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Introduction

Let Ω be a bounded domain in R 3 and C ∞ ( Ω) be the set of all smooth functions defined in Ω. Let the body B with reference configuration Ω be occupied by a transversely isotropic medium. More precisely, let the axis of rotational symmetry coincide with the x 3 axis, then the non-zero components of the elasticity tensor C(x) = C ijkℓ (x) are It should be noticed that the elasticity tensor C(x) satisfies the full symmetry properties:

C ijkl = C klij = C jikl for all x ∈ Ω. (1.2)
We assume that the elasticity tensor satisfies the strong convexity condition, i.e. there exists δ > 0 such that for any real symmetric matrix E C(x)E • E ≥ δ|E| 2 for all x ∈ Ω. (1.3) In other words, we assume that

C > δ, L > δ, (1/2)(A + M ) > δ, (1/2)(A -M ) > δ, (A + M )C -2F 2 > δ (1.4)
in x ∈ Ω for some δ > 0. Now let u(x, t) be the displacement vector, then the dynamical elastic equation is given by

ρ∂ 2 t u -Lu = 0 in Ω × (-T, T ) (1.5) with (Lu) i = 3 j=1 ∂ j σ ij = 0 in Ω × (-T, T ), 1 ≤ i ≤ 3, (1.6) 
where ∂ j = ∂ x j and the stress-strain relation is

        σ 11 σ 22 σ 33 σ 23 σ 31 σ 12         =         A M F 0 0 0 M A F 0 0 0 F F C 0 0 0 0 0 0 L 0 0 0 0 0 0 L 0 0 0 0 0 0 (A -M )/2                 ε 11 ε 22 ε 33 2ε 23 2ε 31 2ε 12        
, where σ ij and ε ij denote the stress and strain tensors.

It should be noted that the strong convexity condition implies the strong ellipticity condition for the elasticity tensor, which ensures that the system of equations (1.6) is strongly elliptic.

In this paper, we will study the weak unique continuation property of (1.5) by the method of the localized Fourier-Gauss transformation. The method was introduced by Lerner [START_REF] Lerner | Uniqueness for an ill-posed problem[END_REF] for proving some uniqueness result for an ill-posed problem and it was also used by Robbiano [START_REF] Robbiano | Théorème d'unicité adapté au contrôle des solutions des problèmes hyperboliques[END_REF] to prove some kind of unique continuation property. Henceforth we abbreviate this property by UCP. In this paper using the Calderón uniqueness theorem, we generalize the result in [START_REF] Robbiano | Théorème d'unicité adapté au contrôle des solutions des problèmes hyperboliques[END_REF] to (1.5) with smooth coefficients satisfying some conditions. In addition, we apply the UCP to extend the Dirichlet to Neumann map given for large enough time interval to the infinite time interval. This is a generalization of the results ( [START_REF] Belishev | On relations between spectral and dynamical inverse data[END_REF], [START_REF] Kurylev | Hyperbolic inverse boundary-value problem and timecontinuation of the non-stationary Dirichlet-to-Neumann map[END_REF]) given for scalar equations and the result [START_REF] Belishev | Lasiecka The dynamical Lamé syetem: regularity of solutions, boundary controlability and boundary data continuation, A tribute to[END_REF] given for the isotropic elastic system.

For the related results, the study of line unique continuation property was initiated by Cheng, Yamamoto and Qi [START_REF] Cheng | Unique continuation on a hyperplane for wave equation[END_REF] for the wave equation and they showed it along each line in the hyperplane. They combined the localized Fourier-Gauss transformation abbreviated by LFGT to transform (1.5) to the Laplace equation with a small inhomogeneous term and the conditional stability estimate for the unique continuation of the solution of the Laplace equation along lines. Cheng, Lin and Nakamura [START_REF] Cheng | Unique continuation along curves and hypersurfaces for second order anisotropic hyperbolic systems with real analytic coefficients[END_REF] extended the line unique continuation property to general hyperbolic systems with analytic coefficients.

For

x 0 ∈ R 3 , r > 0, B(x 0 , r) := {x ∈ R 3 ; |x -x 0 | < r}. Let y ∈ ∂B(x 0 , r) := {x ∈ R 3 ; |x -x 0 | =
r} and n y be its unit outer normal with respect to B(x 0 , r). Also, let A y,n 0 be an affine transformation which transforms y to the origin and n y to n 0 := (0, 0, 1) t . Then, we define

U (γ, r 1 , r 2 ) = {x = (x ′ , x 3 ) ∈ R 3 ; |x ′ | < r 2 , 0 ≤ ξ := x 3 + γ|x ′ | 2 < r 1 } and V (γ, r 1 , r 2 ) = A -1 y,n 0 U (γ, r 1 , r 2 ).
The following is a figure about U (2/r, r, r) with ξ := x 3 + 2|x ′ | 2 /r = 0, r. From now on, we assume that the elasticity tensor C(x) satisfies the additional condition

F + L = 0 or (A -L)(C -L) = (F + L) 2 , A > C.
Then, the main results of our paper are the followings.

