are straightforwardly translated into integer
arithmetics on offsets and then fed to the numerical domain.
One benefit of this is that we are able to find relationship
between pointer and integer values. For instance, when using
the polyhedron domain, we can infer that s=src+sz holds at
the end of the memory copy procedure of Fig. 3.

3.4 Intersection Semantics

As it will become clear in Sect. 4.4.3, we actually use an
intersection semantics for overlapping cells. Suppose, for
instance, that the analysis of Fig. 4 found some numerical
invariant Ic with respect to the layout Cc = {ah,ax}. Then,
taking byte-level aliasing into account, regs.b.ah = v is
possible only if both ax’s hi-byte and ah can be v: Ic

actually stands for Ic ∧ (ah = ax/256). This semantics
ensures that, when reading a cell’s contents, it is safe to
ignore overlapping cells—we simply lose some constraints,
which is sound. In practice, when there already exists a cell
in Cc with the correct type and offset—which is the most
common case—we use it without looking at overlapping
cells while, when it needs to be created, we use existing
overlapping cells to synthesize good and safe initial values.
Dually, when writing a cell’s contents, we must take care
to update all overlapping cells as they give constraints that
were true before the assignment but are no longer valid. In
practice, we destroy such cells, which actually delegates the
update to the next time the cell is created back by a read.

Another legitimate choice would have been a union se-
mantics. However, this would have made write cheap and
read costly. We favored the cheap reads of the intersection
semantics. Also, as we will see in Sect. 4.4.3, the intersection
semantics has a very natural formalization.

For performance reasons in the numerical domain, we
should avoid creating too many cells. Our scheme keeps sev-
eral redundant cells per memory byte. Thankfully, redun-
dancy is bounded by the low number of scalar types—13 as
shown in Fig. 6. As cells are created lazily and destroyed
often, there is few long-lived redundancy in practice. More-
over, by associating only one offset variable per pointer—and

not one for each basis variable the pointer can point to—we
lose some precision but avoid a potential quadratic blow-up.

4. Formalization of the Analysis

4.1 Abstract Interpretation

We formalize our analysis in the Abstract Interpretation
framework, a general theory of the approximation of pro-
gram semantics introduced by Cousot and Cousot in [5].
It allows the systematic design of static analyses with var-
ious levels of precision. The gist of the method is first to
design a concrete semantics, the most precise mathemat-
ical expression of program behaviors. This step emphases
on expressibility only and generally results in a non com-
putable semantics. Then, sound abstractions are performed
and composed until a computable semantics is derived from
the concrete one. This results in an abstract interpreter that
can be run without user intervention, terminates on all pro-
grams, and is, by construction, sound with respects to the
concrete semantics. It is, however, often incomplete. Ab-
stractions should be carefully chosen based on the class of
properties to be checked, the class of programs analyzed, and
the amount of resources to be invested in the static analysis.

There exists a large library of abstract domains that
provide ready-to-use abstract computation algorithms. For-
mally, given a concrete universe D where the concrete se-
mantics is formalized, an abstract domain is given by:

• a set D♯ of computer-representable abstract properties,

• a concretization function γ : D♯ → P(D) assigning a
meaning to each abstract property,

• a computable partial order ⊑♯ on D♯ such that γ is mono-
tonic: X♯ ⊑♯ Y ♯ =⇒ γ(X♯) ⊆ γ(Y ♯); it models the rel-
ative precision of abstract elements and enables fixpoint
abstractions through iteration schemes—potentially ac-
celerated using special extrapolation operators ▽

♯,

• for each n−ary semantical operator F : Dn → P(D),
an abstract, computable version F ♯ : D♯n → D♯ that is
sound, i.e., ∀X♯

i ∈ D
♯, ∀Xi ∈ γ(X♯

i), F (X1, . . . , Xn) ⊆
(γ ◦ F ♯)(X♯

1, . . . , X
♯
n).

We refer the reader to [5, 6] for more informations on the
theory of Abstract Interpretation and its applications.

4.2 Language

We suppose that the program has been preprocessed into the
simple language of Fig. 6. Each type denotes not only a set of
possible values, but also their bit-representation in memory.
We assume that all pointers use the same representation,
and so, use a single type denoted by ptr. In expressions,
Vc and F denote respectively the set of variables at control
point c and functions. We have distinguished two kinds of
assignments: assignments of expressions of scalar type, and
copy assignments of arbitrary data structures.

4.3 Concrete Memory Domain DM

We now introduce a non-standard, low-level semantics DM

that gives a meaning to the programs of Sect. 2.

