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We give in this paper a convergence result concerning parallel asynchronous algorithm with bounded delays to solve a nonlinear fixed point problems. This result is applied to calculate the solution of a strongly monotone operator. Special cases of these operators are used to solve some problems related to convex analysis like minimization of functionals, calculus of saddle point and variational inequality problem. asynchronous algorithm, nonlinear problems,

Introduction

In this paper we give a convergence result for parallel asynchronous iterations with bounded delays. The convergence result of these algorithms was shown by many authors. Chazan and Miranker in [START_REF] Chazan | Chaotic relaxation[END_REF] treated the chaotic iterations using a linear and contractive mapping. In 1975, Miellou [START_REF] Miellou | Algorithmes de relaxation chaotiques à retard[END_REF] extended the works of Chazan and Miranker to the nonlinear case using a contraction mapping and proposes a model with bounded delays. In 1978, Baudet in [START_REF] Baudet | Asynchronous iterative methods for multiprocessors[END_REF] generalizes the chaotic iterations of Chazan-Miranker and Miellou and proposes a model where the delays considered can be infinite. In a different context, El Tarazi [START_REF] Tarazi | Somme convergence results for asynchronous algorithms[END_REF] also established this result by a contraction technique according to a suitable scalar norm. Recently, Bahi [START_REF] Bahi | Asynchronous iterative algorithms for nonexpansive linear systems[END_REF] gave a convergence result concerning parallel asynchronous algorithm to solve a linear fixed point problems using nonexpansive linear mappings with respect to a weighted maximum norm. Our goal is to establish a convergence result concerning parallel asynchronous algorithm to solve a nonlinear fixed point problems using a nonlinear and nonexpansive mapping. All the results established in this study are mentioned by the author in [START_REF] Benahmed | Un résultat de convergence des algorithmes parallèles asynchrones. Application aux opérateurs maximaux fortement monotones[END_REF]. We regard this study as a generalization to the asynchronous case of all results stated by Benahmed and Addou in [START_REF] Addou | Parallel synchronous algorithm for nonlinear fixed point problems[END_REF] and so, we repeat the proofs given in [START_REF] Addou | Parallel synchronous algorithm for nonlinear fixed point problems[END_REF] by including the modifications which requires the asynchronous case. Section 2 is devoted to a brief description of asynchronous parallel algorithm. In section 3 we prove the main result concerning the convergence of the general algorithm to a fixed point of a nonlinear operator from R n to R n . This result is applied in section 4 to the operator F = (I + cT ) -1 (c > 0) which is called the proximal mapping associated with the maximal monotone operator cT (see Rockafellar [START_REF] Rockafellar | Monotone operators and the proximal point algorithm[END_REF]) to calculate a solution of the operator T . Special cases of these operators are also studied to solve optimization problems and variational inequality problem.

Preliminaries

R n is considered as the product space α i=1 R ni , where α ∈ N -{0} and n = α i=1 n i . All vectors x ∈ R n considered in this study are splitted in the form x = (x 1 , ..., x α ) where x i ∈ R ni . Let R ni be equipped with the inner product ., . i and the associated norm .. i = ., .

1/2 i . R n will be equipped with the inner product x, y = α i=1 x i , y i i where x, y ∈ R n and the associated norm 

x = x, x 1/2 = ( α i=1 x i 2 i ) 1/2
           x 0 = (x 0 1 , ..., x 0 α ) ∈ R n x p+1 i = x p i if i / ∈ J(p) F i (x s1(p) 1 , ..., x sα(p) α ) if i ∈ J(p) i = 1, ..., α p = 0, 1, .. (1) 
It will be denoted by (F, x 0 , J, S). This algorithm describes the behavior of iterative process executed asynchronously on a parallel computer with α processors. At each iteration p + 1, the i th processor computes x p+1 i by using (1). J(p) is the subset of the indexes of the components updated at the p th step. p -s i (p) is the delay due to the i th processor when it computes the i th block at the p th iteration. If we take s i (p) = p ∀i ∈ {1, ..., α}, then (1) describes synchronous algorithm (without delay). During each iteration, every processor executes a number of computations that depend on the results of the computations of other processors in the previous iteration. Within an iteration, each processor does not interact with other processors, all interactions takes place at the end of iterations. If we take s i (p) = p ∀p ∈ N, ∀i ∈ {1, ..., α} J(p) = {1, ..., α} ∀p ∈ N then (1) describes the algorithm of Jacobi. If we take