Theorem 1.1 Assume B(x 0 , 3r) ⊂ Ω. Let y be the point at the boundary of B(x 0 , r) with its outer normal n y not perpendicular to

n 0 . Suppose u ∈ C ∞ (B(x 0 , 3r) × (-T, T )) satisfying (1.5) in B(x 0 , 3r) × (-T, T ) and u(x, t) = 0 ((x, t) ∈ B(x 0 , r) × (-T, T )).
Then there exist a positive constant r 0 < r depending on ρ(x) and L in B(x 0 , 3r) and a positive constant k < 1 such that u(x, t) = 0 for ((x, t) ∈ V (2/r 0 , kr 0 , kr 0 ) × (-T 1 , T 1 )), (

where T 1 = Tkr 0 . Moreover, the constants r 0 and k can be taken uniformly in Ω.

Corollary 1.2 (UCP) Let B(x 0 , r) ⊂ Ω and given T 2 > 0. There exists a positive constant

T 3 depending on L in Ω such that if T > T 3 and u ∈ C ∞ ((-T, T ) × Ω) satisfies (1.5) in (-T, T ) × Ω and u(x, t) = 0 ((x, t) ∈ B(x 0 , r) × (-T, T )), then u(x, t) = 0 for ((x, t) ∈ Ω × (-T 2 , T 2 )). (1.8)
As an immediate byproduct of Corollary 1.2, we have the following Corollary.

Corollary 1.3 We can take τ 0 > 0 (large enough) such that the following property is satisfied for the solutions of (1.5). For any

τ > τ 0 , let u ∈ C ∞ ( Ω × [0, 2τ ]) be a solution in Ω × [0, 2τ ] of (1.5) such that u = 0 and ∇ x u = 0 at ∂Ω × [0, 2τ ]. Then u(x, t) = 0 (x ∈ Ω), if t is near τ .
The proof of Theorem 1.1 relies on the Carleman estimate of Calderón's uniqueness theorem which will be described in the next section. The rest of this paper is organized as follows. We review the Carleman estimate of Calderón's uniqueness theorem in section 2. In section 3, we diagonalize the associated elliptic system and check the conditions for applying Calderón's uniqueness theorem. The proofs of Theorem 1.1 and Corollary 1.2 are given in section 4. In section 5, we apply these results to extend the dynamical Dirichlet-Neumann map.

Carleman estimate of Calderón's uniqueness theorem for systems

To begin, we first review Carleman estimate of Calderón's uniqueness theorem from Zuily's book [START_REF] Zuily | Uniqueness and Non-uniqueness in the Cauchy Problem[END_REF]Chapter 2]. The purpose for doing this is to make this paper as self-contained as possible. Let V be an open neighborhood of x 0 ∈ R n (n ∈ N). In this section we do not specify the dimension n ∈ N. In the neighborhood of V we define a C ∞ hypersurface

S = {x ∈ V : ψ(x) = ψ(x 0 )}. (2.1) Let L(x, D) = P (x, D) + Q(x, D) (2.2)
be a differential operator, where

P (x, D) = |α|=m a α (x)D α (D = (D 1 , • • • , D n ), D j = √ -1 ∂ x j ) (2.3)
being an mth order differential operator with C ∞ coefficients and the lower order part Q(x, D) has bounded coefficients. Denote p(x, ξ) = |α|=m a α (x)ξ α the full symbol of P (x, D). As usual, the hypersurface S is assumed to be non-characteristic for L at x 0 , i.e. p(x 0 , N 0 ) = 0, where N 0 = dψ(x 0 ). Let u satisfy Lu = 0 near x 0 and u = 0 if ψ(x) ≤ ψ(x 0 ) near x 0 . Before stating the main theorem of this section, we want to clearly describe the assumptions on the characteristic roots. For each p(x, ξ), we assume that

(C.1) there exist a conic neighborhood Γ N 0 of N 0 and m functions {λ ℓ (x, ξ, N )} m ℓ=1 which are C ∞ in (x, ξ, N ) ∈ V × (R n \ 0) × Γ N 0 with ξ ∦ N such that for every ξ ∦ N , p(x, ξ + τ N ) is written as p(x, ξ + τ N ) = p(x, N ) m ℓ=1 (τ -λ ℓ (x, ξ, N )) in V × (R n \ 0) × Γ N 0 ; (C.2) for any ℓ, 1 ≤ ℓ ≤ m, if λ j ℓ (x, ξ, N
) is real (or complex) at one point, then it remains real (or complex) at every point;

(C.3) the real roots are simple and the multiplicity of the complex roots is not more than two.