4.3.1 Concrete Memory Representation

Values. Let us denote by Vτ the set of values of scalar
type τ . For real types, Vτ is a finite subset of R. Pointer
values range in the following set:

Vptr

def

= { (V, i) |V ∈ Vc ∪ F , 0 ≤ i ≤ sizeof(V) } ∪ {ø, ω}

int-sign ::= unsigned | signed
int-type ::= char | short | int | long | long long
float-type ::= float | double | long double
real-type ::= int-sign int-type | float-type
scalar-type ::= real-type | ptr
type ::= scalar-type

| type[n] n ∈ N

| struct { Id1 : type, . . . , Idn : type }
| union { Id1 : type, . . . , Idn : type }

expr ::= cst cst ∈ R

| &V V ∈ Vc ∪ F
| ⋄ expr ⋄ ∈ {−,∼, !}
| expr ⋄ expr ⋄ ∈ {+,≤, &, ||, . . .}
| *τ expr τ ∈ scalar-type
| (τ) expr τ ∈ scalar-type

inst ::= *τ expr← expr τ ∈ scalar-type
| *τ expr← *τ expr τ ∈ type
| expr == 0 ?

Figure 6. Language Syntax.

where ø is the NULL pointer while ω represents all erroneous
pointer values. Valid pointers pointers are (base,offset) pairs.
Following the C norm, data pointers can point one byte past
the end of a variable. To treat function pointers the same
way as data pointers, it is sufficient to extend sizeof so

that sizeof(V)
def

= 0 when V ∈ F : valid functions pointers
always have a null offset.

Memory State. We decompose the memory into a collec-
tion B of untyped byte locations:

B(Vc)
def

= { (V, i) | V ∈ Vc, 0 ≤ i < sizeof(V) }

The set of values a byte can hold is defined as the following
set V of triples:

V
def

= {(τ, b, v)|τ ∈ scalar-type, 0 ≤ b < sizeof(τ), v ∈ Vτ}

where (τ, b, v) represents symbolically the b−th byte of the
representation of the value v of scalar type τ . A concrete
memory state associates a byte value to each byte location:

DM (Vc)
def

= B(Vc)→ V. Note that, in actual computers, the
memory maps byte locations to numbers within [0, 255]. Our
memory representation is sightly higher-level as it abstracts
away the encoding from V to [0, 255]. For instance, the base
variable of pointers is kept symbolic so that our semantics
is independent from the absolute address chosen for the
variables by memory allocation services.

Value Recomposition. Due to pointer casts, a sequence
of bytes may be dereferenced as a value of any type. Thus, we
now suppose that we are given a family of functions φτ that
construct all the values of type τ ∈ scalar-type correspond-
ing to a given byte sequence: φτ : V

sizeof(τ) → P(Vτ). Note
that, to allow a conservative modeling of casting, the func-
tions may output several values. The exact definition of φ is
highly dependent upon the ABI. We provide, in Fig. 7, an ex-
ample definition valid for Intel x86 processors. It embeds use-
ful information, such as the fact that ø is always represented
as the integer 0, or that integers are represented using two’s
complement arithmetics and little endian byte ordering—it
models precisely the regs variable in Fig. 4. However, when
the value depends upon information abstracted away by our

φτ 〈(τ0, b0, v0), . . .〉
def

= {v} if ∀k, vk = v, τk = τ, bk = k

φunsigned char〈(τ, b, v)〉
def

=
{

{0} if τ = ptr and v = ø
{v/(256b) mod 256} if τ ∈ int-type
[0, 255] otherwise

φunsigned t〈x0, . . .〉
def

= {
∑

k
2256×k × yk |

yk ∈ φunsigned char〈xk〉 }

φsigned t〈x〉
def

= { w | w + 2sizeof(t)Z ∩ φunsigned t〈x〉 6= ∅,
w ∈ [−2sizeof(t)−1 − 1, 2sizeof(t)−1] }

φptr〈x〉
def

=

{

{ø} if φunsigned long〈x〉 = 0
Vptr otherwise

in all other cases, φτ 〈x〉
def

= Vτ

Figure 7. Value recomposition function example.

semantics (e.g., non-ø pointers cannot be converted to in-
tegers without knowing the absolute address of variables)
or when we are not interested in the precise behavior of a
particular construction (e.g., reading the binary represen-
tation of floating-point values) we use a conservative defi-
nition: φτ 〈x〉 = Vτ . If need be, these cases can be refined.
Dually, we may trade precision for generality—e.g., drop our
assumption on the byte ordering of integers.

4.3.2 Concrete Semantics

Expression Semantics. The concrete semantics J e K :
DM (Vc)→ P(Vτ) of an expression e of type τ ∈ scalar-type
associates a set of values to a memory state. Most of its
definition can be readily extracted from the C norm [14]
and the IEEE 754-1985 norm [13]. We present here only the
part related to our non-standard definition of the memory.
It corresponds to the semantics of pointers and dereferences:

• J &V K(M)
def

= { (V, 0) }

• J e + e′ K(M)
def

= { (V, i + j) | 0 ≤ i + j ≤ sizeof(V),
(V, i) ∈ J e K(M), j ∈ J e′ K(M) }

• J e−e′ K(M)
def

= { i− j |
(V, i) ∈ J e K(M), (V, j) ∈ J e′ K(M) }

• J (ptr)e K(M)
def

=

{

{ø} if J e K(M) ⊆ {0, ø}
Vptr otherwise

• J *τ e K(M)
def

=
∪ { φτ 〈M(V, i), . . . , M(V, i + sizeof(τ)− 1)〉 |

(V, i) ∈ J e K(M), i + sizeof(τ) ≤ sizeof(V),
i ≡ 0 [alignof(τ)] }

As before, the non-determinism allows a lose but sound
modeling of concrete actions. Erroneous computations (such
as overflows in pointer arithmetics and out-of-bound or
misaligned pointers in dereferences) halt the program, and
so, do not contribute to the set of accessible states.

