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On the Bethe Ansatz for the Jaynes-Cummings-Gaudin model

O. Babelon1 , D. Talalaev2

Abstract. We investigate the quantum Jaynes-Cummings model - a particular case of the Gaudin
model with one of the spins being infinite. Starting from the Bethe equations we derive Baxter’s
equation and from it a closed set of equations for the eigenvalues of the commuting Hamiltoni-
ans. A scalar product in the separated variables representation is found for which the commuting
Hamiltonians are Hermitian. In the semi classical limit the Bethe roots accumulate on very specific
curves in the complex plane. We give the equation of these curves. They build up a system of cuts
modeling the spectral curve as a two sheeted cover of the complex plane. Finally, we extend some
of these results to the XXX Heisenberg spin chain.

1 Introduction

The Jaynes-Cummings-Gaudin model is defined by the Hamiltonian

H =

n−1
∑

j=0

2ǫjs
z
j + ωb†b+ g

n−1
∑

j=0

(b†s−j + bs+j ) (1)

Here b, b† is a quantum harmonic oscillator

[b, b†] = ~

and sz
j , s

±
j are quantum spin operators

[s+j , s
−
j ] = 2~sz

j , [sz
j , s

±
j ] = ±~s±j

For the oscillator, we represent b, b† as

b = ~
d

dz
, b† = z (2)

They act on the Bargman space Bb =

{

f(z), entire function of z
∣

∣

∣

∫

|f(z)|2e−
|z|2

~ dzdz̄ <∞
}

. For

the spin operators, we assume that sa
j acts on a spin sj representation

sz
j |mj〉 = ~mj|mj〉

s±j |mj〉 = ~

√

sj(sj + 1) −mj(mj ± 1) |mj ± 1〉, mj = −sj,−sj + 1, · · · , sj − 1, sj
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where sj is integer or half integer.

The Jaynes-Cummings model is well known in condensed matter physics [1, 2, 3]. It also appears
in the book by M. Gaudin [5], but the connection between the two seems to be recent [4].

2 Bethe Ansatz

In order to write the Bethe Ansatz, we introduce the Lax matrix

L(λ) =

(

A(λ) B(λ)
C(λ) −A(λ)

)

where the operator valued matrix elements are defined as

A(λ) =
2λ

g2
− ω

g2
+

n−1
∑

j=0

sz
j

λ− ǫj

B(λ) =
2b

g
+

n−1
∑

j=0

s−j
λ− ǫj

C(λ) =
2b†

g
+

n−1
∑

j=0

s+j
λ− ǫj

It is simple to check the commutation relations

[A(λ), B(µ)] =
~

λ− µ
(B(λ) −B(µ))

[A(λ), C(µ)] = − ~

λ− µ
(C(λ) − C(µ))

[B(λ), C(µ)] =
2~

λ− µ
(A(λ) −A(µ))

Moreover one has [A(λ), A(µ)] = 0, [B(λ), B(µ)] = 0 and [C(λ), C(µ)] = 0. Defining

1

2
Tr (L2(λ)) = A2(λ) +

1

2
(B(λ)C(λ) + C(λ)B(λ))

We have [TrL2(λ),TrL2(µ)] = 0 so that TrL2(λ) generates a family of commuting quantities.
Expanding in λ we get

1

2
Tr (L2(λ)) =

1

g4
(2λ− ω)2 +

4

g2
Hn +

2

g2

n−1
∑

j=0

Hj

λ− ǫj
+

n−1
∑

j=0

~
2sj(sj + 1)

(λ− ǫj)2
(3)

The Hamiltonian eq.(1) is given by

H = ωHn +
∑

j

Hj
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To write the Bethe Ansatz we define the reference state which is the lowest weight vector:

|0〉 = |0〉 ⊗ | − s1〉 ⊗ · · · ⊗ | − sn〉, b|0〉 = 0, s−j | − sj〉 = 0

This vector has the following important properties

B(λ)|0〉 = 0

and

A(λ)|0〉 = a(λ)|0〉, a(λ) =
2λ

g2
− ω

g2
−
∑

j

~sj

λ− ǫj

Moreover since [B(λ), C(λ)] = 2~A′(λ) we also have

B(λ)C(λ)|0〉 = 2~a′(λ)|0〉

With all this we deduce
1

2
TrL2(λ)|0〉 = (a2(λ) + ~a′(λ))|0〉

Let us now define the vector

Ω(µ1, µ2, · · · , µM ) = C(µ1)C(µ2) · · ·C(µM)|0〉

It is not difficult to prove that (see e.g. [5])

