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Abstract

In this article, one defines two models of adaptive systems: the meta-

dynamical adaptive system using the notion of Kalman dynamical systems

and the adaptive differential equations using the notion of variable dimen-

sion spaces. This concept of variable dimension spaces relates the notion

of spaces to the notion of dimensions. First, a computational model of the

Douady’s Rabbit fractal is obtained by using the meta-dynamical adap-

tive system concept. Then, we focus on a defense-attack biological model

described by our two formalisms.

Keywords: dynamical systems, adaptive systems, biological systems,

fractal algorithm.
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1 Introduction

In the two last decades, there has been much interest in the study and for-
malization of complex adaptive systems (see [21] and [8]). Many different ap-
proaches have been proposed: artificial chemistries, evolutionary formalism,
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cellular automata. However, from a more theoretical viewpoint, few mathemat-
ical formalisms exist for adaptive systems. Though we may cite the chapter
“Categorical System Theory” proposed by A.H. Louie in [18] who discuss the
relationship between natural and formal systems, most of the studies are mainly
simulation-based (see [8] and [9]). With the recent evolution of physics and bi-
ology, a general mathematical formalism for adaptive systems would be very
useful. Actually, behind their apparent heterogeneity, most of the adaptive sys-
tems share one important feature: they are dynamical objects whose structures
are sometimes modified by a top level automation-like rule. On the basis of this
observation, we have built a two-level formalism that helps us to design an al-
gorithm for fractals and a biological model of co-evolution in a bacterium-phage
system.

The main goal of this article is to present a concept of adaptive systems,
general enough to be used in different fields (mathematics, physics or biology)
and to apply this framework to a fractal implementation and a biological system.
Besides, a new concept of spaces is developed. Since the second part of the
19th century, various definitions of dimensions, in particular those developed by
Cantor and Peano, have appeared (see [14]). These new definitions lead to the
concept of a fractal model and with it, a global view of spaces (see [13]). In order
to study adaptive systems, we will use a sort of “adaptive” space called variable
dimension space whose dimension changes. This new kind of space brings the
notion of space and the notion of dimension together.
The paper is organized as follows. In section 2, a very general adaptive system
concept called meta-dynamical adaptive system is given by using an extension
of Kalman systems. Section 3 is dedicated to the Douady’s Rabbit fractal
implemented as a meta-dynamical adaptive system. In section 4, the concept
of variable dimension space leads to a special model of adaptive system: the
adaptive differential equation. Finally, we use our concepts of adaptive systems
to describe a biological example of a defense-attack model in section 5.

2 Meta-dynamical adaptive system

It is possible to give a general definition of adaptive systems by using the con-
cept of meta-dynamical adaptive system developed by one of the author during
his Ph.D. ([2, 4]). But, in order to be able to present our formal approach,
we will have a look at the main ideas behind the formalization of the concept
of dynamical system by Kalman in [12]. The aim of Kalman’s approach is to
show that some very common mathematical structures plus a few axioms can
provide a very general framework where the notion of dynamical systems (of all
kinds) is captured. Time is modelled as an ordered subset of the reals (to cover
both the continuous and discrete paradigms). The important objects are the
state set (the variables characterizing the system) and the transition function.
The transition function defines the trajectory in the state set starting from an
initial state. Only a few axioms are required to characterize these objects and
allow them to form a “dynamical system”. Among the more important ones are
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direction of time, consistency, composition property and causality. Let us recall
the fundamental definition of Kalman (see [12]).
A dynamical system respecting Kalman axioms is defined by the following ax-
ioms:

1. There is a given time set T , a state set X , a set of input values U , a set
of acceptable input functions Ω = {ω : T → U}, a set of output values Y ,
and a set of output functions Γ = {γ : T → Y },

2. (Direction of time) T is an ordered subset of the reals1,

3. The input space Ω satisfies the following conditions:

(a) (Nontriviality) Ω is nonempty,

(b) (Concatenation of inputs) An input segment ω]t1,t2] is ω ∈ Ω re-
stricted to ]t1, t2] ∩ T . If ω, ω′ ∈ Ω and t1 < t2 < t3, there is an
ω′′ ∈ Ω such that ω′′

]t1,t2]
= ω]t1,t2] and ω′′

]t2,t3]
= ω′

]t2,t3]
,

4. There is given a state-transition function

ϕ : T × T × X × Ω → X.

whose value is the state x (t) = ϕ (t, τ, xτ , ω) ∈ X resulting at time t ∈ T
from the initial state xτ = x (τ) ∈ X at initial time τ ∈ T under the action
of the input ω ∈ Ω. ϕ has the following properties:

(a) (Direction of time) ϕ is defined for all t ≥ τ but not necessarily for
all t < τ .

(b) (Consistency) ϕ (t, t, x, ω) = x for all t ∈ T , all x ∈ X and all ω ∈ Ω.