As in [START_REF] Zuily | Uniqueness and Non-uniqueness in the Cauchy Problem[END_REF], assuming x 0 = 0 and using the Holmgren transform

x i = x i , 1 ≤ i ≤ n -1, t =< x, N 0 > +δ|x| 2 , (2.4) 
with a suitable constant δ > 0, let P (x, t, ξ, τ ) with x = (x 1 , • • • , x n-1 ) be the principal symbol of P (x, t; D x, D t ), where we abused the notation P (x, t; D x, D t ) to denote the operator (2.3) in terms of (x, t). Then, there exist a function c(x, t) and

{λ l (x, t, ξ)} m l=1 , such that p(x, t, ξ, τ ) = c(x, t) m l=1 (τ -λ l (x, t, ξ)) in V × (R n \ 0), where V is a small neighborhood of (0, 0) and c(x, t) is a C ∞ function with c(0, 0) = 0 and λ l (x, t, ξ) is C ∞ in V × (R n \ 0) with homogeneous of degree one in ξ, 1 ≤ l ≤ m. That is, condition (C.1) is satisfied. Moreover, {λ l (x, t, ξ)} m l=1
satisfy conditions (C.2) and (C.3). Since the result is local near (0, 0), it suffices to assume that the characteristic roots {λ l } m l=1 = {λ l (0, 0, ξ)} m l=1 outside of a small neighborhood of (0, 0). Furthermore, it is readily seen that transform ũ of u by (2.4)

satisfies suppũ ⊂ {(x, t) ∈ R n : t ≥ c|x| 2 }
for some constant c. Then, we have the following Carleman estimate, which was given in [START_REF] Zuily | Uniqueness and Non-uniqueness in the Cauchy Problem[END_REF].

Lemma 2.1 There exist positive constants c, T 0 , η 0 and r such that for T ≤ T 0 and η ≥ η 0 we have that

|α|≤m-1 T 0 e η(t-T ) 2 D α w 2 L 2 (R n-1 ) dt ≤ c(T 2 + η -1 ) T 0 e η(t-T ) 2 Lw 2 L 2 (R n-1 ) dt (2.5) for any w ∈ C ∞ (R n ) with suppw ⊂ {(x, t) : 0 ≤ t ≤ T, |x| ≤ r}, where L = L(x, t, D x, D t ) is the operator (2.
2) in terms of (x, t). Moreover, the constants c, T 0 , η 0 and r only depend on the coefficients of P (x, t, D x, D t ).

Transversally isotropic dynamical systems

In this section, we will study the possibilities of (1.5) to have UCP. Having in our mind the solution u of (1.5) will be transformed by LFGT, we aim to apply (2.5) to ρ∂ 2 s + L by diagonalizing its principal part. A direct way is to use the cofactor of the principal part of ρ∂ 2 s + L. The question is now whether the conditions (C.1), (C.2) and (C.3) for characteristic roots are satisfied. By assuming the elasticity tensor C ijkℓ (x) ∈ C ∞ ( Ω) and in view of the strong ellipticity (1.4), we only have to check the smoothness condition (C.1) of the characteristic roots and the multiplicity condition (C.3). It should be noted that when the characteristic roots are not smooth, Plis [START_REF] Plis | A smooth liear elliptic differential equation without any solution in a sphere[END_REF] constructed a fourth order elliptic differential operator in which the Cauchy problem is not unique. We will first discuss the multiplicity condition (C.3). It turns out that we need to exclude certain directions and put a condition (3.3) or (3.4) in order to guarantee (C.3). To begin, we factor the determinant of the principal symbol of ρ∂ 2 s + L by direct computations. This we noteiced from [START_REF] Mazzucato | On transversely isotropic media with ellipsoidal slowness surfaces[END_REF] and [START_REF] Rachele | Uniqueness in inverse problems for elastic media with residual stress[END_REF]. Proposition 3.1 The determinant of the principal symbol of ρ∂ 2 s + L can be factored as

det(ρδ ik η 2 4 + 3 j,l=1 C ijkl η j η l ; i ↓, k → 1, 2, 3) = (ρη 2 4 + ρλ 0 )(ρη 2 4 + ρλ + )(ρη 2 4 + ρλ -), (3.1) 
where

ρλ 0 (x, η) = (1/2)(A -M )(η 2 1 + η 2 2 ) + Lη 2 3 , ρλ ± (x, η) = (1/2)(A + L)(η 2 1 + η 2 2 ) + (1/2)(C + L)η 2 3 ± (1/2)|D|, D 2 = (A -L) 2 (η 2 1 + η 2 2 ) 2 + (C -L) 2 η 4 3 -2[(A -L)(C -L) -2(F + L) 2 ](η 2 1 + η 2 2 )η 2 3 .
Lemma 3.1 Let {ξ, ζ} be a pair of orthogonal vectors in R 3

x . Consider the characteristic equation

det(ρδ ik η 2 4 + 3 j,l=1 C ijkℓ η j η l ; i ↓, k → 1, 2, 3) = 0 in τ, (3.2) 
where η = (η 1 , η 2 , η 3 , η 4 ) = (ξ, ξ 4 ) + τ (ζ, 0). Let ℓ := ξ × ζ and φ be the angle between ℓ and the x 3 axis. If

F + L = 0 (3.3) or (A -L)(C -L) = (F + L) 2 , A > C, (3.4) 
then the characteristic roots of (3.2) satisfy (C.1) and have at most double roots for φ = 0 and π.