Instruction Semantics. The semantics {| i |} : DM (Vc)→
P(DM (Vc)) of an instruction i maps a memory state before
the instruction to a set of possible memory states after the
instruction. It is defined as follows:

• tests filter out environments that cannot satisfy the test:

{| e == 0 ? |}(M)
def

=

{

{M} if 0 ∈ J e K(M)
∅ otherwise

• copy assignments perform a byte-per-byte copy:

{| *τ e← *τ f |}(M)
def

= {
M [(V, i) 7→M(W, j), . . . , (V, i + n) 7→M(W,j + n)] |
(V, i) ∈ J e K(M), (W,j) ∈ J f K(M), n = sizeof(τ)− 1,
i + n < sizeof(V), j + n < sizeof(W) }

• regular assignments evaluate the right-hand expression
and store its byte components into the memory:

{| *τ e← f |}(M)
def

=
{ M [(V, i) 7→ (τ, 0, v), . . . , (V, i + n) 7→ (τ, n, v)] |

(V, i) ∈ J e K(M), v ∈ J f K(M),
n = sizeof(τ)− 1, i + n < sizeof(V) }

Note how the value conversion φ due to pointer casts only
occurs at memory reads, i.e., in a lazy way, so as to reduce
the precision loss. Most of the time, we fall in the first case
of Fig. 7: we read back a byte sequence corresponding to a
value v stored by a previous assignment of matching type;
φ returns the singleton {v} and there is no loss of precision.

When τ is scalar, *τ e← *τ e′ can be considered as either
type of assignments, but the copy assignment form is more
precise because it avoids interpreting the memory contents
via φ. This allows the precise modeling of the polymorphic
memory copy functions of Figs. 2–3 as byte-per-byte copies.

Variable Creation and Destruction. When creating a
new (zero-initialized) variable V of type τ , new byte loca-
tions initialized to the value (unsigned char, 0, 0) are added
to B. However, deleting a variable V from a memory state
M is more complex. We must not only remove some byte
locations from B, but also invalidate pointers to V in the re-
maining locations, which gives the following memory state:

(W, i) 7→

{

(ptr, j, ω) if M(W, i) = (ptr, j, (V, ·))
M(W, i) otherwise

4.4 Memory Abstractions

We now present computable abstractions of the concrete
memory domain. We are able to retrieve, in Sect. 4.4.3, the
analysis presented in Sect. 3, in a sound and formal way. We
also present, in Sect. 4.4.4, a memory equality abstraction
to improve its precision in the presence of copy assignments.

4.4.1 Scalar Value Abstraction

We suppose that we are given a numerical abstract do-
main D♯

R
(N) able to abstract environments over a set N

of cells with real type. That is, its concretization γR lives
in D♯

R
(N) → R

N and it features assignment and test trans-
fer functions on expressions involving only real-valued con-
stants, cells in N , and arithmetic operators. We refer the
reader to [5, 16] for example definitions, including support
for relational invariants and floating-point arithmetics.

Our first task is to add support for pointer values Vptr to

D♯
R
(N). As explained in Sect. 3.3, the base component of a

pointer is abstracted as a set of variables or functions while
its offset is assigned a dimension in the numerical domain.
Given a collection C of cells of scalar type, the enhanced
domain D♯

V
(C) is constructed as follows:

D♯
V
(C)

def

= D♯
R
(C) × (Cptr → P(Vc ∪ {ω, ø}))

where Cptr is the subset of C with pointer type. A pair

(N, P) ∈ D♯
V
(C) represents the set γV((N, P)) of environ-

ments ρ : C → ∪τ (Vτ) such that, for some σ ∈ γR(N): if V

has real type, then ρ(V) = σ(V); if V is a pointer, then either
ρ(V) ∈ P (V) ∩ {ω, ø} or ρ(V) ∈ (P (V) \ {ω, ø})× {σ(V)}.

At the level of D♯
V
, we accept the same expressions as

in D♯
R

with the addition of pointer arithmetics—excluding
pointer dereferencing. As pointer arithmetics has been bro-
ken down to the byte level, we can feed any instruction di-
rectly to D♯

R
and obtain its effect on the offset information.

The effect on pointer bases is derived by structural induction
on expressions. For instance, if p, q and i are respectively
two pointers and an integer variable, then the assignment
{| q ← p + i |}♯

V
(N, P) in D♯

V
will return the abstract pair

({| q← p+ i |}♯
R
(N), P [q 7→ P (p)]) stating that q now points

to the same base variables as p, and its offset is that of p
plus i. The binary abstract operators—such as union ∪♯

V

and ordering ⊑♯
V
—are defined point-wisely. These are quite

unoriginal, and so, we do not detail them further.