(c) (Composition property) For any t1 < t2 < t3, we have

ϕ (t3, t1, x, ω) = ϕ (t3, t2, ϕ (t2, t1, x, ω) , ω)

for all x ∈ X and all ω ∈ Ω.

(d) (Causality) If ω, ω′ ∈ Ω and ω]τ,t] = ω′
]τ,t] then

ϕ (t, τ, x, ω) = ϕ (t, τ, x, ω′) .

5. There is given a readout map η : T × X → Y which defines the output
y (t) = η (t, x (t)). The map ]τ, t] → Y given by σ 7→ η (σ, ϕ (σ, τ, x, ω)),
σ ∈ ]τ, t] is an output segment, that is, the restriction γ]τ,t] of some γ ∈ Γ
to ]τ, t].

A dynamical system is referred as Σ = {T, X, U, Ω, Y, Γ, ϕ, η}.
Now, inspired by the definition of dynamical systems of Kalman, we propose

a formalization of our meta-dynamical adaptive system.
1Such a general definition could include exotic sets such as fractal cantor sets, for instance,

in practice, the sets used are part of R or N.
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Definition 1 A meta-dynamical adaptive system M is a composite mathemat-
ical concept defined by the following axioms:

1. The dynamical level: the suitably indexed set

Σi,j = {T0, Xi, U, Ω, Y, Γ, ϕi,j}

is a dynamical system respecting Kalman axioms for all (i, j) ∈ I × J
where {ϕi,j}j∈J

are transition functions on state set Xi:

ϕi,j : T0 × T0 × Xi × Ω → Xi.

2. The meta-dynamical level: let X =
⋃

i∈I

Xi be the set of all the possible

states of the system and D = {ϕi,j}(i,j)∈I×J be the set of all possible
transition functions, then there exists a meta-dynamical time T1 and a
meta-dynamical rule2

Φ : T1 × X × D → X × D

such that:

(a) (Temporal hierarchy) T1 ⊆ T0,

(b) (Coherence states/transitions) If Φ(t, x1, ϕi1,j1) = (x2, ϕi2,j2) for t ∈
T1, then x1 ∈ Xi1 ⇒ x2 ∈ Xi2 .

If t ∈ T1 and Φ(t, x, ϕ) = (x, ϕ), Φ is said to be mute at (t, x, ϕ) else
(t, x, ϕ) is a commutation point.

3. Evolution rule between dynamical and meta-dynamical levels:
let xt = ϕ(t, t1, x1, ω) with ω an input function, there exists a “meta”-
transition function

Ψ : T1 × T1 × X × D × Ω → X × D

such that:

(a) (Dynamical phase) If Φ is mute on (t, xt, ϕ) for all t ∈ [t1, t2[∩T1,
then Ψ is defined between t1 and t2 and

i. if t2 /∈ T1, then

Ψ(t2, t1, x1, ϕ, ω) = (xt2 , ϕ),

ii. else t2 ∈ T1 and

Ψ(t2, t1, x1, ϕ, ω) = Φ(xt2 , ϕ).

2It is possible to consider input values at the metadynamical level, then Φ is defined as
follows

Φ : T1 × X × D × Ω1 → X × D

where Ω1 = {ω : T1 → U1} is the set of acceptable “meta”-input functions.
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(b) (Concatenation rule) If there exists t2 ∈]t1, t3[ such that Ψ is defined
between t1 and t2 and between t2 and t3 then Ψ is defined between t1
and t3 and

Ψ(t3, t1, x1, ϕ, ω) = Ψ(t3, t2, Ψ(t2, t1, x1, ϕ, ω), ω).

(c) (Stopping rule) Ψ is defined between t1 and t2 if, respecting previous
axioms, there is only a finite number of commutation points in [t1, t2].

The meta-dynamical rule in point 2) can operate at instants for which the
system is defined and not necessarily at all of them (see point 2.(a)); actually a
higher level is usually slower. Moreover, as the meta-dynamical rule can change
the state and the transition function, we have to consider that both match well:
the resulting state has to belong to the state set on which the new transition
function operates (point 2.(b)). In point 3. we describe how dynamics and the
meta-dynamical rule combine together to make the system change with time.

To take up notions mainly used in social science, our dynamical rule can be
seen as a heterarchical level and our meta-dynamical level as a hierarchical level.
Let us recall that a heterarchy is a network of elements which share the same
“horizontal” position level in a hierarchy. Each level in a hierarchical system is
composed of a heterarchy which contains its constituent elements (see [11]).

Remark 2 In the second case of (3.a), when t2 ∈ T1, we deliberately con-
sider that (t2, Φ (xt2 , ϕ)) is mute. We do not consider the case where the
meta-dynamics would “rebound” and have several commutations at the same
time. If the system has several commutations, it is always possible to con-
sider this set of commutation as one, with the final state of the last com-
mutation (provided that, we know from 3.(c) that the number of commuta-
tions is finite). Axiom 3.(c) is to avoid Zeno-style system with an infinite
number of commutations in a finite amount of time (e.g. with a quantity

x(t) = sin
(

2π
1−t

)

with a commutation each time x(t) = 0 on [1 − ǫ, 1 + ǫ]).