1

2
TrL2(λ)Ω(µ1, µ2, · · · , µM ) = Λ(λ, µ1, µ2, · · · , µM )Ω(µ1, µ2, · · · , µM )

Λ(λ, µ1, µ2, · · · , µM ) = a2(λ) + ~a′(λ) + 2~

∑

i

a(λ) − a(µi)

λ− µi
(4)

provided the parameters µi satisfy the set of Bethe equations.

a(µi) +
∑

j 6=i

~

µi − µj
= 0 (5)

3 Riccati equation

We now analyse the Bethe equations eqs.(5). We introduce the function

S(z) =
∑

i

1

z − µi

Proposition 1 The Bethe equations (5) imply the following Riccati equation on S(z)

S′(z) + S2(z) +
2

~g2

(

(2z − ω)S(z) − 2M
)

=
∑

j

2sj
S(z) − S(ǫj)

z − ǫj
(6)
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Proof. The Bethe equations read

2µi

g2
− ω

g2
−
∑

j

~sj

µi − ǫj
+
∑

j 6=i

~

µi − µj
= 0

we multiply by 1/(z − µi) to get

2

g2

µi

z − µi
− ω

g2

1

z − µi
−
∑

j

~sj

µi − ǫj

1

z − µi
+
∑

j 6=i

~

µi − µj

1

z − µi
= 0

We now sum over i. We have

M
∑

i=1

µi

z − µi
=
∑

i

µi − z

z − µi
+

z

z − µi
= −M + zS(z)

also
M
∑

i=1

1

µi − ǫj

1

z − µi
=

1

z − ǫj

∑

i

(

1

z − µi
+

1

µi − ǫj

)

=
S(z) − S(ǫj)

z − ǫj

and finally

M
∑

i=1

∑

j 6=i

1

µi − µj

1

z − µi
=

1

2

M
∑

i=1

∑

j 6=i

1

µi − µj

(

1

z − µi
− 1

z − µj

)

=
1

2

M
∑

i=1

∑

j 6=i

1

(z − µi)(z − µj)

=
1

2





∑

i,j

1

(z − µi)(z − µj)
−
∑

i

1

(z − µi)2



 =
1

2
(S2(z) + S′(z))

In equation (6) the S(ǫj) appear as parameters. The Riccati equation itself determines them as we
now see. Suppose first that sj = 1/2. We let z → ǫi into eq.(6) getting

S′(ǫi) + S2(ǫi) +
2

~g2

(

(2ǫi − ω)S(ǫi) − 2M
)

= S′(ǫi) +
∑

j 6=i

S(ǫi) − S(ǫj)

ǫi − ǫj

The remarkable thing is that S′(ǫi) cancel in this equation and we get a set of closed algebraic
equations for the S(ǫj).

S2(ǫi) +
2

~g2

(

(2ǫi − ω)S(ǫi) − 2M
)

=
∑

j 6=i

S(ǫi) − S(ǫj)

ǫi − ǫj
, i = 1, · · · , n (7)

Suppose next that sj = 1. We expand the Riccati equation around z = ǫi:

(z − ǫi)
0 : S′(ǫi) + S2(ǫi) +

2

~g2
((2ǫi − ω)S(ǫi) − 2M) = 2S′(ǫi) + 2

∑

j 6=i

S(ǫi) − S(ǫj)

ǫi − ǫj

(z − ǫi)
1 : S′′(ǫi) + 2S(ǫi)S

′(ǫi) +
2

~g2
((2ǫi − ω)S′(ǫi) + 2S(ǫi))

= S′′(ǫi) − 2
∑

j 6=i

S(ǫi) − S(ǫj)

(ǫi − ǫj)2
− S′(ǫi)

ǫi − ǫj
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We see that in the second equation S′′(ǫi) cancel. The first equation allows to compute S′(ǫi) and
the second equation then gives a set of closed equations for the S(ǫi). The general mechanism is
clear. For a spin s, we expand

S′(z) − 2s
S(z) − S(ǫ)

z − ǫ
=
∑

m

m− 2s

m!
S(m)(ǫ)(z − ǫ)m−1

and we see that the coefficient of S(2s)(ǫ) vanishes in the term m = 2s. The equations coming from
(z − ǫ)m−1 for m = 1, · · · , 2s − 1 allow to compute S′(ǫ), · · · , S(2s−1)(ǫ) by solving at each stage
a linear equation. Plugging into the equation for m = 2s , we obtain a closed equation of degree
2s+ 1 for S(ǫ).