4.4.2 Offset Abstraction

In practice, D♯
R

is not a single numerical domain but a
reduced product of several domains specifically chosen to fit
the kinds of invariants found in an application domain—in
our case, reactive control-command software, this includes
plain intervals [5], relational octagons [15], and domain-
specific filter domains [9]. Now that we rely on D♯

R
to also

abstract pointer offsets, new kinds of numerical invariants
are needed and we must enrich our product. An important
property to infer is pointer alignment, such as p ≡ 0 [4] when
p is used to access elements of byte-size 4 in an array. For
this, we use the simple congruence domain [11, 2].

Although the combination of intervals and congruences
seems sufficient in most cases, preliminary experiments sug-
gest the need to infer invariants of the more general form p ∈
∑

i
[ai, bi]× ci to represent, e.g., slices in multi-dimensional

arrays. No such domain exists; its construction is left as fu-
ture work. Alternate ideas include using the reduced product
of linear equalities and intervals, as done by Venet [23].

4.4.3 Cell-Based Memory Abstraction D♯V

M

Cell Universe. In order to use the value domain D♯
V
, we

need to map memory bytes in DM (Vc) to cells of scalar type.
Given ρ ∈ DM (Vc), for each binding ρ(V, i) = (τ, b, v), we
must consider a cell of type τ at offset i − b in variable V ,
with value v ∈ Vτ . We define the following cell universe:

Call(Vc)
def

= { (V, i, τ) | V ∈ Vc, τ ∈ scalar-type,
i ≥ 0, i + sizeof(τ) ≤ sizeof(V) }

where (V, i, τ) corresponds to a cell of type τ starting at off-
set i in variable V . It models bytes at locations (V, i + b)
for all b in [0, sizeof(τ) − 1]. We will say that two cells
overlap when the byte locations they model overlap. When
extracting cells from a concrete state, we can encounter over-
lapping cells—e.g., (regs, 0, uint16) and (regs, 1, uint8) at
program point (2) in Fig. 4. As an abstract memory state
is supposed to represent a set of concrete states, we must
consider a fortiori overlapping cells to accurately model all
possible memory structures.

Abstract States. An abstract memory state, in D♯V

M , is
given by a subset C of the cell universe, together with an
abstract element in D♯

V
(C) giving the cell contents:

D♯V

M (Vc)
def

= { (C, X) | C ⊆ Call(Vc), X ∈ D♯
V
(C) }

A pair represents the following set of memory states:

γV

M ({(V1, i1, τ1), . . . , (Vn, in, τn), X)
def

= { ρ ∈ DM (Vc) |
∀x1 ∈ φτ1

〈ρ(V1, i1), . . . , (V1, i1 + sizeof(τ1)− 1)〉,...
∀xn ∈ φτn

〈ρ(Vn, in), . . . , (Vn, in + sizeof(τn)− 1)〉,
(x1, . . . , xn) ∈ γV(X) }

Note the universal quantifiers which mean that, when two
cells from C overlap at a byte location (V, i), γV

M (C, X) selects
only concrete environments whose byte values at (V, i) are
compatible with both cell values from γV(X). Hence the term
intersection semantics used in Sect. 3.4. Moreover, when a
byte location is not covered by any cell in C, it can take any
value in the concrete world.

Cell Realization. It would be conceptually simpler to
always consider C = Call, but quite costly as the time and
memory complexity of D♯

V
depends directly on the size of

C. Thus, C is chosen dynamically. As γV

M has universal
quantifiers, it is always safe to remove any cell c from C:
γV

M (C, X) ⊆ γV

M (C \ {c}, X|C\{c}
). Adding a new cell c is

more complex: we must initialize its value according to
existing cells overlapping c so as not to forget any concrete
state. We call this operation cell realization. First, the cell
is created and initialized to Vτ , which is sound. Then, the
value is refined by scanning the set of overlapping cells for
certain patterns and applying tests transfer functions in D♯

V
accordingly. For instance, when trying to add the cell ah
in the cell set C1 of Fig. 5, one finds the overlapping cell
ax. According to the φunsigned char function of Fig. 7, we

can apply the transfer function {|ax/256 − ah == 0? |}♯
R
.

Note that, ifD♯
R

contains relational domains, the relationship
between the realized and the overlapping cells will be kept.
For instance, if D♯

R
is able to represent the invariant ah =

ax/256, then ,whenever we learn something new on the value
of one cell, it will be immediately reflected on the other one.

Abstract Operators. Assignments and tests are trans-
formed by replacing dereferences with cell sets, and then
fed to the underlying value domain. Given a sub-expression
*τ e, where e is dereference-free, e is first evaluated in D♯

V

which returns the set S of byte locations it can point to. All
cells C′ = { (V, i, τ), | (V, i) ∈ S } are then realized in the
current abstract state—if not already there. The resolution
continues with the enriched abstract state for the expres-
sion where *τ e has been replaced with the cell set C′. Tests
can be directly executed in D♯

V
on the resulting expressions.