Proof of lemma 3.1:

Let Q = (Q ik ) = ρξ 2 4 I + 3 j,l=1 C ijkl ξ j ξ l , R = (R ik ) = 3 j,l=1 C ijkl ξ j ζ l , T = (T ik ) = 3 j,l=1 C ijkl ζ j ζ l ,
where i, k = 1, 2, 3, and

ξ = (ξ 1 , ξ 2 , ξ 3 ), ζ = (ζ 1 , ζ 2 , ζ 3 ), then the characteristic equa- tion (3.2) is equivalent to det[τ 2 T + τ (R + R t ) + Q] = 0. (3.5) 
From (1.3), we see that (3.5) contains only complex roots and they form conjugate pairs. Since the axis of rotational symmetry coincides with the x 3 axis, the elasticity tensor C ijkℓ is invariant under the orthogonal transform O rotating around the x 3 axis, i.e.

O =   cos θ sin θ 0 -sin θ cos θ 0 0 0 1   .
Moreover, by the transform rule of tensor, the multiplicities are also invariant under the rotation of ξ and ζ in the plane spanned by ξ, ζ. Therefore, the multiplicities of the characteristic roots for (3.2) are invariant under the same transform O on ξ and ζ. Thus, it suffices to prove this proposition for ξ = (cos φ, 0,sin φ), ζ = (0, 1, 0), where ℓ = (sin φ, 0, cos φ) (see [START_REF] Tanuma | Surface-impedance tensors of transversely isotropic elastic materials[END_REF]). First, we assume that (3.3) holds. Then from (3.1), we get

det[τ 2 T + τ (R + R t ) + Q] = [(1/2)(A -M )τ 2 + ρξ 2 4 + (1/2)(A -M )ξ 2 1 + Lξ 2 3 ] ×[Aτ 2 + ρξ 2 4 + Aξ 2 1 + Lξ 2 3 ] × [τ 2 L + ρξ 2 4 + Lξ 2 1 + Cξ 2 3 ] = 0 (3.6)
We take τ 1 , τ 2 , τ 3 to be three roots of (3.6) with positive imaginary part. Let τ 1 , τ 2 and τ 3 satisfy 

(1/2)(A -M )τ 2 1 + ρξ 2 4 + (1/2)(A -M )ξ 2 1 + Lξ 2 3 = 0, (3.7 
τ 1 = τ 2 is (1/2)(A -M ) ρξ 2 4 + (1/2)(A -M )ξ 2 1 + Lξ 2 3 = A ρξ 2 4 + Aξ 2 1 + Lξ 2 3 . (3.10) 
We derive from (3.10) that

(1/2)(A + M )(ρξ 2 4 + Lξ 2 3 ) = 0
which implies from (1.4) that

ξ 3 = 0 = ξ 4 and then ξ 2 1 = 1.
Therefore, we get the necessary conditions for triple roots τ 1 = τ 2 = τ 3 and the triple root are i.

Secondly, we assume that (3.4) holds. Then

det[Q + (R + R t )τ + Tτ 2 ] = [(1/2)(A -M )τ 2 + ρξ 2 4 + (1/2)(A -M )ξ 2 1 + Lξ 2 3 ] ×[Aτ 2 + ρξ 2 4 + Aξ 2 1 + Cξ 2 3 ] × [Lτ 2 + ρξ 2 4 + Lξ 2 1 + Lξ 2 3 ] = 0 (3.11)
We take τ 1 , τ 2 , τ 3 to be three roots of (3.11) with positive imaginary part. Let τ 1 , τ 2 and τ 3 satisfy

(1/2)(A -M )τ 2 1 + ρξ 2 4 + (1/2)(A -M )ξ 2 1 + Lξ 2 3 = 0, (3.12 
) In this case, the equations (3.12) and (3.14) are the same. So, we consider τ 1 = τ 2 under (3.15). Therefore, the necessary condition for On the other hand, the left hand side of (3.2) is -1 times the determinant of the principal symbol of ρ∂ 2 s + L and it has the factorization (3.6) and (3.11). Hence, the smoothness of the characteristic roots can be easily verified.

Aτ 2 2 + ρξ 2 4 + Aξ 2 1 + Cξ 2 3 = 0 (3.
τ 1 = τ 2 = τ 3 is L ρξ 2 4 + Lξ 2 1 + Lξ 2 3 = A ρξ 2 4 + Aξ 2 1 + Cξ 2 3 . ( 3 
✷ Remark 3.2 Let x 0 ∈ R 3 and V be a neighborhood of x 0 . Assume that S = {x : ψ(x) = ψ(x 0 )} is a C ∞ surface with N 0 = dψ(x 0 ) satisfying N 0 is not perpendicular to the x 3 axis.
Let the elasticity tensor C ijkℓ satisfy the additional condition (3.3) or (3.4) in V . With the help of Lemma 3.1, we will see in the next section that we can apply (2.5) for the system ρ∂ 2 s + L in some neighborhood V 0 of x 0 .