P2s+1(S(ǫ)) = 0 (8)

Notice that if M < 2s, the system will truncate at level M because there always exists a relation
of the form S(M) = P (S, S′, · · ·S(M−1)).

The S(ǫj) also determine the eigenvalues of the commuting Hamiltonians. Going back to eq.(4),
we see that

a(λ) − a(µi)

λ− µi
=

2

g2
−
∑

j

~sj

λ− µi

(

1

λ− ǫj
− 1

µi − ǫj

)

=
2

g2
+
∑

j

~sj

λ− ǫj

1

µi − ǫj
=

2M

g2
−
∑

j

~sjS(ǫj)

λ− ǫj

Hence

Λ(λ) = a2(λ) + ~a′(λ) + 2~





2M

g2
−
∑

j

~sjS(ǫj)

λ− ǫj



 (9)

Expanding a(λ) we deduce the eigenvalues of the commuting Hamiltonians

hn = ~M − ~

∑

j

sj +
~

2
, hj =

2ω

g2
~sj −

4

g2
sjǫj − 2~

2sjS(ǫj) + 2
∑

i6=j

~
2sjsi

ǫj − ǫi

The algebraic equations for the S(ǫj) are therefore the characteristic equations of the set of matrices
Hj. The existence of such characteristic equations is a general phenomenon. In the Appendix we
derive them for the Heisenberg XXX spin chain.

4 Baxter equation

We can linearize the Riccati equation eq.(6) by setting

S(z) =
ψ′(z)

ψ(z)
(10)

Obviously

ψ(z) =

M
∏

i=1

(z − µi) (11)
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The linearized equation reads

ψ′′(z) +
2

~
a(z)ψ′(z) +

2

~



−2M

g2
+
∑

j

~sjS(ǫj)

z − ǫj



ψ(z) = 0 (12)

Here, we should understand that the S(ǫj) are determined by the procedure explained in the
previous section, for instance by eq.(7) for spins sj = 1/2. For such values of the parameters, the
equation has the following remarkable property.

Proposition 2 (Mukhin, Tatasov, Varchenko [6]) For the special values of the parameters
S(ǫj) coming from the Bethe equations, the solutions of eq.(12) have trivial monodromy.

Proof. Strictly speaking the proof in [6] is valid for the finite-dimensional representations. We
provide here a straightforward proof in our case. The proposition is clear for the solution ψ1(z)
defined by eq.(11) since it is a polynomial. A second solution can be constructed as usual

ψ2(z) = ψ1(z)

∫ z

exp

(

−2

~

∫ y

a(t)dt − 2 logψ1(y)

)

dy = ψ1(z)

∫ z
∏

j(y − ǫj)
2s

∏

i(y − µi)2
e
− 2

~g2
(y2−ωy)

dy

The monodromy will be trivial if the pole at y = µi has no residue preventing the apparition of
logarithms. Expanding around µi, we have

exp

(

−2

~

∫ y

a(t)dt − 2 log ψ1(y)

)

=
e(−

2

~

∫ µi a(t)dt−2
∑

j 6=i(µi−µj))

(y − µi)2
×

exp



−2

~
(y − µi)



a(µi) +
∑

j 6=i

~

µi − µj



+O(y − µi)
2





but the coefficient of the dangerous (y − µi) term vanishes by virtue of the Bethe equations.

Next we set

ψ(z) = exp

(

−1

~

∫ z

a(y)dy

)

Q(z) (13)

We obtain for Q(z) the equation

~
2Q′′(z) −



a2(z) + ~a′(z) +
4~M

g2
− 2~

2
∑

j

sjS(ǫj)

z − ǫj



Q(z)

Comparing with eq.(9), this is also

~
2Q′′(z) − Λ(z)Q(z) (14)

Hence, we have recovered Baxter’s equation. Notice that

Q(z) =
e

1

~g2
(z2−ωz)

∏

j(z − ǫj)sj
ψ(z) =

e
1

~g2
(z2−ωz)

∏

j(z − ǫj)sj

M
∏

i=1

(z − µi) (15)
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5 Bethe eigenvectors and separated variables

We recall the form of the Bethe eigenvectors.

