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SL 2 (k) and a subset of words over k

Given a field k, this paper defines a subset of the free semigroup F k (whose elements are all finite words with letters in k) which has some interesting arithmetic and combinatorial properties. The case p = 2 has been treated in [B2] with slightly different notations. The link with SL 2 and motivation for studying this subset originates in [B1].

Introduction

Given a group or semi-group Γ generated (in the sense of semi-groups) by some subset S ⊂ Γ, the Cayley graph of Γ with respect to S is the oriented graph having vertices γ ∈ Γ and oriented edges (γ, γs) s∈S . In this paper, we consider generating sets S which are not necessarily finite thus yielding oriented Cayley graphs which are perhaps not locally finite.

The above situation gives rise to a homomorphism of semi-groups

π : F S -→ Γ
where F S denotes the free semi-group on the set S consisting of all finite words s 1 . . . s l with letters in the alphabet S. The set F S is also called the free monoid on S and is often denoted by S * . We will stick to the notation F S since our set S will be identified with a field k and the notation k * would be misleading in this case. This paper deals with the group Γ = SL 2 (k) over an arbitrary field k generated by the set of matrices

S = { 0 -1 1 α | α ∈ k}.
We will study the preimage A ⊂ F S of all finite words with letters in S (whose elements are indexed by the elements of the field k) such that

π(A) = { a -b b -1 0 | a ∈ k , b ∈ k * } .
The set A can also be described as follows: Recall that the projective line P 1 (k) consists of all 1-dimensional subspaces in k 2 . We denote by L(x) the subspace (line) spanned by 1 x and by L(∞) the subspace spanned by 0 1 (hence L(x) denotes the unique line in k 2 which has slope x and runs through the origin). The group SL 2 (k) acts on P 1 (k) (this action goes in fact down to the projective group PSL 2 (k) which is the quotient of SL 2 (k)

by ± 1 0 0 1 ). The subset A considered above can now be defined as the set of all words w ∈ F S such that π(w)L(∞) = L(0). The aim of this paper is the description of some properties of the set A ⊂ F k and of its complement C = F S \ A ⊂ F S . All results will be stated in the next section. Proofs will be given in section 3.

Definitions and main results

Consider a field k and the set

S = { 0 -1 1 α | α ∈ k} ⊂ SL 2 (k) .
Lemma 2.1. The set S generates SL 2 (k) as a semigroup.

This lemma shows that every element of SL 2 (k) can be written in at least one way as a finite word with letters in S. Since the elements of S are obviously indexed by k we will only write α instead of 0 -1 1 α .

We identify hence the free monoid F S on S with the free monoid F k on k consisting of the set of all finite words with letters in the field k. We recall that we are interested in the subset A ⊂ F k defined by

A = {w = α 1 . . . α l ∈ F k | π(w)L(∞) = L(0)} (where L(∞) = k 0 1 and L(0) = k 1 0
) and in its complement C = F k \ A. We denote by F l k the subset of all words of length exactly l in F k . We set

A l = A ∩ F l k and C l = C ∩ F l k . Theorem 2.2. (i) w ∈ A l if
and only if αw ∈ C l+1 and wα ∈ C l+1 for every α ∈ k.

(ii) For any w ∈ C l there exist unique values α, β ∈ k such that αw, wβ ∈ A l+1 .

(iii) if α 1 . . . α l ∈ A l then α 2 α 3 . . . α l and α 1 α 2 . . . α l-1 ∈ C l-1 .

(iv) α 1 α 2 . . . α l-1 α l ∈ A l if and only if α l α l-1 . . . α 2 α 1 ∈ A l .