Assignments are a little more complex because they involve
memory writes. Given an assigned cell c, we first realize c,
then execute the assignment in D♯

V
, and finally remove all

cells overlapping c. Note that a dereference may resolve in
more than one cell, |C′| > 1, which results in weak updates
in D♯

V
. We now define the abstraction ◦♯V

M of a binary oper-
ator ◦. Given the states S1 = (C1, X1) and S2 = (C2, X2),
we first unify the cell sets using realization to obtain two
states S′

1 = (C1 ∪ C2, X
′
1) and S′

2 = (C1 ∪ C2, X
′
2). We then

apply the binary operator on the underlying value domain
and get S1 ◦

♯V

M S2 = (C1 ∪ C2, X
′
1 ◦

♯
V

X ′
2). This is sound with

respect to overlapping cells. However, because overlapping
cells have an intersection semantics, we may lose some preci-
sion on ∪♯V

M—informally, we over-approximate (a∩b)∪(c∩d)

as (a ∪ c) ∩ (b ∪ d). The widening ▽
♯V

M stabilizes invariants
by first stabilizing the cell set—which is an increasing sub-
set of the finite set Call—and then relies on the underlying

widening ▽
♯
V
. The abstract order ⊑♯V

M is defined as ⊑♯
V

after
cell sets have been unified to C1 ∪ C2.

There are strong similarities between the abstract cell
realization and the concrete value recomposition φ. Both
are used, in a lazy way, to reconstruct information when the
type of a dereference mismatches that of the currently stored
value. Both are defined according to an ABI and the level
of modeling required by the user. Both may result in a loss
of precision. Thus, once a cell is realized, we try to keep it
around as long as possible (i.e., until it is invalidated by a
memory write).

4.4.4 Memory Equality Predicate Domain D♯Eq
M

When analyzing generic memory copy functions, D♯V

M some-
times lacks the required precision. Consider, for instance,
calling the function memcopy(&a,&b,4) from Fig. 2, a and b
being 4-byte integers. Although it is equivalent to the plain
assignment a=b, it is carried-out one byte at a time. D♯V

M will
first realize individual bytes in b as char cells, copy them into
a and, the first time a is read, realize back the four char cells
as a single integer cell. Because each realization may result
in some loss of precision, the inferred value set for the cell
(a, 0, int) may be much larger than that of (b, 0, int).

In order to solve this problem, we introduce a specific
abstraction D♯Eq

M of DM that tracks equalities between byte
values in a symbolic way:

D♯Eq
M (Vc)

def

= Vc → ((N× Vc × N× N) ∪ {⊤♯Eq})

where a binding V 7→ (s, W, d, l) means that the l bytes
starting at location (V, s) are equal to those starting at
location (W,d), while ⊤♯Eq means “no information:”

γEq
M (ǫ)

def

= { ρ ∈ DM (Vc) | ∀V ∈ Vc, ǫ(V) = (s, W, d, l)
=⇒ ∀0 ≤ i < l, ρ(V, s + i) = ρ(W,d + i) }

Note that only one predicate is kept per variable, and the
parameters (s, W, d, l) are bound to concrete values. This en-
sures efficient transfer functions but requires memory copy
loops to be fully unrolled. (We could benefit from more
complex predicate abstraction schemes to overcome this
restriction—e.g., use [4] to keep (s, d, l) symbolic and relate
their value in D♯

R
(N). This was not required in our experi-

ence as the codes we analyze only copy small structures.)
Among instructions, only copy assignments are treated

precisely: tests are safely ignored while other assignments are
dealt with by removing bindings involving the destination—
i.e., setting them to ⊤♯Eq. Suppose that ǫ(V) = (s, W, d, l)
and we copy l′ bytes from (V, s′) to (W ′, d′); several cases
arise. When W = W ′, s − d = s′ − d′ and s′ ∈ [s, s + l],
we copy bytes at the end of equal zones. We thus grow the
zones by setting ǫ(V) = (s, W, d, max(l, l′ − s′ + s)). The
case is similar when bytes are copied at the start of zones:
W = W ′, s−d = s′−d′ and s ∈ [s′, s′+l′]. In all other cases,
the former binding is useless and we replace it by a new one
ǫ(V) = (s′, W ′, d′, l′). As W ′ is modified, we must also, in all
cases, remove any other binding involving W ′. We say that
ǫ1 ⊑

♯Eq
M ǫ2 whenever, for every V , either ǫ2(V) = ⊤♯Eq or

ǫ1(V) corresponds to a sub-range of ǫ2(V). This order has a
least upper bound, which serves to define the abstract union,
but no greatest lower bound. As D♯Eq

M has a finite height, no
widening is necessary to help the iterates converge.

We perform a partially reduced product between D♯V

M

and D♯Eq
M . All abstract operations are performed in parallel.