Ω(µ1, µ2, · · · , µM ) = C(µ1) · · ·C(µM )|0〉

Following Sklyanin, [7], we introduce the set of zeros of C(λ)

C(λ) =
2z

g

∏n
i=1(λ− λi)

∏n
j=1(λ− ǫj)

The operators λi commute among themselves. Inserting this expression for C(λ) into the Bethe
state and remembering eq.(11), we find

Ω(µ1, µ2, · · · , µM ) =





∏

j

1

ψ(ǫj)





(

2z

g

)M
∏

i

ψ(λi)|0〉 (16)

If we now switch to a Schroedinger representation where the λi are represented as multiplication
operators, the eigenstate eq.(16) is represented by a product of functions in one variable ψ(λi).
This means that we have separated the variables in the Schroedinger equation.

Proposition 3 In the separated variables, the Hamiltonians read

Hj =

∏

k(ǫj − λk)
∏

k 6=j(ǫj − ǫk)

∑

i

∏

k 6=j(λi − ǫk)
∏

k 6=i(λi − λk)

(

d2

dλ2
i

+
2

~
a(λi)

d

dλi
− M

~

)

(17)

Proof. Let us introduce the set of commuting operators Hj diagonal in the Bethe states basis
eq.(16), (here we assume completeness of Bethe Ansatz), and such that

Hj

∏

k

ψ(λk) = 2sjS(ǫj)
∏

k

ψ(λk)

These are essentially the same operators as in eq.(3). Then eq.(12) implies for each variable λi

∑

j

1

λi − ǫj
Hj

∏

k

ψ(λk) = −
(

d2

dλ2
i

+
2

~
a(λi)

d

dλi
− M

~

)

∏

k

ψ(λk)

Since this formula holds for a basis of eigenvectors, we can “divide” by
∏

k ψ(λk). Inverting the
Cauchy matrix Bij = 1/(λi − ǫj), and taking care of the order of operators we obtain the Hamil-
tonians Hj in terms of the separated variables

Hj = −B−1
ji Vi, Bij =

1

λi − ǫj
, Vi =

d2

dλ2
i

+
2

~
a(λi)

d

dλi
− M

~

explicitly, they are given by eqs.(17). These Hamiltonians are known to commute [8, 9, 10].
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To be able to work in this representation, we need the scalar product. We set

||Ω||2 =

∫

∏

i

dλidλ̄i WW̄ ρ(x1, x2, · · · , xn)
∏

i

|ψ(λi)|2 (18)

where
W =

∏

i6=j

(λi − λj)

and

xi =
1

~

∏

j |ǫi − λj|2
∏

k 6=i(ǫi − ǫk)2

The measure ρ(x1, x2, · · · , xn) is determined by requiring that the Hamiltonian Hj are Hermitian.

Proposition 4 The Hamiltonians Hj are Hermitian with respect to the scalar product eq.(18) if

ρ(x1, x2, · · · , xn) =

∫ ∞

0
dye−yyM+n−

∑

i(si+1/2)
∏

i

J2si+1(2
√
yxi)

x
si+1/2
i

(19)

where J2si+1(x) is the Bessel function. For n = 1, the formula for ρ(x) can be simplified giving

ρ(x) = ∂M+1
x

[

e−xxM−2s
]

= e−xPM−2s(x)

where PM−2s(x) is a Laguerre polynomial of degree M − 2s.

Proof. We have to show that

∫

∏

k

dλkdλ̄k|ψ(λk)|2
∑

j

(

− d2

dλ2
j

+
2

~

d

dλj
· a(λj) +

M

~

)

B−1
ij |W |2ρ(x1, · · · , xn) (20)

is real. Now B−1
ij = ∆−1∆ji where ∆ji is the minor of the element Bji. It is clearly independent of

λj . Hence
d

dλj
B−1

ij = B−1
ij

(

d

dλj
− ∆−1 d

dλj
∆

)