(v) α 1 . . . α l ∈ A l if and only if (-α 1 ) . . . (-α l ) ∈ A l . Corollary 2.3. For k the finite field on q = p d elements (with p the finite prime characteristic of k) and for l = 0, 1, 2, . . . we have

♯(A l ) = q l -(-1) l q + 1 , ♯(C l ) = q l+1 + (-1) l q + 1 .
Consider the equivalence relation ∼ on F k with classes A and C. Denote by ǫ the empty word (of length 0) in

F k . Extend the applications x -→ x + 1, x -→ x -1 of the field k to applications of the set k ∪ {ǫ} into itself by setting (ǫ ± 1) = ǫ. Proposition 2.4. (i) One has x00y ∼ xy , xα1βy ∼ x(α -1)(β -1)y , xα(-1)βy ∼ x(α + 1)(β + 1)y where x, y ∈ F k , α, β ∈ k ∪ {ǫ} with α = ǫ =⇒ x = ǫ and β = ǫ =⇒ y = ǫ (i.e. α is the last letter of word xα if xα is non-empty and β is the first letter of the word βy if βy is non-empty). (ii) One has αβx ∼ (β -α -1 )x if 0 = α ∈ k, β ∈ k, x ∈ F k , 0βx ∼ x if β ∈ k, x ∈ F k .
Remarks 2.5. (i) If k is the field on 2 or 3 elements, then assertion (i) of previous proposition characterizes the sets A and C completely: it yields substitutions which replace every word except 0 ∈ A and ǫ ∈ C by an equivalent word which is strictly shorter.

(ii) Over any field k, assertion (ii) above and the trivial observation α ∼ ǫ ⇐⇒ α = 0 for α ∈ k determine the sets A and C.

Set

P l = {α 1 . . . α l ∈ A l | α 1 α 2 . . . α h ∈ C h for h = 1, . . . , l -1} and P = ∪P l .
Theorem 2.6. (i) ("Unique factorization in A") We have w ∈ A if and only if w can be written as

w = p 1 δ 1 p 2 δ 2 . . . p n δ n p n+1
for some n ≥ 0 with p 1 , . . . p n+1 ∈ P and δ 1 , . . . , δ n ∈ k. Moreover, such a factorization of w ∈ A is unique.

(ii) We have for l ≥ 1

♯(P l ) = (q -1) l-1
if k is the finite field on q = p d elements.

Corollary 2.7. One has for any natural integer l the identity

(x + 1) [l/2] k=0 l -k k x k (x -1) l-2k = x l+1 + (-1) l
which is equivalent to the identities

k s=0 l -s s l -2s k -s (-1) s = 1 for k = 0, 1, . . . , l.
Remark 2.8. Theorem 2.6 shows that the vector space (over an arbitrary field) with basis the set {ǫ} ∪ {wα | w ∈ A, α ∈ k} can be turned into a graded algebra A (the product is given by extending linearly the concatenation of words in F k and the grading is induced by the length of words in F k ). It has in fact a very simple structure: the algebra A is a free non-commutative algebra (on q(q -1) l-2 generators of degree l = 2, 3, 4, . . . if k is the finite field on q = p d elements).

Given two words w, w ′ ∈ F l k of the form

w = α 0 α 1 . . . α l-1 , w ′ = α 1 . . . α l-1 α l
we call w ′ an immediate successor of w and w an immediate predecessor of w ′ . Theorem 2.9. Each element w ∈ A l has a unique immediate successor and a unique immediate predecessor in A l .

Given an element w 0 ∈ A l , the previous theorem yields a sequence w 0 , w 1 , w 2 , w 3 , . . . ∈ A l with w i+1 an immediate successor of w i .

Otherwise stated: For each w ∈ A l there exists an infinite word W = . . . α -1 α 0 α 1 α 2 α 3 . . . such that α 1 α 2 . . . α l = w and all factors w i w i+1 . . . w i+l-1 of length l (subwords formed by l consecutive letters) of W are elements of A l . Until the end of this section we assume that k is the finite field with q = p d elements. In this case A l is finite. Given w ∈ A l there exists hence a smallest integer r such that the infinite word W associated to w is r-periodic.

Theorem 2.10. Let W = . . . α r-1 α 0 α 1 . . . α r-1 α 0 α 1 . . . be an infinite r-periodic word with letters in a finite field k. Then there exists a smallest integer t ≤ q 2 -1 (in fact, t is either q or a divisor of (q 2 -1)) such that all factors of length tr -1 in W belong to A.