4 Proof of Theorem 1.1 and Corollary 1.2

We will use the method given in [START_REF] Cheng | Unique continuation on a hyperplane for wave equation[END_REF] to prove Theorem 1.1. We define LFGT v a,λ (x, s) of u(x, t) by

v a,λ (x, s) := λ/2π T -T e -λ(is+a-t) 2 /2 u(x, t)dt, (4.1) 
where λ > 0, a, s ∈ R and i = √ -1. Associated with the operator ρ∂ 2 t -L, we define an elliptic operator Q

x,s = Q(x, s, D x , D s ) in (x, s) ∈ R 3 x × R 1 s by Q x,s := ρ∂ 2 s + L. Let Q co
x,s = Q co (x, s, D x , D s ) be the operator whose symbol is the cofactor matrix of the principal symbol of Q x,s and define Qx,s by

Qx,s = Q(x, s, D x , D s ) = Q co x,s • Q x,s .
Then, the principal symbol of Qx,s is

q x,s (η 1 , η 2 , η 3 , η 4 ) = -det(ρδ ik η 2 4 + 3 j,l=1 C ijkl η j η l ; i ↓, k → 1, 2, 3) I. (4.2) 
By Lemma 3.1, q x,s satisfies (C.1), (C.2) and (C.3). We also define χ a,λ := Qx,s v a,λ .

Let y be the point at the boundary of B(x 0 , r) and n y be the unit normal of ∂B(x 0 , r) at y. By an affine transformation A y,n 0 , we can assume that y = 0 and n 0 = (0, 0, 1) t . To be compared with Section 2, a C ∞ hypersurface S = {x : ψ

(x) = ψ(x 0 )} is S = {(x 1 , x 2 , x 3 , s) : ψ(x 1 , x 2 , x 3 , s) = x 2
1 +x 2 2 +(x 3 +r) 2 -r 2 = ψ(0, 0, 0, s) = 0, -r < x 1 , x 2 , (x 3 + r) < r, -T < s < T }. We now perform a change of coordinates near 0 by using the "Holmgren transform", i.e., s → s, x j → x j (j = 1, 2), µ = x 3 + 2(s 2 + |x ′ | 2 )/r, where x ′ = (x 1 , x 2 ). For simplicity, we will use the same notations Qx,s and v a,λ even after applying the Holmgren transform to them. Then, in the region

V = {(x, s); x 3 > -r, 0 < µ < r}, supp(v a,λ ) ⊂ V ∩ {(x, s); s 2 + |x ′ | 2 ≤ r 2 } (4.4)
and the new q x,s satisfies (C.1) (C.3). For (4.4), the readers are referred to the figure 2 in the proof of Corollary 1.2. Moreover, by the definition of LFGT, v a,λ (x, s) is smooth in B(x 0 , 3r) × R. Therefore, we are in a position to apply the following Carleman estimate which is deduced from (2.5).

Theorem 4.1 There exist positive constants r 0 < r, η 0 , and c depending on ρ and L in Ω such that for all η ≥ η 0 , we have that

|ν|≤5 r 0 0 e η(µ-r 0 ) 2 ∂ ν v 2 dµ ≤ c(η -1 + r 2 0 ) r 0 0 e η(µ-r 0 ) 2 Qs,x v 2 dµ (4.5) for all v(x ′ , µ, s) ∈ C ∞ with supp(v) ⊂ {(x ′ , µ, s) : s 2 + |x ′ | 2 ≤ r 2 0 , 0 ≤ µ ≤ r 0 }, where • 2 = (•, •) is the L 2 (R 3 ) norm.
It should be noted that the constants r 0 , η 0 , and c can be taken uniformly in Ω. As in the proof of [START_REF] Zuily | Uniqueness and Non-uniqueness in the Cauchy Problem[END_REF], the constants r 0 , η 0 , and c are independent of the normal vector.

To prove the main theorem, we still need the following properties of LFGT given in [START_REF] Cheng | Unique continuation on a hyperplane for wave equation[END_REF]. Lemma 4.2 Let u ∈ C 6 (B(x 0 , 3r 0 ) × [-T, T ]) and s 0 ∈ (0, T ) be fixed. If u satisfies Lu = 0 in B(x 0 , 3r 0 ) × [-T, T ], then for s ∈ (-s 0 , s 0 ) and 0 ≤ µ ≤ r 0 , we have

v a,λ (x ′ , µ, 0) → u(x ′ , µ, a) as λ → ∞, |a| < T, (4.6) |(∂ ν v a,λ )(x ′ , µ, s)| ≤ C 1 λ 9/2 e λs 2 0 /2 (|ν| ≤ 5), (4.7) |χ a,λ (x ′ , µ, s)| ≤ C 2 λ 11/2 e -λ[(T -|a|) 2 -s 2 0 ]/2 , (4.8)
where C 1 > 0 depends on u C 5 (B(x 0 ,3r 0 )×[-T,T ]) and C 2 > 0 depends on s 0 , T, a and u C 6 (B(x 0 ,3r 0 )×[-T,T ]) .

