Long Nguyen 
email: longnt@hcmc.netnam.vn
  
Alain Pham 
email: alain.pham@univ-orleans.fr
  
Ngoc Dinh 
  
Xuan Le 
  
Truong 
email: truong@math.net
  
Thanh Nguyen 
  
Alain Long 
  
Ngoc Pham 
  
Dinh 
  
Long 
  
Ngoc Dinh Mapmo 
  
  
  
  
EXISTENCE AND DECAY OF SOLUTIONS OF A NONLINEAR VISCOELASTIC PROBLEM WITH A MIXED NONHOMOGENEOUS CONDITION

Keywords: 2000 Mathematics Subject Classification. 35L05, 35L15, 35L70, 37B25 Faedo-Galerkin method, Global existence, contraction mapping theorem, nonlinear wave equation, Viscoelastic, Exponential decay. 1

d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Introduction

In this paper we will consider the following initial and boundary value problem:

u tt -u xx + t 0 k(t -s)u xx (s)ds + |u t | q-2 u t = f (x, t, u), 0 < x < 1; 0 < t < T, (1.1) u x (0, t) = u(0, t), u x (1, t) + ηu(1, t) = g(t), (1.2) 
u(x, 0) = u 0 (x), u t (x, 0) = u 1 (x), (1.3) where η ≥ 0, q ≥ 2 are given constants and u 0 , u 1 , g, k, f are given functions satisfying conditions specified later.

In a recent paper [START_REF] Berrimia | Existence and decay of solutions of a viscoelastic equation with a nonlinear source[END_REF], Berrimia and Messaoudi considered the problem u tt -∆u + t 0 k(t -s)∆u(s)ds = |u| p-2 u, x ∈ Ω, t > 0, (1.4)

u = 0, on ∂Ω, (1.5) 
u(x, 0) = u 0 (x), u t (x, 0) = u 1 (x), x ∈ Ω, (1.6) where p > 2 is a constant, k is a given positive function, and Ω is a bounded domain of R n (n ≥ 1), with a smooth boundary ∂Ω. This type of problems have been considered by many authors and several results concerning existence, nonexistence, and asymptotic behavior have been established. In this regard, Cavalcanti et al. [START_REF] Cavalcanti | Exponential decay for the solution of semilinear viscoelastic wave equations with localized damping[END_REF] studied the following equation

u tt -∆u + t 0 k(t -s)∆u(s)ds + |u| p-2 u + a(t)u t = 0, in Ω × (0, ∞), (1.7) 
for a : Ω → R + , a function, which may be null on a part of the domain Ω. Under the conditions that a(x) ≥ a 0 > 0 on ω ⊂ Ω, with ω satisfying some geometry restrictions and -ζ 1 k(t) = k / (t) = -ζ 2 k(t), t ≥ 0, (1.8) the authors established an exponential rate of decay.

In [START_REF] Bergounioux | Mathematical model for a shock problem involving a linear viscoelastic bar[END_REF] Bergounioux, Long and Dinh studied problem (1.1), (1.3) with k = 0, q = 2, f (x, t, u) = -Ku + F (x, t), and the mixed boundary conditions (1.2) standing for u x (0, t) = g(t) + hu(0, t) -t 0 H(t -s)u(0, s)ds,

(1.9)

u x (1, t) + K 1 u(1, t) + λ 1 u t (1, t) = 0, (1.10) 
where h ≥ 0, K, λ, K 1 , λ 1 are given constants and g, H are given functions. In [START_REF] Long | On a shock problem involving a nonlinear viscoelastic bar[END_REF], Long, Dinh and Diem obtained the unique existence, regularity and asymptotic expansion of the problem (1.1), (1.3), (1.9) and (1.10) in the case of k = 0, f (x, t, u) = -K|u| p-2 u + F (x, t), with p ≥ 2, q ≥ 2; K, λ are given constants.