Remark 3 The index set J is associated with the change of dynamics in the
same state space. We recognize here the framework of hybrid systems (see [22]).

Remark 4 It is also important to differentiate between the continuous or dis-
crete dynamics and the continuous or discrete meta-dynamics because the confu-
sion is easy. The first case is well known. The second one shows the difference
between a meta-dynamical time T1 which is continuous (see section 3) and a
meta-dynamical time which is discrete (see section 5).

Example 5 On Fig. 1, we can see a meta-dynamical system in action. At
t5 = tc, we pass from a 2−dimensional state set to a 3−dimensional one. The
dynamics are continuous, so T0 = [t0, tend] and the meta-dynamical time set T1

is discrete: T1 = {t1, t2, t3, . . . , t8}. Since the meta-dynamics is mute on t1, t2,

5



instant fromT0

ϕ

t
t

t

t

X

end

1

6

7

8

1

ϕ

t
t

t

t

t
t

X

= tc

point
commutation

1

0

2

4
50

3

0

Figure 1: Illustration of some axioms of a metadynamical system

t3 and t4, the evolution from t0 to t5 is a purely dynamical phase, ended by a
commutation (Axiom 3.(a)). Evolution from t5 to tend is also purely dynamical
(the meta-dynamics is mute on t6, t7 and t8. The junction between the two of
them is made by using the concatenation rule. As there is only one commutation,
the system is defined.

Now, it is possible to expand some classical notions of dynamical system, as
the notion of trajectory.

Definition 6 Let M be a meta-dynamical adaptive system with the meta-transition
function Ψ, if for t ∈ T1,

Ψ(t, t0, x0, ϕ0, ω) = Φ(xt, ϕt)

with xt ∈ Xt then (Xt, ϕt) is a meta-state of M in t.
The sequence (Xti

, ϕti
)0≤i≤n,0≤n≤+∞ of meta-state of M such that for all

t ∈ [ti, ti+1[, (Xt, ϕt) = (Xti
, ϕti

) and (Xti
, ϕti

) 6=
(

Xti+1
, ϕti+1

)

is called
meta-orbit of M.

If n < +∞, (Xtn
, ϕtn

) is said to be an absorbent meta-state.
The sequence (ti, Xti

, ϕti
)0≤i≤n,0≤n≤+∞ satisfying the same conditions is

called a trajectory of M.

One can extend definition 1 to stochastic systems.

Definition 7 Let us consider the dynamical rule of definition 1 with the fol-
lowing meta-dynamical rule

pΦ : T1 × X × D → (X × D → [0, 1])

where pΦ is a probability distribution on X ×D which represents the probability

pΦ (t, x, ϕ) · (xf , ϕf )

that (x, ϕ) becomes (xf , ϕf ) at t. The stochastic evolution rule between dynam-
ical and meta-dynamical levels is given by

pΨ : T1 × T1 × X × D × Ω → (X × D → [0, 1])
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where pΨ is a probability distribution on X ×D which represents the probability

pΨ (t1, t2, x, ϕ, ω) · (xf , ϕf )

that (x, ϕ) becomes (xf , ϕf ) between t1 and t2 with the input function ω. The
properties of pΦ and pΨ are the same as Φ and Ψ given in 1. Such a system is
called a stochastic meta-dynamical adaptive system.

The interest of definition 7 is its generality. It is for example well adapted to
model a large number of complex adaptive systems, in particular the biological
model we develop in section 5.

3 Algorithm for the Douady’s Rabbit fractal

The goal of this example is to give an algorithm based on definition 1 allowing
to describe the Douady’s Rabbit Fractal. In this example, the set I and thus
the family {Xi}i∈I of definition 1 is not countable. The Riemann Sphere S2 is
mapped one-to-one onto the extended complex plane C∞ = C∪{∞} by stere-
ographic projection. Let us recall some definitions. Let K = R or C and B be
the unit ball of K. If f : K → K is a function, x ∈ X is periodic of period n ∈ N

if fn(x) = x and for all k ∈ {1, .., n− 1}, fk(x) 6= x. For x periodic of period n,
the cycle O(x) is the set

O(x) =
{

x, f(x), ..., fn−1(x)
}

and its cardinal is n. Moreover, if f is differentiable at x, x is stable, quasi stable
or unstable if

∣

∣(fn)
′
(x)
∣

∣ < 1,
∣

∣(fn)
′
(x)
∣

∣ = 1 or
∣

∣(fn)
′
(x)
∣

∣ > 1. If x is stable,
x is attractive if there exists an interval V strictly containing x so that for all
x ∈ V

fn(x′) →
n→+∞

x.