We have

∆ =

∏

i6=j(λi − λj)
∏

i6=j(ǫi − ǫj)
∏

i,j(λi − ǫj)
=
∏

j 6=i

(ǫi − ǫj)
−1W

n
∏

i=1

z−1
i

where we introduced

zi =

∏

j(ǫi − λj)
∏

j 6=i(ǫi − ǫj)
, xi =

ziz̄i
~

These variables satisfy d
dλj

zk = Bjkzk so that ∆−1 d
dλj

∆ = W−1 d
dλj

W −
∑

k Bjk and therefore

d

dλj
B−1

ij |W |2 = B−1
ij |W |2

(

d

dλj
+
∑

k

Bjk

)

8



d2

dλ2
j

B−1
ij |W |2 = B−1

ij |W |2




d2

dλ2
j

+ 2
∑

k

Bjk
d

dλj
+ 2

∑

k

Bjk

∑

l 6=k

1

ǫk − ǫl





Next, we have
d

dλj
ρ(x1, · · · , xn) =

∑

k

Bjkxk
∂

∂xk
ρ(x1, · · · , xn)

d2

dλ2
j

ρ(x1, · · · , xn) =
∑

k,l

BjkBjlxkxl
∂2

∂xk∂xl
ρ(x1, · · · , xn)

=
∑

k

B2
jkx

2
k

∂2

∂x2
k

ρ(x1, · · · , xn) + 2
∑

k,l

Bjk
1

ǫk − ǫl
xkxl

∂2

∂xk∂xl
ρ(x1, · · · , xn)

Putting everything together eq.(20) becomes

∫

∏

l

dλldλ̄l|ψ(λl)|2|W |2
∑

j

B−1
ij

{

−
∑

k

B2
jkxkDk +

∑

k

BjkOk +
1

~
D0

}

ρ(x1, · · · , xn) (21)

where we have defined

Dk = xk∂
2
xk

+ 2(sk + 1)∂xk
D0 =

∑

k

xk∂xk
+M + n+ 1

and

Ok =
1

~

(

ǫk − ω

2

)

− 2
∑

l 6=k

1

ǫk − ǫl

(

(xk∂xk
+ sk + 1)(xl∂xl

+ sl + 1) − sksl − 1
)

The conditions on ρ(x1, · · · , xn) are that the sum over j in eq.(21) should be equal to its complex
conjugate. When we perform this sum, we first get

∑

j,k

B−1
ij BjkOk ρ = Oi ρ

which is real and gives no condition. Next we have the identities

∑

j

B−1
ij = −zi

∑

j

B−1
ij B

2
jk = − 1

ǫi − ǫk

zi
zk
, i 6= k

∑

j

B−1
ij B

2
ji = − 1

zi
−
∑

k 6=i

1

ǫi − ǫk

zk
zi

The conditions on ρ(x1, · · · , xn) then read

−(zi − z̄i) [Diρ+ D0ρ] +
∑

k 6=i

zkz̄i − z̄kzi
ǫi − ǫk

[Diρ−Dkρ] = 0

9



Finally we find the n conditions

Diρ−Dkρ = 0, k 6= i (22)

Diρ+ D0ρ = 0 (23)

Notice that eq.(23) is independent of i if the conditions eq.(22) are satisfied. A solution of eq.(22)
is

ρ(x1, · · · , xn) =
∞
∑

p=0

Cp

∑

q1+···+qn=p

n
∏

i=1

xqi

i

qi!(2si + 1 + qi)!

Then eq.(23) gives
Cp+1 + (M + n+ p+ 1)Cp = 0

the solution of which is

Cp = (−1)p
(

M + n+ p
p

)

p!

Hence we have found

ρ(x1, x2, · · · , xn) =
∞
∑

p=0

(−1)p
(

M + n+ p
p

)

p!
∑

q1+···+qn=p

n
∏

i=1

xqi

i

qi!(2si + 1 + qi)!
(24)

This is equivalent to eq.(19).

This important formula should be further studied. In particular, for ψ(z) being a Bethe state, one
should be able to compute it exactly because we know that by Gaudin formula

||Ω(µ1, µ2, · · · , µM )||2 ≃ detJ

where J is the Jacobian matrix of Bethe’s equations. This is still very mysterious.