In [START_REF] Long | On a shock problem involving a linear viscoelastic bar[END_REF], Long, Ut and Truc gave the unique existence, stability, regularity in time variable and asymptotic expansion for the solution of problem (1.1)-(1.3) when k = 0, q = 2, f (x, t, u) = -Ku + F (x, t) and ( u 0 , u 1 ) ∈ H 2 × H 1 . In this case, the problem (1.1)- (1.3) is the mathematical model describing a shock problem involving a linear viscoelastic bar.

In [START_REF] Long | A wave equation associated with mixed nonhomogeneous conditions: Global existence and asymptotic expansion of solutions[END_REF], Long and Giai obtained the unique existence and asymptotic expansion for the solution of problem (1.1), (1.3) when k = 0, q = 2, f (x, t, u) = -Ku + F (x, t) and ( u 0 , u 1 ) ∈ H 1 × L 2 , and the mixed boundary conditions (1.2) standing for u x (0, t) =g(t) + K 1 |u(0, t)| α-2 u(0, t) + λ 1 |u t (0, t)| β-2 u t (0, t) -t 0 H(t -s)u(0, s)ds, (1.11) u(1, t) = 0, (1.12)

where K, λ, K 1 , λ 1 , α, β are given constants and g, H are given functions. In this case, the problem (1.1), (1.3), (1.11), (1.12) is the mathematical model describing a shock problem involving a nonlinear viscoelastic bar. In [START_REF] Long | Existence and asymptotic expansion for a viscoelastic problem with a mixed nonhomogeneous condition[END_REF], Long and Truong obtained the unique existence and asymptotic expansion for the solution of problem (1.1) -(1.3) when f (x, t, u) = -K|u| p-2 u + F (x, t),

( u 0 , u 1 ) ∈ H 2 × H 1 ; F, F t ∈ L 2 (Q T ), k ∈ W 2,1 (0, T ), g ∈ H 2 (0, T ); K, η ≥ 0, η 0 > 0; p, q ≥ 2.
In this paper, we consider two main parts. In Part 1, under a certain local Lipschitzian condition on f with ( u 0 , u 1 ) ∈ H 1 × L 2 ; k, g ∈ H 1 (0, T ),λ > 0, η 0 > 0; η ≥ 0; q ≥ 2, a global existence and uniqueness theorem is proved. The proof is based on the paper [START_REF] Long | Existence and asymptotic expansion for a viscoelastic problem with a mixed nonhomogeneous condition[END_REF] associated to a contraction mapping theorem and standard arguments of density. In Part 2, the asymptotic behavior of the solution u as t → ∞ is studied, under more restrictive conditions, namely f

(x, t, u) = -|u| p-2 u+F (x, t), p ≥ 2, F ∈ L 1 (R + ; L 2 ) L 2 (R + ; L 2 ), +∞ 0 e σt F (t) 2 dt < +∞, with σ > 0, and ( u 0 , u 1 ) ∈ H 1 × L 2 , g = 0, k ∈ H 1 (R + ,
and some others ( • denotes the L 2 (0, 1) norm). It is proved that under these conditions, a unique solution u(t) exists on R + such that u / (t) + u x (t) decay exponentially to 0 as t → +∞. The results obtained here relatively are in part generalizations of those in [START_REF] Berrimia | Existence and decay of solutions of a viscoelastic equation with a nonlinear source[END_REF][START_REF] Bergounioux | Mathematical model for a shock problem involving a linear viscoelastic bar[END_REF][START_REF] Cavalcanti | Exponential decay for the solution of semilinear viscoelastic wave equations with localized damping[END_REF][START_REF] Long | Linear recursive schemes and asymptotic expansion associated with the Kirchhoff-Carrier operator[END_REF][START_REF] Long | On a shock problem involving a nonlinear viscoelastic bar[END_REF][START_REF] Long | On a shock problem involving a linear viscoelastic bar[END_REF][START_REF] Long | A wave equation associated with mixed nonhomogeneous conditions: Global existence and asymptotic expansion of solutions[END_REF][START_REF] Long | Existence and asymptotic expansion for a viscoelastic problem with a mixed nonhomogeneous condition[END_REF]. Finally, we present some numerical results.