Now, let us recall the definition of the Julia set (see [1]). Let R be a non-constant
rational function on S2. The Fatou set of R is the maximal open subset of S2

on which {Rn}n∈N
is equicontinuous where Rn = R ◦ . . . ◦ R. The Julia set JR

of R is the complement of the Fatou set on S2. The filled in Julia set KR of
a function R is all the points which are not attracted to the super-attracting
fixed point at infinity, that is

KR = {z ∈ C : Rn (z) → ∞} .

This closed set includes the Julia set as its boundary, JR = ∂KR. The escape
set IR of a function R is all the points that “escape” to infinity, that is

IR = {z ∈ C∞ : Rn (z) → ∞} .

If R is a polynomial of degree 2, JR is called a quadratic Julia set. The following
result can be found in [6]: if P is a polynomial of degree d ≥ 2, then JP is closed
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and dense within itself.
Here, we are interested in quadratic Julia sets with

Pc(z) = z2 + c (1)

where c ∈ C. For small values of c, the Julia set is distorted by varying degrees
from the unit circle, in these cases the Julia set has an infinite length. For
large values of c, the Julia set becomes an infinite set of totally disconnected
points, often said to be dust like (in the sense of Cantor). In the quadratic
case there are only these two possible -connected and disconnected- types. The
Mandelbrot set is the space containing the value c for which the associated Julia
set is connected. It is generated by the quadratic sequence

{

zn+1 = z2
n + c

z0 = c
(2)

A complex point z = a + ib ∈ C will be denoted by (a; b). The Douady’s

Rabbit fractal is a Mandelbrot set with c = (− 3
2 + 1

2 (a + b);
√

3
2 (a − b)) where

a = 3

√

25+
√

621
54 and b = 3

√

25−
√

621
54 , so c ≃ (−0.12256; 0.744862) (see [7]). As

the points get closer to the Douady’s Rabbit fractal, the speed of convergence

becomes slower. With the choice of c,
(

c2 + c
)2

+ c = 0 so the origin is an
attractive cycle3 of period 3 of Pc

O(0) =
{

0, c, c2 + c
}

.

The boundary points move chaotically. Thus, the idea is to change the points
by using the speed of convergence as an adaptive value. The principle of our
algorithm is to have a set of points evolved to the fractal boundary. For this,
one gives a weight to each point. This weight varies with a dynamics which
“rewards” the most adapted points (the points which are less attracted by limit
values) and “penalizes” the least interesting ones. When the most efficient
points reach a certain threshold, they are allowed to be multiplied in their
neighborhood. The least efficient points disappear when they reach a minimal
threshold. This system of thresholds which changes the dynamical structure is
our meta-dynamics.

Dynamical level (DL): with the formalism of definition 1, we have T0 = N.
The index set I is the set of all finite sets of points of C (so i is a set of points

3Let K = R or C, f : K → K be function, x ∈ X is periodic of period n ∈ N if fn(x) = x

and for all k ∈ {1, .., n − 1}, fk(x) 6= x. For x periodic of period n, the cycle O(x) is the set

O(x) =
{

x, f(x), ..., fn−1(x)
}

and its cardinal is n. Moreover, if f is differentiable at x, x is stable, quasi stable or unstable

if
∣

∣(fn)′ (x)
∣

∣ < 1,
∣

∣(fn)′ (x)
∣

∣ = 1 or
∣

∣(fn)′ (x)
∣

∣ > 1. If x is stable, x is attractive if there exists
an interval V strictly containing x so that for all x ∈ V

fn(x′) →
n→+∞

x.
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of C and I is not countable). For all i ∈ I, Xi = Ncard(i) is the set of the point
weights of i. At each given point z ∈ C, we attach a selective value

µn : C → R
+

z 7→ min
{

|Pn
c (z)| , |Pn

c (z) − c| ,
∣

∣Pn
c (z) − c2 − c

∣

∣ , 1
|P n

c (z)|

}

{

0, c, c2 + c
}

is the attractive cycle of period 3, 1
P n

c (z) is referring to the attrac-

tion to the infinity seeing that Pn
c (z) →

n→+∞
∞ is equivalent to 1

P n
c (z) →

n→+∞
0.

One increases the weight of the points which are close to the boundary. In order
to do this, we organize a “competition” by comparing their mutual slowness of
convergence. So, the weights of the points z ∈ i are given by

ωz (t + 1) = ωz (t) +
∑

q∈i,q 6=z

δ (z, q) with δ (z, q) =







1 if µt (z) > µt (q)
0 if µt (z) = µt (q)
−1 if µt (z) < µt (q)

ωz (0) = 0

where t ∈ N. Using the notation of section 2, we have the following transition
function

ϕi

(

t + 1, t, {ωz (t)}z∈i

)

= {ωz (t + 1)}z∈i

for all t ∈ N. For each state space there is only one associated transition
function, so the use of the index set J is unnecessary.