In addition, we propagate information from D♯Eq
M to D♯V

M

after each copy assignment. For each cell (V, o, τ), if we just

old domain new domain both

lines time mem. time mem. alarms

9 500 82s 0.2GB 99s 0.2GB 1
70 000 62m 1.0GB 63m 1.1GB 0

226 000 4h57 1.6GB 4h42 1.7GB 1
400 000 11h04 3.0GB 11h46 3.2GB 0

Figure 8. Regression tests for Astrée.

discovered that ǫ(V) = (s, W, d, l) and [o, o + sizeof(τ)] ⊆
[s, s+ l], then we realize the cell (W,o−s+d, τ) and perform
the assignment ∗τ (&W + o − s + d) ← ∗τ (&V + o) in D♯V

M .
In our example, memcopy(&a,&b,4), we would generate the
assignment a←b just after copying the 4−th byte. Thus, the
value for the cell (a, 0, int) is precisely that of (b, 0, int) and
no longer need to be realized from the value of char cells.

5. Experiments

5.1 Presentation of the Astrée Analyzer

Scope. The goal of Astrée is to detect statically all run-
time errors in embedded reactive software written in C. Run-
time errors include integer and floating-point arithmetics
overflows, divisions by zero and array out-of-bound accesses.
To achieve this goal, Astrée performs an abstract reacha-
bility analysis and computes the set of values each variable
can take, considering all program executions in all possible
environments. To be efficient, it performs many sound but
incomplete abstractions. As a consequence, it always finds
all run-time errors but may report spurious alarms. Its ab-
stractions are tuned towards specific classes of programs in
order to achieve zero false alarms in practice, within rea-
sonable time. Indeed, [3] reports its success in proving au-
tomatically the absence of run-time errors in real industrial
code of several hundred thousand lines, in a few hours.

Architecture. Astrée has a modular architecture. It re-
lies on a product of several numerical domains, which can
be plug in and out. They exchange information via config-
urable reductions. It also features a parameterisable abstract
iterator tailored for flow- and context-sensitive analysis, and
trace partitioning to achieve partial path-sensitivity. In pre-
vious work [3], it has been specialised towards the analysis of
embedded avionics software by incorporating adapted iter-
ations strategies and numerical domains (such as relational
octagons [15] and domain-specific filter domains [9]). How-
ever, its memory model was limited to simple well-structured
data only, which was sufficient at that time. In order to an-
alyze new code featuring union types and pointer casts, we
replaced it with our new memory abstractions. Thanks to
the modular construction of Astrée and its modular proof
of correctness, most parts were not tied to the old memory
abstraction and could be reused (in particular, all numerical
and partitioning domains, as well as the iterator).

5.2 Preliminary Experimental Results

We have run three kinds of experiments: small case stud-
ies, regression tests and preliminary analyses of new real-
life software. They all ran on a 64-bit AMD Opteron 250
(2.4GHz) workstation, using one processor. The analyzed
programs do not feature recursion, dynamic memory alloca-
tion, nor multi-threading. Moreover, they are self-contained:
they do not call precompiled library routines, and the exter-
nal environment is modeled using volatile variables.

source lines time memory alarms

end-user 1
35 000 12m 212MB 22
46 000 16m 271MB 84

end-user 2
92 000 3h17 3.2GB 71

184 000 4h55 1.1GB 36

Figure 9. Four newly analyzed codes, from two end-users.

Firstly, we tested the relevance of our domains to the
specific problems of union types and pointer casts discussed
in Sect. 2. We produced and were given by end-users several
constructed programs of a hundred lines, in the spirit of
Figs. 1–4. We were able to prove the absence of run-time
errors of all case studies in a fraction of second.

Secondly, we re-analyzed the pointer- and union-free in-
dustrial embedded critical code successfully analyzed by As-

trée in previous work [3]. Fig. 8 compares the performance
of the old and new memory domains. We see that the mem-
ory peak and time consumption are only slightly increased,
in the worse case, and we find the same alarms. Note that,
as Astrée uses incomplete methods—such as partially re-
duced products and convergence acceleration—there is no
theoretical guarantee that our new memory semantics al-
ways gives more precise results than the former one, even
though it is more expressive. Hence, the importance of as-
serting experimentally non-regression in terms of precision.

Thirdly, we analyzed four new industrial critical embed-
ded software featuring unions and complex pointer manipu-
lations. Such codes could not be considered before in Astrée

because of its limited legacy memory domain. The analyses
results are shown in Fig. 9. These results are preliminary in
the sense that we have not yet investigated the causes of all
alarms: they may be due to analyzer inaccuracies, but also to
real errors or too conservative assumptions on the environ-
ment. The results are encouraging: they correspond to the
preliminary results obtained on the codes of Fig. 8 before
domain-specific numerical domains and iteration strategies
were incorporated in Astrée to achieve zero alarm [3].

6. Related Work

Several dialects of C, such as CCured [17], have been pro-
posed to prevent error-prone uses of unions and pointers.
The value analysis of such dialects, with their cleaner mem-
ory model, would be easier than the full C. Unfortunately,
their strengthened type systems would reject constructs
found legitimate by end-users and force them to rewrite their
software. For now, we (analysis designers) should adapt our
analyses to the programming features they currently use.

