Diffusion Monte Carlo method: numerical analysis in a simple case - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2007

Diffusion Monte Carlo method: numerical analysis in a simple case

Résumé

The Diffusion Monte Carlo method is devoted to the computation of electronic ground-state energies of molecules. In this paper, we focus on implementations of this method which consist in exploring the configuration space with a fixed number of random walkers evolving according to a Stochastic Differential Equation discretized in time. We allow stochastic reconfigurations of the walkers to reduce the discrepancy between the weights that they carry. On a simple one-dimensional example, we prove the convergence of the method for a fixed number of reconfigurations when the number of walkers tends to +1 while the timestep tends to 0. We confirm our theoretical rates of convergence by numerical experiments. Various resampling algorithms are investigated, both theoretically and numerically.
Fichier principal
Vignette du fichier
DMC.pdf (409.9 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-00136428 , version 1 (13-03-2007)

Identifiants

Citer

Tony Lelièvre, Mohamed El Makrini, Benjamin Jourdain. Diffusion Monte Carlo method: numerical analysis in a simple case. 2007. ⟨hal-00136428⟩
271 Consultations
122 Téléchargements

Altmetric

Partager

More