Remark 2.11. It follows (cf. assertion (i) in Lemma 3.1 of section 3) that all factors of length ltr -1 (l ≥ 1) of W belong also to A. One can moreover show that if m is an integer with the property that all factors of length m in W belong to A m , then m = ltr -1 for a suitable integer l ≥ 1 (here r denotes the minimal period length of the infinite periodic word W ).

Definition 2.12. Given a finite set E having N ≥ 2 elements, a mock parity check set (MPCS for short) of length d is a subset M ⊂ E d (words of length d with letters in E) such that (i) each element w ∈ M has a unique immediate successor and a unique immediate predecessor in M.

(ii) M consists of exactly N d-1 elements. Denote by Perm E the group of permutations of the finite set E and let ϕ : E d-2 -→ Perm E be an application which associates to each element z ∈ E d-2 a permutation ϕ z : E -→ E.

Proposition 2.13. The set

M = {α 1 α 2 . . . α d-1 α d ∈ E d | ϕ α 2 α 3 ...α d-1 (α 1 ) = α d }
is a MPCS and every MPCS is of this form. Remarks 2.14. (i) This proposition shows that the set of all MPCS can be endowed with a group structure (the set of functions on E N d-2 with values in Perm E has an obvious group structure given by (ϕψ) z = ϕ z • ψ z ).

(ii) A MPCS M ⊂ E d yields a permutation of its elements: send each w ∈ M to its (unique) successor in M. Call a MPCS a (generalized) de Brujin sequence if the associated permutation consists of a unique cycle. One can show that (generalized) de Brujin sequences exist for all integers N ≥ 2 and d ≥ 1.

Theorem 2.15. Given a finite field k, the set

M l = A l ∪ {α 1 . . . α l ∈ C l | α 1 . . . α l-1 ∈ A l-1 and α 2 . . . α l ∈ A l-1 } is a MPCS of k l . 3 Proofs Proof of Lemma 2.1. Take a b c d ∈ SL 2 (k). If a = 0 we have necessarily d = 1+bc
a and the computation 0 -1

1 -c-1 a 0 -1 1 -a 0 -1 1 b-1 a = a b c 1+bc a yields the result.
The case a = 0 is reduced to precedent case by multiplying first with 0 -1 1 0 and by remarking that this matrix has order 4 (or 2 if the ground field k is of characteristic 2). QED Proof of Theorem 2.2. One has

a b c d 0 -1 1 x = b -a + bx d -c + dx which shows that wα ∈ A if w ∈ A (since then π(w) = a -b b -1 0
). On the other hand, if w ∈ C then π(w) = a b c d with d = 0 and the above computation implies the existence of a unique β such that wβ ∈ A. This proves half of (i) and (ii). The proof of the remaining half is similar (it is also implied by assertion (iv)).

In order to prove (iii) one considers

π(α 2 . . . α l ) = π(α 1 ) -1 π(α 1 . . . α l ) = α 1 1 -1 0 a -b b -1 0 = α 1 a + b -1 -α 1 b -a b which shows that α 2 . . . α l ∈ C l-1 . A similar computation yields α 1 . . . α l-1 ∈ C l-1 . Since 0 1 1 0 0 -1 1 α 0 1 1 0 = α 1 -1 0 we get by conjugating π(α 1 . . . α l ) = a b c d with σ = 0 1 1 0 σπ(α 1 . . . α l )σ = α 1 1 -1 0 • • • α l 1 -1 0 = d c b a If π(α 1 . . . α l ) = a -b b -1 0
we get by taking the inverse of σπ(α

1 . . . α l )σ π(α l . . . α 1 ) = 0 -1 1 α l • • • 0 -1 1 α 1 = 0 b -1 -b a -1 = a -b -1 b 0
which shows that α l . . . α 1 ∈ A and proves (iv).

Transposing π(α 1 . . . α l ) and multiplying by (-1) l shows that (-α l ) . . . (-α 1 ) ∈ A. Assertion (iv) implies now (v).