Meta-dynamical level (ML): with the formalism of definition 1, we have
T1 = kN. When the weight of a point reach an upper threshold M > 0, the point
is allowed to give birth to a new point, randomly in its neighborhood. When
the weight of a point reaches a lower threshold m < 0, the point is removed.
This can be modelled by the meta-dynamical rule

Φ
(

t, {ωz (t)}z∈i(n) , ϕi(n)

)

=
(

{ωz′ (t)}z′∈i(n+1) , ϕi(n+1)

)

where

i (n + 1) = {z + ̺ǫ : ̺ is a random point in B, z ∈ i (n) and ωz (t) > M}∪

{z ∈ i (n) : ωz (t) ≥ m}

such that ǫ > 0 given. The weight of the reproduced point is shared between
itself ωz (t) and the new neighbouring point ωz+̺ǫ (t). The other weights are
kept equal. Let us sum up the evolution rule:

. . . → ϕi(n) (t) →
DL

ϕi(n) (t + 1) →
DL

. . . →
DL

ϕi(n) (t + k) →
ML

ϕi(n+1) (t + k) → . . .

As the time increases, the selective value becomes more and more accurate,
i.e. i (n) tends to a set of points belonging to the Julia space JPc

or to the
empty set when n → +∞. This is an interesting point because the calculations
are concentrated on the fractal boundary. In a lot of classical algorithms, the
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Figure 2: The Douady’s Rabbit fractal

calculation time is squandered for points in the interior
◦
KPc

(see [16]). Indeed,
this meta-dynamical adaptive system produces a cloud of points which gather
round the Julia space JPc

called the Douady’s Rabbit fractal (see Fig. 2).
Though we have developed this algorithm in the setting of Julia sets, the

same framework can be used to explore many complex frontiers, for example
other fractal structures where the boundary properties are largely unknown.
Indeed, this kind of algorithm is really interesting because the calculation is
concentrated on a specific region.

4 Adaptive differential equations

First, let us recall the classical notion of Hausdorff fractal dimension (see [17]).
Let E be a subspace of a metric space M and ρ a positive number, one defines
Rρ as the set of all coverings (Bi, ρi)i of E by balls Bi with diameter 0 < ρi < ρ.
For each positif number α, one denotes:

Hα
ρ (E) = inf

{

∑

i
ρα

i : (Bi, ρi)i ∈ Rρ

}

.

Hα (E) = lim
ρ→0

Hα
ρ (E) is called the α−dimensional Hausdorff measure of E and

belongs to [0, +∞]. Then, let

dim(E) = inf {α > 0 : Hα (E) = 0} ,

it is the Hausdorff dimension of E . On the one hand, the Hausdorff dimension
is defined for all metric spaces. On the other hand, in the case of a classical
space (non fractal), it is identical to its topological dimension (for example the
Hausdorff dimension of Rn is n). In the case of a simple linear fractal, such
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as fractals with internal homothetia obtained by an homothetic iteration with
constant ratio, the Hausdorff dimension is equal to the homothetic dimension
dimh (E) given by:

dimh (E) =
ln(n)

ln(k)
= logk(n)

where n is the number of subsets obtained during the homothetic process of
reduction with ratio 1

k
(see [5]). For more information on dimension theory the

reader may refer to [19] or [10].
The variable dimension space is defined as follows:

Definition 8 Let M be a metric space and Λ a parameter space. One defines
two maps d : Λ → [0, +∞] , λ 7→ d(λ) and F : Λ → 2M where F (λ) verifies
dimF (λ) = d(λ) and 2M is the family of non-empty subsets of M. F (Λ) is a set
of variable dimension spaces. If F (Λ) is a totally ordered set for the inclusion,
one calls (F, d) a variable dimension space. d is the dimension function and
d(F (λ)) ≤ d(M) for all λ ∈ Λ. If Λ is a topological space then F is a set valued
function and we may take account of the regularity of d. The variable dimension
space (F, d) is continuous if d is continuous. Moreover, if Λ is an ordered space
then (F, d) is increasing (respectively decreasing) if d is increasing (respectively
decreasing).

To illustrate these definitions, we can consider the following example:

Example 9 Let 1
4 ≤ λ ≤ 1

2 , one defines four similarities from the family Kc

of the compact subset of the square c = [0, 1]
2

with value in Kc by

• s1,λ (x) = λx,

• s2,λ (x) = λ





1
2 − λ −

√

λ − 1
4

√

λ − 1
4

1
2 − λ



x +

(

λ
0

)

,

• s3,λ (x) = λ





1
2 − λ

√

λ − 1
4

−
√

λ − 1
4

1
2 − λ



x +

(

1
2

√

λ − 1
4

)

and

• s4,λ (x) = λx +

(

1 − λ
0

)

.

Then, one defines the function Ωλ : Kc → Kc, x 7→ s1,λ (x) ∪ s2,λ (x) ∪
s3,λ (x) ∪ s4,λ (x).