Remark 4.3 In [3], (4.8) is shown for ∂ 2 s + ∆. The proof for Qs,x is almost the same as that given in [START_REF] Cheng | Unique continuation on a hyperplane for wave equation[END_REF]. Now, let a C ∞ function θ(µ) ∈ C ∞ 0 (R) defined in µ ≥ 0 with θ(µ) = 0 for µ ≥ r 0 and θ(µ) = 1 for µ ≤ 4r 0 /5. Denote η = λ and w a,λ = θ(µ)v a,λ . Since Qs,x w a,λ = θ Qs,x v a,λ + [ Qs,x , θ]v a,λ . We can apply (4.5) to w a,λ with (4.7) and (4.8) to get that

e (λr 2 0 /4) r 0 /2 0 v a,λ 2 dµ ≤ r 0 0 e λ(µ-r 0 ) 2 w a,λ 2 dµ ≤ c(λ -1 + r 2 0 ) r 0 0 e λ(µ-r 0 ) 2 θ Qs,x v a,λ 2 dµ +c(λ -1 + r 2 0 ) r 0 0 e λ(µ-r 0 ) 2 [ Qs,x , θ]v a,λ 2 dµ ≤ c(λ -1 + r 2 0 )λ 11 e λr 2 0 -λ(T -|a|) 2 +λs 2 0 + c(λ -1 + r 2 0 )λ 9 e (λr 2 0 /25)+λs 2 0 . (4.9) 
Multiply e -λr 2 0 /4 on both sides of (4.9), we have

r 0 /2 0 v a,λ 2 dµ ≤ c(λ -1 + r 2 0 )λ 11 e (3λr 2 0 /4)-λ(T -|a|) 2 +λs 2 0 + c(λ -1 + r 2 0 )λ 9 e (-21λr 2 0 /100)+λs 2 0 . (4.10) 
Let |a| < T -7/8r 0 and s 0 < r 0 /10, they imply the power exponents in the first and second terms on the right hand side of (4.10) satisfy

(3/4)λr 2 0 -λ(T -|a|) 2 + λs 2 0 < -(1/10)λr 2 0 , -(21/100)λr 2 0 + λs 2 0 < -(1/5)λr 2 0 . (4.11) By (4.9), (4.10) and (4.6) 
, we have for

|a| < T -7/8r 0 , 0 < µ < r 0 /2 and |x ′ | ≤ r 0 that v a,λ (x ′ , µ, 0) → 0 = u(x ′ , µ, a) as λ → ∞.
This completes the proof of Theorem 1.1.

✷

Proof of Corollary 1.2.

First of all, we note that the constant r 0 in Theorem 1.1 can be taken uniformly with respect to x ∈ Ω. Hence, T 1 can be also taken uniformly with respect to x ∈ Ω. We use the following steps to continue u by zero from B(x 0 , r) onto the whole Ω.

Step1. Let

D + (x 0 , r, θ 0 ) := {y ∈ B(x 0 , r); |(y -x 0 ) • n 0 | ≥ |y -x 0 | cos θ 0 }
with small 0 < θ 0 < π/2. In each boundary point y ∈ ∂D + (x 0 , r, θ 0 ), we can get a ball with radius r 0 inside B(x 0 , r) and y is in its boundary. By Theorem 1.1, we can continue u by zero onto a neighborhood U (y) of each boundary point y ∈ ∂D + (x 0 , r, θ 0 ). We give the figure 2 about y = (0, 0, 0) and n y = (0, 0, 1). Hence, covering ∂D + (x 0 , r, θ 0 ) by finite numbers of such U (y)'s, we can continue u by zero onto D + (x 0 , r, θ 0 ) with r > r.

Step2. Since the constant r 0 in Theorem 1.1 can be taken uniformly, we apply Theorem 1.1 to y ∈ ∂D + (x 0 , r, θ 0 ) to continue u by zero onto

D -(x 0 , r, θ 0 ) := {y ∈ B(x 0 , r); |(y -x 0 ) • n 0 | ≤ |y -x 0 | cos θ 0 },
where the small enough θ 0 is chosen dependently on r 0 and r < r < r.

Step3. Next take any z ∈ ∂B(x 0 , r) and repeat Step1 and Step2. Then we can continue u by zero onto a more larger ball centered at x 0 . It should be noted that the size of extending the radius of the ball in which u is zero can be kept uniform.

By repeating these steps, we can continue u by zero onto the whole Ω if T 3 is large enough. Let u f (t, x) be the solution of

     ∂ 2 t u f (t, x) -Mu f (t, x) = 0 ((t, x) ∈ Q T ), u f (t, x)| Σ T = f (t, x), u f (t, x)| t=0 = ∂ t u f (t, x)| t=0 = 0, (5.1) 
where

Q T := (0, T ) × Ω, Σ T := (0, T ) × ∂Ω, f (t, x) ∈ H 1 (Σ T ) and the αth component (Mu) α (t, x) is given by (Mu) i (t, x) = ρ(x) -1 3 j,l,k=1 ∂ j (C ijkl (x)∂ l u k ) (1 ≤ i ≤ 3),
here C ijkl (x) is the same elasticity tensor as above and 0 < ρ(x) ∈ C ∞ ( Ω). We assume f to satisfy the compatibility condition: f (0, x) = 0. It should be noted that

u f ∈ C 1 ([0, T ], L 2 (Ω)) ∩ C([0, T ], H 1 (Ω)) for T > 0.
We define the response operator

R T : H 1 0 (Σ T ) -→ L 2 (Σ T ) by (R T f ) i = 3 j,l,k=1 ν j C ijkl (x)∂ l u k (1 ≤ i ≤ 3),
where ν := (ν 1 , ν 2 , ν 3 ) is the outer normal vector of ∂Ω, u f = (u f 1 , u f 2 , u f 3 ) t is the solution to (5.1) and H 1 0 (Σ T ) := {f ∈ H 1 (Σ T ), f (0, x) = 0}. See the appendix for a justification of the statement of this operator.