Remark 3.1. The properties of the action of SL 2 (k) (or PSL 2 (k)) on the projective line P 1 (k) can be used to get a more conceptual proof of most assertions in Theorem 2.2.

Proof of Corollary 2.3. Assertion (ii) of Theorem 2.2 shows that ♯(A l+1 ) ≥ ♯(C l ) and assertion (iii) implies ♯(A l+1 ) ≤ ♯(C l ) hence establishing ♯(A l+1 ) = ♯(C l ). Induction on l (using the obvious identity ♯(A l )+♯(C l ) = q l ) yields now the result.

Proof of Proposition 2.4. The first line of assertion (i) follows from the identity 0 -1

1 0 0 -1 1 0 = -1 0 0 -1 .
If α and β are both non-empty, the last two lines of the proposition follow from the identities 0 -1

1 α 0 -1 1 1 0 -1 1 β = -1 1 -β α -1 αβ -α -β = 0 -1 1 α -1 0 -1 1 β -1 and 0 -1 1 α 0 -1 1 -1 0 -1 1 β = 1 1 + β -1 -α -α -β -αβ = - 0 -1 1 α + 1 0 -1 1 β + 1
(in fact, the last line of Proposition 2.4 is easily deduced from the second one by using assertion (v) of Theorem 2.2). We leave the remaining cases of assertion (i) (with ǫ ∈ {α, β}) to the reader (they follow also easily from Theorem 2.6). Assertion (ii) follows from the computations 0 -1

1 α 0 -1 1 β αβa + βc -a αβb + βd -b -αa -c -αb -d = a b c d and 0 -1 1 γ αβa + βc -a αβb + βd -b -αa -c -αb -d = αa + c αb + d αβa + βc -a -αγa -γc αβb + βd -b -αγb -γd . Lemma 3.2. (i) If w, w ′ ∈ A then ww ′ ∈ C and wαw ′ ∈ A for any α ∈ k. (ii) If exactly one of w, w ′ is an element of A then wαw ′ ∈ C for any α ∈ k. Proof of Lemma 3.2. The computation a -b b -1 0 0 -1 1 α a ′ -b ′ b ′-1 0 = -ba ′ -ab ′-1 -αbb ′-1 bb ′ -(bb ′ ) -1 0 shows (i). Let us now suppose that w ∈ A, w ′ ∈ C. This implies π(wα) = a b 0 a -1 and π(w ′ ) = a ′ b ′ c ′ d ′ with d ′ = 0. We get hence π(wαw ′ ) = aa ′ + bc ′ ab ′ + bd ′ a -1 c ′ a -1 d ′
which shows wαw ′ ∈ C. The case w ∈ C, w ′ ∈ A follows using assertion (iv) of Theorem 2.2. and assertion (iv) of Theorem 2.2 completes the proof of assertion (ii) in Lemma 3.2.

Proof of Theorem 2.6. Assertion (i) follows easily from the previous lemma and the definition of P.

Assertion (ii) follows from assertion (ii) of Theorem 2.2.

Proof of Corollary 2.7. Let k be the finite field with q = p d elements. An exercice using Theorem 2.6 shows that we have

♯(A l+1 ) = [l/2] k=0 l -k k q k (q -1) l-2k .
Corollary 2.3 establishes then the result if x is a power of a prime number.

The proof follows now from the fact that both sides are polynomials in x.

Proof of Theorem 2.9. Follows from assertions (iii) and (ii) in Theorem 2.2.

Remark 3 . 3 .

 33 One can also use the more conceptual computationπ(wαw ′ )L(∞) = π(w)π(α)π(w ′ )L(∞) = π(w)π(α)L(0) = π(w)L(∞) = L(0)(for w, w ′ ∈ A) in order to prove assertion (i) of Lemma 3.2.Similarly, the case w ∈ C, w ′ ∈ A is dealt byπ(wαw ′ )L(∞) = π(w)π(α)π(w ′ )L(∞) = π(w)π(α)L(0) = π(w)L(∞) = L(0)
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