6 Semi-Classical limit

The exact formula relating Q(z) and ψ(z), eq.(15), allows to study the properties of the solutions
of Bethe roots µi in the quasi-classical limit ~ → 0. Let us set

y(z) = ~
Q′(z)

Q(z)

Then Baxter’s equation, eq.(14), becomes

~ y′(z) + y2(z) = Λ(z) (25)

where Λ(z) is defined in eq.(9). This is just another form of eq.(6). In the semi-classical limit
eq.(25) becomes the equation of the spectral curve of the model (in that limit ~sj = O(~0)):

y2(z) = Λ(z)

10



¿From eq.(13) we deduce that

y(z) = a(z) +
∑

i

~

z − µi

so that we expect in the semi-classical limit

∑

i

~

z − µi
≃
√

Λ(z) − a(z)

This is a remarkable formula. It gives us the distribution of Bethe roots µi in the semi-classical
limit, as we now show. Let

√

Λ(z) be represented as a meromorphic function in the cut z-plane.
Let us put the cuts so that

√

Λ(z) =
2z

g2
− ω

g2
+O(z−1), |z| → ∞

and (we neglect terms of order ~ which do not contribute in the leading ~ approximation).

√

Λ(z) = − ~sj

z − ǫj
+O(1), z → ǫj

By Cauchy theorem, we have
√

Λ(z) =

∫

C

dz′

2iπ

√

Λ(z′)

z′ − z

where C is composed of a big circle C0 at infinity, minus small circles Cj around z = ǫj, minus
contours Ai around the cuts of

√

Λ(z). Hence

√

Λ(z) =

∫

C0

dz′

2iπ

√

Λ(z′)

z′ − z
−
∑

j

∫

Cj

dz′

2iπ

√

Λ(z′)

z′ − z
−
∑

i

∫

Ai

dz′

2iπ

√

Λ(z′)

z′ − z

But
∫

C0

dz′

2iπ

√

Λ(z′)

z′ − z
= (
√

Λ(z))+ =
2z

g2
− ω

g2

and
∫

Cj

dz′

2iπ

√

Λ(z′)

z′ − z
=

∫

Cj

dz′

2iπ

−~sj

(z′ − ǫj)(z′ − z)
= − ~sj

z − ǫj

so that we arrive at
√

Λ(z) − a(z) = −
∑

i

∫

Ai

dz′

2iπ

√

Λ(z′)

z′ − z

and therefore we should identify

∑

i

~

z − µi
=
∑

i

∫

Ai

dz′

2iπ

√

Λ(z′)

z − z′
+O(~)

Comparing both members of this formula suggests that the Bethe roots µi accumulate in the semi-
classical limit on curves Ai along which the singularities of both side should match. To determine
these curves we assume that the Bethe roots µi tend to a continuous function µ(t) when ~ → 0 (
t = ~ i and i = O(~−1)).

∑

i

~

z − µi
=
∑

i

~

z − µ(i)
≃
∫

dt

z − µ(t)
=

∫

A

dµ

(

dt

dµ

)

1

z − µ

11



Here A =
∑

Ai. Hence, comparing with the semi-classical result, we conclude that the function
µ(t) should satisfy the differential equation

dµ(t)

dt
=

2iπ
√

Λ(µ(t))
(26)

The boundary condition is that the integral curve µ(t) should start (and end !) at a branch point
of the spectral curve y2 = Λ(z). We stress that the function Λ(z) is completely determined by the
Bethe equations themselves so that these equations “know” the Riemann surface.

This result can be checked by numerical calculation. For simplicity, we consider the one spin-s
system (n=1). A typical situation is shown in Fig.(1). The agreement is spectacular.

We can say a word on how the Bethe equations were solved. We first determine S(ǫ) by solving the
polynomial equation eq.(8) and then determine ψ(z), eq.(11), by solving eq.(12). The Bethe roots
are then obtained by solving the polynomial equation ψ(z) = 0.

The idea that the Bethe roots condense in the semi classical limit to form the cuts of the spectral
curve goes back to [12]. It plays a very important role in the recent studies on the AdS/CFT
correspondence in which it was greatly developed [13, 14]. Eq.(26) however seems to be new.

7 Appendix: The XXX spin chain

In the Gaudin model, the Bethe equations were shown to be equivalent to a Riccati equation eq.(6).
Moreover this equation itself determines the parameters S(ǫj), i.e. the eigenvalues of the commuting
Hamiltonians. We show that this construction can be extended to the XXX spin chain.