Theorem 5.1 Let r be the radius of Ω. There exists a positive constant T 4 such that if we have R T f for some T , T ≥ T 4 , then we can determine R T f for every T > 0.

The proof follows that of Theorem 1.4 in [START_REF] Kurylev | Hyperbolic inverse boundary-value problem and timecontinuation of the non-stationary Dirichlet-to-Neumann map[END_REF]. To do it, we need the following key Lemma whose proof is given by the standard argument using Corollary 1.3. Lemma 5.2 Let r be the radius of Ω. There exists a positive constant T 4 such that for any

T ≥ T 4 the set {(u f (T ), ∂ t u f (T )); f ∈ C ∞ 0 ([0, T ] × ∂Ω)} is dense in H 1 0 (Ω) × L 2 (Ω).
Proof of Lemma 5.2. Assume that the conclusion is false.

Let (ψ, ϕ) ∈ H -1 (Ω) × L 2 (Ω) be such that u f (•, T ), ψ -∂ t u f (•, T ), ϕ = 0 for all f ∈ C ∞ 0 (Σ T )
, where the first and the second pairings are for the pairs in H 1 0 (Ω) × H -1 (Ω) and L 2 (Ω) × L 2 (Ω) which use the natural extension of the pairing

< a, b >= Ω abdx (a, b ∈ L 2 (Ω)). Since C ∞ 0 (Ω) is dense in both L 2 (Ω) and H 1 0 (Ω), we can assume (ψ, ϕ) ∈ C ∞ 0 (Ω) × C ∞ 0 (Ω).
To show that ϕ = ψ = 0, we consider the solution e ∈ C 1 ([0, T ], H -1 (Ω)) of the following initial-boundary value problem:

         (∂ 2 t -M)e = 0 in Q T , e| Σ T = 0, e| t=T = ϕ, ∂ t e| t=T = ψ.
(5.2) Let u f (x, t) be the solution of the initial-boundary value problem (5.1). Taking the inner product of the equation in (5.1) with ρe and doing the same for the equation in (5.2) with ρu f and integrating by parts, we have

0 = Q T [(ρ(∂ 2 t -M)u f ) • ē -u f • ρ(∂ 2 t -M)e]dxdt = Σ T f N edsdt, (5.3) 
The continuous dependence of solutions on initial data, Lemma 6.1 in the Appendix, and (5.5) imply that lim 

✷ 6 Appendix

The purpose of this appendix is to give the proof to following theorem which justifies the definition of the operator R T and the well-posedness of the problem (5.6).

Lemma 6.1 Let Ω be a bounded domain in R n and ∂Ω is smooth. Denote Q T := (0, T ) × Ω and

Σ T := (0, T ) × ∂Ω. Assume that F ∈ L 1 ((0, T ); L 2 (Ω)), f ∈ H 1 (Σ T ), ψ 0 ∈ H 1 (Ω) and ψ 1 ∈ L 2 (Ω) with the compatibility condition f (0, •) = ψ 0 | ∂Ω . Then, there exists a unique solution u = u(t, x) ∈ C((0, T ); H 1 (Ω)) ∩ C 1 ((0, T ); L 2 (Ω)) to          ∂ 2 t u -Mu = F in Q T u| Σ T = f u| t=0 = ψ 0 in Ω ∂ t u| t=0 = ψ 1 in Ω. (6.1) 
Moveover, it satisfies

N u ∈ L 2 (Σ T ) N u L 2 (Σ T ) ≤ C(T )( T 0 F (t) L 2 (Ω) dt + f H 1 (Σ T ) + ψ 0 H 1 (Ω) + ψ 1 L 2 (Ω) ). (6.
2) where N u is given by (5.3) replacing e by the solution u to (6.1).

Proof (6.1) can be proven in the same way as Theorem 2.30 of [START_REF] Katchalov | Inverse boundary spectral problems[END_REF]. This is because M is formally selfadjoint and it satisfies Gårding's inequality, and hence all the argument in Theorem 2.30 of [START_REF] Katchalov | Inverse boundary spectral problems[END_REF] can be applied without any essential change to prove (6.1).