s i (p) = p ∀p ∈ N, ∀i ∈ {1, ..., α} J(p) = p + 1 (mod α) ∀p ∈ N
then (1) describes the algorithm of Gauss-Seidel. For more details about asynchronous algorithms see [START_REF] Chazan | Chaotic relaxation[END_REF], [START_REF] Miellou | Algorithmes de relaxation chaotiques à retard[END_REF], [START_REF] Baudet | Asynchronous iterative methods for multiprocessors[END_REF], [START_REF] Tarazi | Somme convergence results for asynchronous algorithms[END_REF] and [START_REF] Bertsekast | Some aspects of parallel and distributed iterative algorihms-A survey[END_REF]. Definition 2.2. An operator F from R n to R n is said to be nonexpansive with respect to the norm .. if, F (x) -F (x ′ ) ≤ x -x ′ for all x, x ′ ∈ R n

The main result

We establish in this section the convergence of the general parallel asynchronous algorithm with bounded delays to a fixed point of a nonlinear operator

F : R n → R n . Theorem 3.1. Suppose (h 0 ) ∃ a subsequence {p k } k∈N such that, ∀i ∈ {1, ..., α} , i ∈ J(p k ) and s i (p k ) = p k (h 1 ) ∃s ∈ N, such that, ∀i ∈ {1, ..., α} , ∀p ∈ N, p -s ≤ s i (p) ≤ p (h 2 ) ∃u ∈ R n , F (u) = u (h 3 ) ∀x, x ′ ∈ R n , F (x) -F (x ′ ) ∞ ≤ x -x ′ ∞ (h 4 ) ∀x, x ′ ∈ R n , F (x) -F (x ′ ) 2 ≤ F (x) -F (x ′ ), x -x ′ Then, for all x 0 ∈ R n the sequence (1) is convergent in R n to a fixed point x * of F .
Proof. We follow the steps given in Addou-Benahmed [START_REF] Addou | Parallel synchronous algorithm for nonlinear fixed point problems[END_REF] Theorem 4, with important modifications in the step (i). The steps (ii) and (iii) are similar. We proceed then in three steps:

(i) First, we show that the sequence { x p -u ∞ } p∈N is convergent. For p ∈ N, we consider the (s + 1) iterates x p , x p-1 , ..., x p-s in the process and put

z p = max 0≤l≤s x p-l -u ∞ = max p-s≤l≤p x l -u ∞
Then ∀i ∈ {1, ..., α} we have, either i / ∈ J(p) so,

x p+1 i -u i i = x p i -u i i ≤ x p -u ∞ ≤ max 0≤l≤s x p-l -u ∞ = z p or i ∈ J(p) so, x p+1 i -u i i = F i (x s1(p) 1 , ..., x sα(p) α ) -F i (u) i ≤ F (x s1(p) 1 , ..., x sα(p) α ) -F (u) ∞ ≤ (x s1(p) 1 , ..., x sα(p) α ) -u ∞ (by (h 3 )) = x sj (p) j -u j j (for some j, 1 ≤ j ≤ α) ≤ x sj (p) -u ∞ ≤ max p-s≤l≤p x l -u ∞ (use p -s ≤ s j (p) ≤ p) = z p then ∀i ∈ {1, ..., α} , x p+1 i -u i i ≤ z p that is x p+1 -u ∞ ≤ z p therefore z p+1 = max 0≤l≤s x p+1-l -u ∞ = M ax max 0≤l≤s-1 x p-l -u ∞ , x p+1 -u ∞ ≤ z p
which proves that the sequence {z p } p∈N is decreasing (positive) then it's convergent. It's limit is

lim p→∞ z p = lim p→∞ max 0≤l≤s x p-l -u ∞ = lim p→∞ x p-j(p) -u ∞ (0 ≤ j(p) ≤ s) = lim p→∞ x p -u ∞
which proves that the sequence { x p -u ∞ } p∈N is convergent and so, the sequence {x p } p∈N is bounded. (ii) As the sequence {x p k } k∈N is bounded ({p k } k∈N is defined by (h 0 )), it contains a subsequence noted also {x p k } k∈N which is convergent in R n to an x * . We show that x * is a fixed point of F . For this, we consider the sequence {y p = x p -F (x p )} p∈N and prove that lim k→∞ y p k = 0.