Ωλ being contracting, one defines F (λ) as the fixed point4 of this function for
the Hausdorff distance. In [13], one may find the following result: the dimension

4To prove this, one uses two classical results: the family of subsets of a Banach space
endowed with the Hausdorff distance is also a Banach space and if the similarities are con-
tracting in K2, then the function Ωλ is also contracting in Kc with the Hausdorff distance
[20].
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1/2,    λ−1/4

0, 0 λ, 0 1−λ, 0 1, 0

Figure 3: Van Koch snowflake generator

of F (λ) is d (λ) = ln4

ln( 1
λ )

. So, (F, d) is a continuous increasing variable dimen-

sion space on Λ =
[

1
4 , 1

2

]

. A similar construction allows us to turn continuously
a n−dimension space into a (n + 1)−dimension space.

An interesting application of the above concept arises when the variable
dimension space is the state space of the solutions of a differential equation
over a period of time. The union of the solutions then “moves” on a variable
dimension space. We talk about an adaptive differential equation.

Definition 10 Let X be a Banach space of finite dimension called the possible
state space. Consider

1. a subdivision {ti}i∈N
of R+,

2. an application d : R+ ×X → N, (t, y) 7→ d (t, y) such that d (0, y) is given,

3. an application g : R+ × Rdim(X) → Rdim(X),

such that one has the system
{

ẋi(t) = fi(t, xi(t)), t ∈ [ti, ti+1[ , xi(t) ∈ Rd(ti,yi), i ∈ N

xi (ti) = g (ti, yi)
(3)

where y0 = x0 (0), yi = lim
t→t

−

i

xi−1 (t) for i ∈ N∗, ẋi (.) is the right derivative of

xi (.) and
{fi}i∈N

: [ti, ti+1[ × R
d(ti,yi) → R

d(ti,yi)

is a family of applications. Such a system is called an adaptive differential
equation. A trajectory of the system (3) is a family

x (t) = {xi (t) : t ∈ [ti, ti+1[}i∈N
.

One may notice that dim(g (ti, yi)) = d (ti, yi). This concept of adaptive
differential equation is not a succession of ordinary differential equations because
the initial condition of each system i depends on the system i−1. The ordinary
differential equations represent a case where d is constant.
The adaptive differential equation is a reductive approach of the meta-dynamical
adaptive system to a system described by a differential equation whose meta-
dynamics is discrete and where dimX < +∞.
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5 Application to a biological model

Here, we want to model the influence of the bacterium-phage interaction on the
co-evolution of the populations of bacteria and phages. In the following we will
need the definition of the Hamming distance. Let n ∈ N, the Hamming distance
is the function dH : {0, 1}

n
→ N defined by

dH (s1, s2) =

nc
∑

k=0

∣

∣sk
i − sk

j

∣

∣

where s1, s2 ∈ {0, 1}
n
. dH represents the number of differing bits between the

two binary strings s1 = s1
1s

2
1 . . . sn

1 and s2 = s1
2s

2
2 . . . sn

2 .
The attack of a bacteria population by phages is assumed to be done by

the lysis process: a phage hangs on the surface of a bacterium cell, injects its
DNA in it and then forces the bacterium to yield its own replicas inside the
cell. When the cell is full, it bursts, releasing a huge quantity of copies of the
infecting phage. The efficiency of the attack (i.e. the probability of success
of the infection), depends on the couple bacterium-phage. One of the other
characteristics of bacterial and phages populations are their high variabilities.
They frequently mutate, creating new populations with new properties. Such
a system has two dynamics to be taken into account: the dynamics of the
populations of bacteria and phages and the meta-dynamics of evolution geared
by mutations and extinctions. It is without any doubt a model which is not
in the scope of the classical theory of dynamical systems, but our formalism
applies well to it.

Dynamical level: it is made up of a set of ordinary differential equations.
Let us consider the following system

{S, {Bi}0≤i≤nb
, {Pj , I1,j , I2,j , I3,j}0≤j≤np

}, (4)

with S the concentration of nutrient, Bi the different bacteria strains with
0 ≤ i ≤ nb and Pj and Ik,j the different phages strains with 0 ≤ j ≤ np. To each
population Bi and Pj is associated a binary string sb

i ∈ {0, 1}
n

and sp
i ∈ {0, 1}

n
.

These binary strings code for the properties of attack (for the phages) or defence
(for the bacteria) facing the infection (see [2] for the biological discussion). The
populations are then characterized by the different concentrations and the two
lists of bit strings. The set L of all the pairs of lists is taken as our second index
(the one called J in definition 1).