In the case of the XXX spin chain the Bethe equations take the form (see e.g. [15])

(

µj + i~
2

µj − i~
2

)N

=
∏

k 6=j

µj − µk + i~

µj − µk − i~
(27)

and the corresponding generating function for the eigenvalues of the commuting Hamiltonians is

t(λ; {µj}) =

(

λ+
i~

2

)N
∏

k

λ− µk − i~

λ− µk
+

(

λ− i~

2

)N
∏

k

λ− µk + i~

λ− µk
(28)

Let us introduce the polynomial

Q(λ) =

M
∏

m=1

(λ− µm)

Then the Bethe equations eq.(27) can be rewritten as

(

µk +
i~

2

)N

Q(µk − i~) +

(

µk − i~

2

)N

Q(µk + i~) = 0

12
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Figure 1: Red dots are the Bethe roots µi for the one spin system. Green dots are the branch
points. The thin black curve is the solution of eq.(26). (~ = 1/30, s = 1/~, M = 4/~, highest
energy state). 13



This means that the polynomial of degree N +M

(

λ+
i~

2

)N

Q(λ− i~) +

(

λ− i~

2

)N

Q(λ+ i~)

is divisible by Q(λ). Hence there exists a polynomial t(λ) of degree N such that

(

λ+
i~

2

)N

Q(λ− i~) +

(

λ− i~

2

)N

Q(λ+ i~) = t(λ)Q(λ) (29)

This is Baxter’s equation. The polynomial t(λ) is the same as in eq.(28) because that equation can
be rewritten as

t(λ; {µj}) =

(

λ+
i~

2

)N Q(λ− i~)

Q(λ)
+

(

λ− i~

2

)N Q(λ+ i~)

Q(λ)

hence the coefficients of this polynomial are the eigenvalues of the set of commuting Hamiltonians.

Just as in the Gaudin model, it is interesting to introduce the Riccati version of eq.(29). We set

S(λ) =
Q(λ− i~)

Q(λ)

Then Baxter’s equation becomes

(

λ+
i~

2

)N

S(λ) +

(

λ− i~

2

)N

S−1(λ+ i~) = t(λ)

This equation determines both S(λ) and t(λ). To find the equation for t(λ), we expand around
λ = −i~/2 getting

(ǫ− i~)NS−1(ǫ+ i~/2) = t(ǫ− i~/2) − ǫNS(ǫ− i~/2)

Similarly, expanding around λ = i~/2 we get

(ǫ+ i~)NS(ǫ+ i~/2) = t(ǫ+ i~/2) − ǫNS−1(ǫ+ 3i~/2)

Multiplying the two, we find

t

(

ǫ+
i~

2

)

t

(

ǫ− i~

2

)

= (~2 + ǫ2)N +O(ǫN ) (30)

This is a system of N equations for the N + 1 coefficients of t(λ) which determines it completely if
we remember that t(λ) = 2λN +O(λN−1). Eq.(30) is the characteristic equation of the commuting
Hamiltonians of the XXX spin chain.

This construction can be generalized to the case of a spin-s chain. Baxter’s equation reads

(λ+ i~s)N Q(λ− i~) + (λ− i~s)N Q(λ+ i~) = t(λ)Q(λ) (31)

and the Riccati equation becomes

(λ+ i~s)N S(λ) + (λ− i~s)N S−1(λ+ i~) = t(λ) (32)
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Taking s = 1 for instance, we expand around λ = i~, λ = 0, λ = −i~ getting

(ǫ+ 2i~)NS(ǫ+ i~) = t(ǫ+ i~) +O(ǫN )

(ǫ+ i~)NS(ǫ) + (ǫ− i~)NS−1(ǫ+ i~) = t(ǫ)

(ǫ− 2i~)NS−1(ǫ) = t(ǫ− i~) +O(ǫN )

from which we deduce

t(ǫ+ i~)t(ǫ)t(ǫ− i~) = (ǫ− i~)N (ǫ+ 2i~)N t(ǫ− i~) + (ǫ+ i~)N (ǫ− 2i~)N t(ǫ+ i~) +O(ǫN )

Clearly for a spin-s, s ≥ 0, the degree of the equation is 2s + 1. If however s < 0 the equations
generically do not lead to a finite degree equation as expected.

In the semi classical limit ~ → 0, ~s→ scl, eq.(32) tends to

(λ+ iscl)
N S(λ) + (λ− iscl)

N S−1(λ) = t(λ)

which is nothing but the spectral curve of the classical spin chain.
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