There exists a very large body of work concerning pointer
analyses for C—we refer the reader to the very good sur-
vey by Hind [12]. Unfortunately, they cannot serve our pur-
pose. All field-insensitive methods natively support union
and pointer casts—they are considered “no-op.”However, in
order to find precise bounds on values stored into and then
fetched from memory, we absolutely require field sensitivity.
Very few field-sensitive analyses support unions or casts.
Most of them—e.g., the recent work of Whaley and Lam
[24]—assume a memory model à la Java, where the memory
can be a priori partitioned into cells of unchanging type. As
a middle-ground, Yong et al. [27] propose to collapse fields
upon detecting accesses through pointers whose type mis-
matches the declared type of the fields. This is not sufficient
to treat precisely union types—Fig. 1—or polymorphism—

Fig. 2. Also, flow-insensitive analyses (such as the union-
and cast-aware analysis by Steensgaard [22]) which are well-
suited for program optimization and understanding, would
not perform precise-enough for value analysis. Indeed, they
tend to produce large points-to sets—especially given that
we are field-sensitive—which results in weak updates and
precision losses in the numerical domains. When it comes to
program correctness, we are ready to use much more costly
abstractions: each instruction proved correct automatically
saves the user an expensive manual proof.

Instead of relying on the structure of C types, we chose to
represent the memory as flat sequences of bytes. This allows
shifting to a representation of pointers as pairs: a symbolic
base and a numeric offset. It is a common practice—it is
used, for instance, by Wilson and Lam in [25]. This also sug-
gests combining the pointer and value analyses into a single
one—offsets being treated as integer variables. There is ex-
perimental proof [18] that this is more precise than a pointer
analysis followed by a value analysis. Some authors rely on
non-relational abstractions of offsets—e.g., a reduced prod-
uct of intervals and congruences [2], or intervals together
byte-size factors [26]. Others, such as [23, 19] or ourself, per-
mit more precise, relational offset abstractions.

We stress on the fact that using an offset-based pointer
representation solves, by itself, the problem of points-to
analysis in the presence of union types and casts, but it does
not solve the problem of analyzing precisely the contents
of the memory such offset-based pointers point to. Several
kinds of solution have been used to avoid treating this second
problem. A first one is to perform the field-sensitive points-to
and value analysis of only a part of the memory that is never
accessed through casts—e.g., the surface structure of [23]—
while the rest is only checked for in-bound accesses. A second
one is to fix one memory layout—using, e.g., the declared
variable types or some pointer alignment constraints—and
conservatively assume that mismatching dereferences result
in any value [2]. A less conservative solution, proposed by
Wilson and Lam [25], is to consider that a dereference can
output the value of any overlapping cell. We are more pre-
cise and more general because we allow value recomposition
form individual bytes of partially overlapping cells and take
into account the bit-representation of types. In particular,
unlike previous work, we can analyze precisely the indirect
dereferencing following the memory copy of Fig. 2. Moreover,
while [25] often resolves a dereference into several overlap-
ping cells, even when the target of the dereference is precisely
known, we manage to select a single cell most of the time.
This reduces the possibility of weak updates and improves
the analysis precision, especially when using relational nu-
merical domains. To our knowledge, our method is the first
one that allows discovering precise relational invariants in
the presence of union types and pointer casts.

Finally, note that most articles—[23] being a notable
exception—directly leap from a memory model informally
described in English to the formal description of a static
analysis. Following the Abstract Interpretation framework,
we give a full mathematical description of the memory model
before presenting computable abstractions proved correct
with respect to the model.

7. Future Work

A first goal is to reduce the number of alarms in the newly
analyzed codes of Fig. 9. In the best scenario, most inaccura-
cies will be solved by tweaking already existing parameters—
such as the level of path sensitivity or domain relationality.

However, we will probably also need to add new numerical
domains in the reduced product D♯

R
, as it was necessary in

order to achieve the proofs of absence of run-time errors in
[3]. We plan to investigate particularly the numerical do-
mains required to abstract pointer offsets precisely, as it is
a new requirement of our memory abstractions. Finally, by
iterating the analyzer refinement process over other codes
involving unions and pointers, we hope to provide a library
of abstractions that, in practice, is sufficient to analyze a
large class of embedded C programs.

Further goals include incorporating domains for heap-
allocated objects—e.g., related to predicate-based summa-
rization as proposed by Sagiv et al. [20, 10]. We also wish to
include other memory abstractions within our framework,
for instance, the string abstraction by Dor et al. [7] as well
as generalizations of D♯Eq

M using predicate abstractions pa-
rameterized by numerical domains à la Cousot [4].

8. Conclusion

In this article, we proposed new techniques to perform the
precise value analysis of C programs with pointers and union
types. We first gave a precise meaning to such programs by
defining a concrete memory semantics, parameterized by an
Application Binary Interface. We then proposed two com-
putable abstractions: a value abstraction, parameterized by
the choice of a numerical abstract domain, and an equal-
ity predicate abstraction, able to precisely deal with poly-
morphic memory copies. The combined abstractions have
been implemented within the Astrée parametric static an-
alyzer that checks for run-time errors in embedded critical
C software. Preliminary experimental results are encourag-
ing: while not sacrificing the precision and efficiency of As-

trée on legacy analyses—in particular, the proof of absence
of run-time errors for some large industrial codes in a few
hours of computation time—we greatly enlarge the class of
analyzable programs. Currently, small test cases containing
pointers and unions have been proved correct while there
are still a few dozens alarms on real-life industrial examples.
We are confident that these results will be improved in the
future by refining the analyzer.