The model is described by a modified version of Mosekilde equations (see
[15]). This set of ordinary differential equations describes the interactions of
bacterial populations Bi and phage populations Pj in a chemostat. Bi and Pj

also symbolize the concentration of these populations and S the concentration
of the nutrient. The process of infection of bacteria by phages is modelled by
three infection stages I1,j , I2,j and I3,j . One associates with the ecosystem

(4) the state space X1+nb+4np
= R

1+nb+4np

+ . Over a period of time without
appearance or disappearance of any strain of bacteria or phages, the dynamical
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evolution of the system (4) is modelled by the evolution of the concentrations
of S, the different bacteria Bi and phages Pj , and three infection stages Ik,j .
With the formalism of definition 1, that means that T0 = R and for a fixed
l ∈ L the transition function ϕ1+nb+4np,l is the integration of the following set
of differential equations







































































dBi

dt
= νSBi

κ+S
− Bi

np
∑

j=1

αωijPj − ρBi

dI1,j

dt
= Pj

nb
∑

i=1

αωijBi − 3
I1,j

τ
− ρI1,j

dI2,j

dt
= 3

τ
(I1,j − I2,j) − ρI2,j

dI3,j

dt
= 3

τ
(I2,j − I3,j) − ρI3,j

dPj

dt
= 3

βI3,j

τ
− Pj

(

nb
∑

i=1

αBi +
np
∑

j=1

3
∑

k=1

αIk,j

)

− ρPj

dS
dt

= ρ(σ − S) −
nb
∑

i=1

νγSBi

κ+S

(5)

with 0 ≤ i ≤ nb, 0 ≤ j ≤ np, ρ the rate of dilution (ρ = 0.0045 min−1), κand
ν respectively the saturation term and the growth from the Monod equation
(κ = 10µg.ml−1, ν = 0.024 min−1), α the theoretical adsorption constant
depending on phage and bacterium size (α = 10−9ml. min−1), τ a time constant
(τ = 30 min), β the number of copies of phage j released during the burst of
the infected bacterial cell (β = 100), σ the continuous supply of substrate (σ =
10µg.ml−1), γ the amount of nutrient consumed in each cellular division (γ =
0.01ng) and finally ωij the probability of infection of Bi by Pj which depends
on the similarity between bit string sb

i (attached to bacterium population Bi)
and sp

j (attached to phage population Pj) as follows

ωij =

(

1 −
dH(sb

i , s
p
j )

nc

)2

with nc the size of the binary string.
Here, we are not interested in the identification of the biological dynamical
level which can be found in [2]. With the given size of a binary string nc,
there exists a finite number of possible dynamical systems, here differential
equations. Indeed, the number of possible different populations of bacteria is
equal to the number of parts of the set of binary strings of size nc. So, there are
22nc

possible populations of bacteria. For the same reason, one deduces that
the possible number of populations of phages is the same and thus the total
number of possible state spaces is 22nc

× 22nc
= 22nc+1. So, with the notation

of definition 1, it means that card (J) = 22nc+1. If we take for example nc = 10,
one has 21025 ≃ 3.6×10308 possible state spaces. Theoretically, one can consider
a 3.6 × 10308 dimensional space to embed the system (5). Nevertheless, when
it comes to numerical simulations, such a big system is impossible to deal with.
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One thus understands the need of an adaptive system to describe the system
(5).

Meta-dynamical level (meta-dynamical adaptive system point of
view): this is the main difference with the model of Mosekilde given in [15,
Chapter A] which is not evolutive.

Proposition 11 Consider a small interval of time ∆t, the adaptive changes of
the system (4) are given by the following mechanisms

pΨ(t + ∆t, t, δ, ϕ2+nb+4np,l1) ·
(

θ1, . . . , θk, ϕ1+kδ+nb+4np,l2

)

= e−λ(t) λ (t)
k

k!
(6)

and
Ψ(t + ∆t, t, δ, ϕ2+nb+4np,l1 , mδ) = ϕ2−ǫδ+nb+4np,l2 (7)

where

1. formula (6) is the probability that the species δ (a bacterium B or a phage
P ) gives birth to k ≥ 1 mutante strains θ1, . . . , θk on [t, t + ∆t[ with

λ (t) = δ(t)
δe

pe, pe the probability that a small group of mutant species of
size δe gradually replacing the species of the parent population δ. ϕi,j is
the function defined by equations (5) for j = l1, l2 and kδ = k if δ is a
bacterium and kδ = 4k if δ is a phage,

2. formula (7) gives the determinist rule of the extinction of the species δ
which depends on a given threshold mδ, ǫδ = 1 if δ is a bacterium and
ǫδ = 4 if δ is a phage.

pΨ is the stochastic transition function of definition 7 which governs the
meta-dynamical rule of the appearance. Ψ is the transition function of definition
1 which governs the meta-dynamical rule of the extinction.

Proof. Consider the probability pBi
(t, k) that the population Bi gives birth

to k mutante strain on [t, t + ∆t[ and the probability pe that a small group of
mutante bacteria of size Be is gradually replacing the bacteria of the parent
population Bi. Such a reasoning gives a binomial probability for

pBi
(t, k) = Ck

n(t)p
k
e(1 − pe)

n(t)−k

with n (t) = Bi(t)
Be

. When n (t) is large, one may approximate the binomial
probability by the Poisson probability

pBi
(t, k) ≃ e−λ(t) λ (t)k

k!
(8)

with λ (t) = Bi(t)
Be

pe. Suppose that the birth of all the populations to a Hamming
distance of one (only one bit is different) is equiprobable. The birth of a mutant
strain results in the change of a group of bacteria (which is a part of a parent
population) of size Be, in a population group with new characteristics. If this
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population group already exists, the mutant population is added to it. The same
mechanism governs the modelling of the phage mutation. For the extension,
there exists a threshold mδ below which the extinction of the population is
certain. Every population under a given threshold (different for bacteria mB

and phages mP ) is removed from the system. Thus,the extinction is determinist.