x p k -u 2 = y p k + F (x p k ) -u 2 = y p k 2 + F (x p k ) -u 2 + 2 F (x p k ) -u, y p k then y p k 2 = x p k -u 2 -F (x p k ) -u 2 -2 F (x p k ) -u, y p k however F (x p k ) -u, y p k = F (x p k ) -F (u), x p k -F (x p k ) = F (x p k ) -F (u), [x p k -F (u)] -[F (x p k ) -F (u)] = F (x p k ) -F (u), x p k -u -F (x p k ) -F (u) 2 ≥ 0 (by (h 4 )) so, y p k 2 ≤ x p k -u 2 -F (x p k ) -u 2 = x p k -u 2 -x p k +1 -u 2 (by (h 0 )) However, by (i) the sequence { x p -u ∞ } p∈N is convergent, then the se- quence { x p -u } p∈N is also convergent with limit lim p→∞ x p -u = lim k→∞ x p k -u = lim k→∞ x p k +1 -u = x * -u
and so lim k→∞ y p k = 0 which implies that lim k→∞ y p k = 0 and so

x * -F (x * ) = 0 that is x * is a fixed point of F . (iii) We prove as in (i) that the sequence { x p -x * ∞ } p∈N is convergent, so lim p→∞ x p -x * ∞ = lim k→∞ x p k -x * ∞ = 0
Which proves that x p → x * with respect to the uniform norm .. ∞ .

Remark 3.2. The hypothesis (h 0 ) means that the processors are synchronized and all the components are infinitely updated at the same iteration. This subsequence can be chosen by the programmer (Bahi [START_REF] Bahi | Asynchronous iterative algorithms for nonexpansive linear systems[END_REF]).

Remark 3.3. The hypothesis (h 1 ) means that the delays dues to the communications between processors and to the calculus are bounded, which means that after (s + 1) iterations, all the processors are supposed to have update their own data (Bahi [START_REF] Bahi | Asynchronous iterative algorithms for nonexpansive linear systems[END_REF]).

Remark 3.4. The hypothesis (h 4 ) is verified by a large class of operators. For example, the resolvent F λ = (I + λT ) -1 (where λ > 0) associated with a maximal monotone operator T (see Lemma 4.3 below). Again, the metric projection p c of a Hilbert space H onto a nonempty closed convex set C; that is, for x ∈ H, p c (x) is the unique element of C which satisfies 

x -p c (x) = inf
AB = A(I -A) = A -A 2 = (I -A)A = BA (iv) AB is a symmetric operator. Indeed, ∀x, y ∈ R n
ABx, y = Bx, Ay = x, BAy = x, ABy (v) AB is a positive operator (see proof in [START_REF] Griffel | Applied Functional Analysis[END_REF], Theorem 10.7). (vi) The operator A verify the hypothesis (h 4 ). Indeed, ∀x ∈ R n Ax, x -Ax 2 = Ax, x -Ax = Ax, Bx = ABx, x ≥ 0 4. Applications 4.1. Solutions of maximal strongly monotone operators. In this section, we apply the parallel asynchronous algorithm with bounded delays to the proximal mapping F = (I + cT ) -1 (c > 0) associated with the maximal monotone operator cT . We say that a multifunction T from D(T

) ⊆ R n → R n is monotone if ∀x, x ′ ∈ D(T ), x -x ′ , y -y ′ ≥ 0, ∀y ∈ T x, ∀y ′ ∈ T x ′ .
It is said to be maximal monotone if, in addition, the graph G(T ) = {(x, y) : x ∈ D(T ) and y ∈ T x} is not properly contained in the graph of any other monotone operator T ′ : D(T ) ⊆ R n → R n . It is said to be strongly monotone with modulus a (a > 0) or a-strongly monotone if

∀x, x ′ ∈ D(T ), x -x ′ , y -y ′ ≥ a x -x ′ 2 , ∀y ∈ T x, ∀y ′ ∈ T x ′ .
Let T be a multivalued maximal monotone operator defined from R n to R n . A fundamental problem is to determine an x * in R n satisfying 0 ∈ T x * which will be called a solution of the operator T . The following Theorem gives a general result concerning the solution of a maximal strongly monotone operator. Proof of Lemma 4.3.Consider x, x ′ in R n and show that