Acknowledgments

We would like to thanks the whole Astrée team [3], as well
as the anonymous referees for their insightful comments.

References

[1] AT&T and The Santa Cruz Operation Inc. System V
application binary interface, 1997.

[2] G. Balakrishnan and T. Reps. Analyzing memory accesses
in x86 executables. In CC 2004, number 2985 in LNCS,
pages 5–23. Springer, 2004.

[3] B. Blanchet, P. Cousot, R. Cousot, J. Feret, L. Mauborgne,
A. Miné, D. Monniaux, and X. Rival. A static analyzer
for large safety-critical software. In ACM PLDI’03, volume
548030, pages 196–207. ACM Press, 2003.

[4] P. Cousot. Verification by abstract interpretation. In
Verification: Theory and Practice: Essays Dedicated to
Zohar Manna on the Occasion of His 64th Birthday, volume
2772, pages 243–268. Springer, 2003.

[5] P. Cousot and R. Cousot. Abstract interpretation: a unified
lattice model for static analysis of programs by construction
or approximation of fixpoints. In ACM POPL’77, pages
238–252. ACM Press, 1977.

[6] P. Cousot and R. Cousot. Abstract interpretation frame-
works. Journal of Logic and Computation, 2(4):511–547,
1992.

[7] N. Dor, M. Rodeh, and M. Sagiv. Cleanness checking of
string manipulations in C programs via integer analysis. In
SAS’01, volume 2126 of LNCS. Springer, 2001.

[8] J.-L. Lions et al. ARIANE 5, flight 501 failure, report by
the inquiry board, 1996.

[9] J. Feret. Static analysis of digital filters. In ESOP’04,
volume 2986 of LNCS. Springer, 2004.

[10] D. Gopan, F. DiMaio, N. Dor, T. Reps, and M. Sagiv.
Numeric domains with summarized dimensions. In TACAS
2004, LNCS, pages 512–529. Springer, 2004.

[11] P. Granger. Static analysis of arithmetical congruences. In
International Journal of Computer Mathematics, volume 30,
pages 165–190, 1989.

[12] M. Hind. Pointer analysis: Haven’t we solved this problem
yet? In PASTE’01, pages 54–61. ACM Press, 2001.

[13] IEEE Computer Society. IEEE standard for binary floating-
point arithmetic. Technical report, ANSI/IEEE Std. 745-
1985, 1985.

[14] International Organisation for Standardization. Program-
ming languages – C. Technical report, ISO/IEC 9899:1999,
1999.

[15] A. Miné. The octagon abstract domain. In AST 2001 in
WCRE 2001, IEEE, pages 310–319. IEEE CS Press, 2001.

[16] A. Miné. Relational abstract domains for the detection of
floating-point run-time errors. In ESOP’04, volume 2986 of
LNCS, pages 3–17. Springer, 2004.

[17] G. Necula, S. McPeak, and W. Weimer. CCured: type-safe
retrofitting of legacy code. In POPL’02, pages 128–139.
ACM Press, 2002.

[18] A. Pioli and M. Hind. Combining interprocedural pointer
analysis and conditional constant propagation. Technical
Report 99-103, IBM, 1999.

[19] R. Rugina and M. Rinard. Symbolic bounds analysis of
pointers, array indices, and accessed memory regions. In
PLDI’00, pages 182–195. ACM Press, 2000.

[20] M. Sagiv, T. Reps, and R. Wilhelm. Parametric shape
analysis via 3-valued logic. TOPLAS, 24(3), 2002.

[21] M. Siff, S. Chandra, T. Ball, K. Kunchithapadam, and
T. Reps. Coping with type casts in C. In ESEC/FSE’99,
pages 180–198. Springer.

[22] B. Steensgaard. Points-to analysis by type inference of
programs with structures and unions. In CC’96, volume
1060 of LNCS, pages 136–150. Springer, 1996.

[23] A. Venet. A scalable nonuniform pointer analysis for
embedded programs. In SAS’04, number 3148 in LNCS,
pages 149–164. Springer, 2004.

[24] J. Whaley and M. Lam. An efficient inclusion-based points-
to analysis for strictly-typed languages. In SAS’02, volume
2477, pages 180–195. Springer.

[25] R. Wilson and M. Lam. Efficient context-sensitive pointer
analysis for C programs. In PLDI’95, pages 1–12. ACM
Press, 1995.

[26] S. Yong and S. Horwitz. Pointer-range analysis. In SAS’04,
number 3148 in LNCS, pages 133–148. Springer, 2004.

[27] S. Yong, S. Horwitz, and T. Reps. Pointer analysis for
programs with structures and casting. In PLDI’99, pages
91–103. ACM Press, 1999.