(6.2) can be proven likewise Step 2 in the proof of Theorem 2.1 in [START_REF] Lasiecka | Nonhomogeneous boundary value problems for second order hyperbolic operators[END_REF]. However, we need to adapt the proof a little. We only give the part of the proof which differs from that given in [START_REF] Lasiecka | Nonhomogeneous boundary value problems for second order hyperbolic operators[END_REF]. Let ν be C ∞ vector field on Ω such that ν(x) coincides with the outer unit normal vector field of ∂Ω if x ∈ ∂Ω. Also let χ ∈ C ∞ (R) satisfy χ(t) = 1 for t ≤ T and 0 for t ≥ 2T . Continue F by zero onto the interval [T, 2T ). Write Then, by integration by parts, it is easy to see where y ′ = (y 1 , y 2 , y 3 ). The rest of the terms of K only contain at most ∂ y 3 u i (1 ≤ i ≤ 3). Since ( Ci3k3 ) 1≤i,k≤3 is positive definite, it is easy to prove the estimate in (6.2) from (6.3), (6.4), (6.5) and (6.6) by the argument of Step 2 in the proof of Theorem 2.1 in [START_REF] Lasiecka | Nonhomogeneous boundary value problems for second order hyperbolic operators[END_REF].
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  1111 , C 2222 , C 3333 , C 1122 , C 1133 , C 2233 , C 2323 , C 1313 , C 1212 and they satisfyC 1111 = C 2222 , C 1133 = C 2233 , C 2323 = C 1313 , C 1212 = (C 1111 -C 1122 )/2.For notational simplicity, we setC 1111 = A, C 1122 = M, C 1133 = F, C 3333 = C, C 2323 = L.(1.1)
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 1 Figure 1: Equation of the ball in the figure: |x ′ | 2 + (x 3 + r) 2 = r 2 and γ = 2/r.
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 3 [START_REF] Mizohata | The theory of partial differential equations[END_REF]) and(3.14) we have the necessary condition for τ 1 = τ 3 isA -M = 2L. (3.15) 
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m→∞N

  y m | [T 4 ,T ]×∂Ω = N y| [T 4 ,T ]×∂Ω (5.8) in L 2 space. By (5.8), N u h | [T 4 +ǫ,T +ǫ]×∂Ω is determined. Combining the known information N u h | [0,T ]×∂Ω , we can determine N u h | [0,T +ǫ]×∂Ω .

I 2 = 3 k=1 ∂x k ∂y i ∂x k ∂y j ( 1

 231 (1/2) Σ 2T χ(C∇u • ∇u)dsdt -Σ 2T χ((C∇u)ν) • (∇uν)dsdt -J 2 ,(6.4)withJ 2 := (1/2) Q 2T χ(∇ • ν)(C∇u • ∇u)dxdt + (1/2) Q 2T χ((ν • ∇)C∇u) • ∇udxdt -Q 2T χC∇u • (∇u∇ν)dxdt.Now, we analyzeK := (1/2) Σ 2T χ(C∇u • ∇u)dsdt -Σ 2T χ((C∇u)ν) • (∇uν)dsdt = Q T χF • (∇uν)dxdt + J 1 + J 2 (6.5)locally, that is we analyze K when we confine u to a neighborhood ⊂ Ω around a point ∈ ∂Ω by using a partition of unity. In this neighborhood, we introduce a boundary normal coordinates (y 1 , y 2 , y 3 ) such that ∂Ω and Ω are given locally by∂Ω = {y 3 = 0}, Ω = {y 3 > 0}.Define g and C byg = | det(g ij )|, g ij = ≤ i, j ≤ 2)and C = ( Ciαkβ ), Ciαkβ = 3 j,l=1 C ijkl ∂y α ∂x j ∂y β ∂x l , respectively. Then K has the term -(1/2) Σ 2T χ 3 i,k=1 Ci3k3 ∂ y 3 u i ∂ y 3 u k √ gdy ′ dt, (6.6)

  )

	Aτ 2 2 + ρξ 2 4 + Aξ 2 1 + Lξ 2 3 = 0	(3.8)
	and	
	Lτ 2 3 + ρξ 2 4 + Lξ 2 1 + Cξ 2 3 = 0.	(3.9)
	From (3.7) and (3.8), the necessary condition for	

  2 t u -∇ • (C∇u)) • (∇uν)dxdt = I 1 + I 2 ,whereI 1 = Q 2T ρχ∂ 2 t u • (∇uν)dxdt and I 2 = -Q 2T (χ∇ • (C∇u)) • (∇uν)dxdt. Also, let J 1 := Ω ρψ 1 • (∇ψ 0 ν)dx + Q 2T ρ∂ t χ∂ t u • (∇uν)dxdt -(1/2) Q 2T ρχ(∇ • ν)|∂ t u| 2 dxdt -(1/2) Q 2T χ∇ρ • |∂ t u| 2 νdxdt +(1/2) 2T ρχ|∂ t u| 2 dsdt.

  t χ∂ t u • (∇uν)dxdt +(1/2) Q 2T ρχ(∇ • ν)|∂ t u| 2 dxdt + (1/2) Q 2T χ∇ρ • |∂ t u| 2 νdxdt -(1/2) 2T ρχ|∂ t u| 2 dsdt = -J 1
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where (N e) i = 3 j,l,k=1 ν j C ijkl (x)∂ l e k for e = (e 1 , e 2 , e 3 ) t . Since f ∈ C ∞ 0 ( T ) is arbitrary, N e| T = 0.

By Corollary 1.3, we obtain that

Hence, e(t, x) is the solution of the hyperbolic system (5.2) stated on (T /2, T ) × Ω with homogeneous initial conditions (5.4) on T /2. This implies that e(t) = 0 for t ∈ [T /2, T ]. Therefore,

This completes the proof.

✷

Proof of Theorem 5.1. Let T 4 be the value given in Lemma 5.2 and T > T 4 . Suppose that we know R T and set ǫ = (T -T 4 )/2. We are going to prove that

To do it, we denote t 0 = T 4 + ǫ. By Lemma 5.2, there exist