F (x) -F (x ′ ) 2 ≤ F (x) -F (x ′ ), x -x ′ Put y = F (x) and y ′ = F (x ′ ) then, x ∈ y + cT y x ′ ∈ y ′ + cT y ′ i.e. x -y ∈ cT y x ′ -y ′ ∈ cT y ′
As c > 0, the operator cT is monotone and so,

(x -y) -(x ′ -y ′ ), y -y ′ ≥ 0 therefore x -x ′ , y -y ′ -y -y ′ 2 ≥ 0 which implies F (x) -F (x ′ ) 2 ≤ F (x) -F (x ′ ), x -x ′
We complete the proof of Theorem by the Lemma, Lemma 4.4. Let T be a maximal a-strongly monotone operator in R n (a > 0) and

F = (I + cT ) -1 (c > 0). Then (a) F has a unique fixed point x * . (b) For c ≥ √ α-1 a , the mapping F is nonexpansive with respect to the norm .. ∞ in R n . Proof of Lemma 4.4. (a) Consider T ′ = T -aI, β = 1 1+ac and F ′ = (I + βcT ′ ) -1 . Take x ∈ R n , y = F (x) ⇐⇒ x ∈ y + cT y ⇐⇒ x ∈ (1 + ac)y + c(T -aI)y ⇐⇒ βx ∈ β(1 + ac)y + βcT ′ y ⇐⇒ βx ∈ (I + βcT ′ )y ⇐⇒ y = F ′ (βx) i.e., ∀x ∈ R n , F (x) = F ′ (βx).
As T is a-strongly monotone (maximal), the operator T ′ is maximal monotone and then the map

F ′ = (I + βcT ′ ) -1 is nonexpansive in R n , so ∀x, x ′ ∈ R n F (x) -F (x ′ ) = F ′ (βx) -F ′ (βx ′ ) ≤ β x -x ′
As β = 1 1+ac < 1, the application F is contractive in R n and then has a unique fixed point x * (Banach's fixed point Theorem) which will be the solution of the operator T by Lemma 4.2. (b) The Euclidean norm and the uniform norm are equivalents in R n by the relation:

x ∞ ≤ x ≤ √ α x ∞ , ∀x ∈ R n Then, ∀x, x ′ ∈ R n F (x) -F (x ′ ) ≤ β x -x ′ implies F (x) -F (x ′ ) ∞ ≤ β √ α x -x ′ ∞ = √ α 1+ac x -x ′ ∞ It is sufficient to take c such that √ α 1 + ac ≤ 1 i.e. ( 2 
) c ≥ √ α -1 a
So, the theorem is entirely shown.

Minimization of functional.

Let's begin by this proposition that provides a characterization of strongly convex functions. Recall that a function f : R n → R ∪ {+∞} is said to be strongly convexe with modulus a (a > 0) or a-strongly convex if for all x, x ′ ∈ R n and t ∈]0, 1[ one has

f (tx + (1 -t)x ′ ) ≤ tf (x) + (1 -t)f (x ′ ) - 1 2 at(1 -t) x -x ′ 2
The subdifferential of a proper (i.e not identically +∞) convex function f on R n is the (generally multivalued) mapping ∂f : R n → R n defined by

∂f (x) = {y ∈ R n f (x ′ ) ≥ f (x) + y, x ′ -x , ∀x ′ ∈ R }
which is a maximal monotone operator if in addition f is a lower semicontinuous function (lsc). (a) f is a-strongly convex (b) ∂f is a-strongly monotone (c) whenever y ∈ ∂f (x) one has for all x ′ ∈ R n : 

f (x ′ ) ≥ f (x) + y, x ′ -x + 1 2 a x ′ -x 2
* of f in R n . Proof. Remark that 0 ∈ ∂f (x) ⇐⇒ f (x ′ ) ≥ f (x) ∀x ′ ∈ R n ⇐⇒ f (x) = min x ′ ∈R n f (x ′
) so, the solutions of the operator ∂f are exactly the minimizer of f . The subdifferential ∂f is maximal and a-strongly monotone (Proposition 4.5). We apply then Theorem 4.1 to the operator ∂f . 