We have defined the macroscopic birth of a mutant population as an event
occurring on an interval [t, t + ∆t[. There exists a time set T1 where the sys-
tem (5) commutes. This commutation depends on the state of the system (5)
and on the coefficient pB et pP respectively coefficient of the Poisson law of
the bacterium and the phage. In order to simplify the model and to make it
computable, one may suppose that

T1 = t0 + i∆t

even if in practice, the mutations have no reasons to be periodically defined.
This allows to define, with the previous notations, the meta-dynamical rule

pΦ(t0 + i∆t, δ, ϕ2+nb+4np,l1) ·
(

θ1, . . . , θk, ϕ1+kδ+nb+4np,l2

)

= e−λ(t) λ (t)
k

k!
Φ(t0 + i∆t, δ, ϕ2+nb+4np,1, mδ) = ϕ2−ǫδ+nb+4np,2.

Then, at each step ∆t there are four possible commutations:

• birth of a new bacterial strain: a variable Bnb+1 is added, the dimension
of the system (5) increases by one,

• birth of a new phagical strain: four variables are added: Pnp+1, I1,np+1,
I2,np+1 and I3,np+1, the dimension of the system (5) increases by four,

• extinction of a bacterial strain: the concerned variable is removed, the
dimension of the system (5) decreases by one,

• extinction of phagical strain: variables of the concerned phage are re-
moved, the dimension of the system (5) decreases by four.

The different possible state spaces resulting from a commutation are given
on figure 4.

If more than one event occurs at each moment t ∈ T1, one composes the
possible change of state spaces (for example, the extinction of a phage combined
with the birth of a bacterial strain decreases the dimension of the system (5) by
4 − 1 = 3).

Meta-dynamical level (adaptive differential equation point of view):
we have described the biological model as a stochastic meta-dynamical adap-
tive system by using definition 7. This modelling corresponds to a stochastic
view of the system (4) where the space of all stochastic realizations is infinite.
There exists a family of points {ti}i∈N

where the system (5) commutes. We
have supposed that this commutation is given by ti = t0 + i∆t. Then, at each
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RI
n  + 4n  + 2b p
+

RI
n  + 4n  + 1b p

+

RI
n  + 4n  − 3b p

+

RI
n  + 4n  + 5b p
+

RI b pn  + 4n 
+

strain of bacteria Extinction of a
strain of bacteria

Appearance of a new
strain of phages

strain of phages
Extinction of a

Appearance of a new

Figure 4: Evolution of the state space with nb and np respectively the number
of bacterial and phage strains before the transition.

step ∆t the system may commute. To see a possible evolution of the system
(4), we choose a stochastic realization at each point ti (only for the appear-
ance of a strain because the extinction of a strain is determinist) g(ti, yi) where
yi = lim

t→t
−

i

xi−1 (t) with xi−1(t) the solution of the system (5) on [ti−1, ti[. It

describes the determinist evolution of the system (4). By extension, for us a
stochastic realization is a function

g : R+ × R
dim(X) → R

dim(X)

defined at least on {(ti, yi)}i∈N
. For a given realization g, the system (4) may be

modelled by an adaptive differential equation whose equations are given by the
system (5). This modelling belongs to the variable dimensional space R

nb+4np+1
+

where nb+4np+1 depends on g and follows the rule given on figure 4. A detailed
study of this biological model with implementation can be found in [3].

In this example, one sees that the framework of the adaptive differential
equations corresponds to the case of a transition function defined by a set of
differential equations and a meta-dynamical time reduced to a discrete subset
of R.

6 Conclusion

We started our research with a biological system whose dynamics changes in
different dimensions. Seeing that there was no mathematical framework to de-
scribe such a system, we have developed a mathematical tool following Kalman’s
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dynamical system called meta-dynamical adaptive system which was appropri-
ate to give a constructive algorithm for some fractals. It was also adapted to
describe and analyze our biological system. However, we have found our tool
too general and we decided to develop a special tool for differential equations.
The new system called “adaptive differential equation” is not a succession of
differential equations because the initial condition of each system depends on
the previous system and gives the new dimension of the following system. This
model allows to describe a system of changing differential equations, in partic-
ular the stochastic realization of a stochastic meta-dynamical adaptive system.
The last tool we use is the “variable dimension space”. This new kind of space
links the notion of space and dimension in a changing dynamics. We think
that our work will contribute to understand the huge number of complex sys-
tems where the espace of exploration is too big to be investigate with classical
means.
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