× R m → [-∞, +∞]. Recall that a saddle point of L is an element (x * , y * ) of R n × R m satisfying L(x * , y) ≤ L(x * , y * ) ≤ L(x, y * ), ∀(x, y) ∈ R n × R m which is equivalent to L(x * , y * ) = inf x∈R n L(x, y * ) = sup y∈R m L(x * , y)
Suppose that L(x, y) is proper and convex lower semicontinuous in x ∈ R n , concave upper semicontinuous in y ∈ R m , then L is a proper closed saddle function in the terminology of Rockafellar [START_REF] Rockafellar | Convex Analysis[END_REF]. Let the subdifferential of L at (x, y) ∈ R n × R m , ∂L(x, y), be defined as the set of vectors (z, t

) ∈ R n × R m satisfying ∀(x ′ , y ′ ) ∈ R n × R m L(x, y ′ ) -y ′ -y, t ≤ L(x, y) ≤ L(x ′ , y) -x ′ -x, z then the multifunction T L defined in R n × R m by T L (x, y) = {(z, t) ∈ R n × R m : (z, -t) ∈ ∂L(x, y)}
is a maximal monotone operator; see Rockafellar [START_REF] Rockafellar | Convex Analysis[END_REF], [START_REF] Rockafellar | Monotone operators associated with saddle functions and minimax problems[END_REF]. In this case the global saddle points of L (with respect to minimizing in x and maximizing in y) are the elements (x, y) solutions of the problem (0, 0) ∈ T L (x, y). That is

(0, 0) ∈ T L (x * , y * ) ⇐⇒ (x * , y * ) = arg min x∈R n max y∈R m L(x, y) Definition 4.7. The functional L from R n ×R m to [-∞, +∞
] is said to be strongly convex-concave with modulus a (a > 0) or a-strongly convex-concave if L(x, y) is a-strongly convex in x and a-strongly concave in y.

Lemma 4.8. If the functional L is a-strongly convex-concave, then the multifunction T L is an a-strongly monotone operator.

Proof. Define the inner product and the norm in R n × R m as follows: For (x, y),

(x ′ , y ′ ) ∈ R n × R m : (x, y), (x ′ , y ′ ) R n ×R m = x, x ′ R n + y, y ′ R m (x, y) R n ×R m = x 2 R n + y 2 R m
we write simply as

(x, y), (x ′ , y ′ ) = x, x ′ + y, y ′ (x, y) = x 2 + y 2 Consider (x, y), (x ′ , y ′ ) in R n × R m , (z, t) ∈ T L (x, y
) and (z ′ , t ′ ) ∈ T L (x ′ , y ′ ) and show that (x, y) -(x ′ , y ′ ), (z, t) -(z ′ , t ′ ) ≥ a (x, y) -(x ′ , y ′ ) 2 The function L(x, y) is a-strongly convex in x. Proposition 4.5 implies that the operator ∂ x L is a-strongly monotone in x. As z ∈ ∂ x L(x, y) and z ′ ∈ ∂ x L(x ′ , y ′ ) we obtain, z -z ′ , x -x ′ ≥ a x -x ′ 2 In the same way, -t ∈ ∂ y L(x, y), -t ′ ∈ ∂ y L(x ′ , y ′ ) and ∂ y (-L) is a-strongly monotone in y (use proposition 4.5 with f (y) = -L(x, y)) we obtain, (-t) -(-t ′ ), y -y ′ ≤ -a y -y ′ 2 thus is t -t ′ , y -y ′ ≥ a y -y ′ 2 therefore z -z ′ , x -x ′ + t -t ′ , y -y ′ ≥ a( x -x ′ 2 + y -y ′ 2 ) i.e.

(z, t) -(z ′ , t ′ ), (x, y) -(x ′ , y ′ ) ≥ a (x, y) -(x ′ , y ′ ) 2 which proves that T L is a-strongly monotone in R n × R m .

If L is a a-strongly convex-concave function and proper closed then T L is maximal (see Rockafellar [START_REF] Rockafellar | Monotone operators associated with saddle functions and minimax problems[END_REF]) a-strongly monotone (Lemma 4.8). We can then apply Theorem 4.1 to the operator T L so, 

Proposition 3 . 5 .

 35 y∈Cx -y see for proof, Phelps[START_REF] Phelps | Lectures on maximal monotone operators[END_REF], Examples 1.2.(f ). In the linear case, take for example a linear operator which is symmetric, positive semi-definite (or simply positive) and nonexpansive, as shown in the following proposition: Let A be a linear symmetric positive and nonexpansive operator in R n . Then A verify the hypothesis (h 4 ).Proof. Recall that an operator A is said to be symmetric if for all x, y ∈ R n , Ax, y = x, Ay .(i) The operator B = I -A is symmetric. Indeed, ∀x, y ∈ R n Bx, y = x -Ax, y = x, y -Ax, y = x, y -x, Ay = x, y -Ay = x, By(ii) The operator B est positive. Indeed, ∀x ∈ R n Bx, x = x -Ax, x = x 2 -Ax, x ≥ 0 since Ax, x ≤ Ax x ≤ x 2 .(iii) A and B are commuting operators. Indeed,

Theorem 4 . 1 .

 41 Let T be a multivalued maximal a-strongly monotone operator in R n (a > 0).Then(1) T has a unique solution x * .(2) Any parallel asynchronous algorithm with bounded delays associated with the single-valued mappingF = (I + cT ) -1 where c ≥ √ α-1 a converges in R n to the solution x * of the problem 0 ∈ T x.Proof. We give the proof in the form of Lemmas. The two Lemmas 4.2 and 4.3 were shown in[START_REF] Addou | Parallel synchronous algorithm for nonlinear fixed point problems[END_REF] by Addou and Benahmed. Lemma 4.2. (Addou-Benahmed [1], Theorem 4) Let T be a maximal monotone operator in R n and F = (I + cT ) -1 , (c > 0). Then the solutions of T are exactly the fixed points of F in R n . Proof of Lemma 4.2. 0 ∈ T x ⇐⇒ x ∈ (I + cT )x ⇐⇒ x = (I + cT ) -1 x ⇐⇒ x = F x Lemma 4.3. (Addou-Benahmed [1], Theorem 4) Let T be a maximal monotone operator and F = (I + cT ) -1 (c > 0). Then F satisfy the hypothesis (h 4 ).

Proposition 4 . 5 .

 45 (Rockafellar[14, Proposition 6]) Let f : R n → R ∪ {+∞} be convex proper and lower semicontinuous. Then the following conditions are equivalent:

Corollary 4 . 6 .

 46 Let f : R n → R ∪ {+∞} be a lower semicontinuous a-strongly convex function which is proper. Then(1) f has a unique minimizer x * .(2) Any asynchronous parallel algorithm with bounded delays associated with the single-valued mapping F = (I + c∂f ) -1 where c ≥

4. 3 .

 3 Saddle point. In this paragraph, we apply Theorem 4.1 to calculate a saddle point of functional L : R n

Corollary 4 . 9 .√ α- 1 a

 491 Let L be a proper closed a-strongly convex-concave function fromR n × R m into [-∞, +∞]. ThenCorollary 4.12. Let C be a nonempty closed convex set in R n and A a multivalued maximal a-strongly monotone operator in R n such that D(A) = C. Then (1) The variational inequality problem (3) has a unique solution x * . (2) Any parallel asynchronous algorithm with bounded delays associated with the single-valued mapping F = (I + cT ) -1 where T defined by (4) and c ≥ converges to the solution x * of the problem (3).

  . It will be equipped also with the uniform norm x ∞ = max

1≤i≤α x i i . Definition 2.1. Define J = {J(p)} p∈N a sequence of non empty sub sets of {1, ..., α} and S = {(s 1 (p), ..., s α (p))} p∈N a sequence of N α and consider an operator F = (F 1 , ..., F α ) : R n → R n . The asynchronous algorithm associated with F is defined by,

(1) L has a unique saddle point (x * , y * ).

(2) Any parallel asynchronous algorithm with bounded delays associated with the single-valued mapping

4.4. Variational inequality. Let C be a nonempty closed convex set in R n and A a multivalued maximal monotone operator in R n such that D(A) = C. The variational inequality problem in its general form consists of finding

For x ∈ R n , let N c (x) be the normal cone to C at x defined by

The multifunction T defined in R n by, ( 4)

is a maximal monotone operator (Rockafellar [START_REF] Rockafellar | On the maximality of sums of nonlinear monotone operators[END_REF]).

Lemma 4.10. If A is a-strongly monotone then T is an a-strongly monotone operator.

Lemma 4.11. The solutions of the operator T are exactly the solutions of the variational inequality problem (3).

Proof.