Preliminary Results

Put Ω = (0, 1), Q T = Ω×(0, T ), T > 0. We omit the definitions of usual function spaces:

C m (Ω), L p (Ω), W m,p (Ω). We denote W m,p = W m,p (Ω), L p = W 0,p (Ω), H m = W m,2 (Ω), 1 ≤ p ≤ ∞, m = 0, 1, . . . The norm in L 2 is denoted by • .
We also denote by •, • the scalar product in L 2 or pair of dual scalar product of continuous linear functional with an element of a function space. We denote by

• X the norm of a Banach space X and by X ′ the dual space of X. We denote by L p (0, T ; X), 1 ≤ p ≤ ∞ for the Banach space of the real functions u : (0, T ) → X measurable, such that Without loss of generality, we can suppose that η 0 = λ = 1. For every η ≥ 0, we put

u L p (0,T ;X) = T 0 u(t) p X dt 1/p < ∞ for 1 ≤ p < ∞,
and u L ∞ (0,T ;X) = ess sup 0<t<T u(t) X for p = ∞. Let u(t), u ′ (t) = u t (t), u ′′ (t) = u tt (t), u x (t
a η (u, v) = 1 0 u x (x)v x (x)dx + u(0)v(0) + ηu(1)v(1), ∀u, v ∈ H 1 , (2.1) 
v η = (a η (v, v)) 1/2 . (2.2)
On H 1 we shall use the following equivalent norm

v 1 = v 2 (0) + 1 0 |v x (x)| 2 dx 1/2 (2.3)
Then we have the following lemmas.

Lemma 2.1. The imbedding V ֒→ C 0 ([0, 1]) is compact and 

v C 0 ([0,1]) ≤ v V , for all v ∈ V. ( 2 
|a η (u, v)| = C η u 1 v 1 , for all u, v ∈ H 1 , (ii) a η (v, v) = v 2 1 , for all v ∈ H 1 , where C η = 1 + 2η.
The proofs of these lemmas are straightforward, and we omit the details. We also note that on

H 1 , v 1 , v H 1 = v 2 + v / 2 1/2 , v η = (a η (v, v)) are three equivalent norms. v 2 1 ≤ v 2 η ≤ C η v 2 1 , for all v ∈ H 1 , (2.5) 1 3 v 2 H 1 ≤ v 2 1 ≤ 3 v 2 H 1 , for all v ∈ H 1 , (2.6) 

The Existence and uniqueness theorem of the solution

In this section we study the global existence of solutions for problem (1.1)-(1.3). For this purpose, we consider, first, a related nonlinear problem. Then, we use the well-known Banach's fixed point theorem to prove the existence of solutions to the nonlinear problem (1.1)- (1.3).

We make the following assumptions:

(H1) η ≥ 0, q ≥ 2, (H2) k, g ∈ H 1 (0, T ), (H3) u 0 ∈ H 1 and u 1 ∈ L 2 , (H4) f ∈ C 0 (Ω × R + × R) satisfies the conditions D 2 f, D 3 f ∈ C 0 (Ω × R + × R).
For each T > 0, we put

W (T ) = v ∈ L ∞ (0, T ; H 1 ) : v t ∈ L ∞ (0, T ; L 2 ) L q (Q T ). (3.1)
Then W (T ) is a Banach space with respect to the norm (see [START_REF] Lions | Quelques méthodes de résolution des problè mes aux limites nonlinéaires[END_REF]):

v W (T ) = v L ∞ (0,T ;H 1 ) + v t L ∞ (0,T ;L 2 ) + v t L q (QT ) , v ∈ W (T ). (3.2) 
For each v ∈ W (T ), we associate with the problem (1.1)-(1.3) the following variational problem. Find u ∈ W (T ) which satisfies the variational problem

< u // (t), w > +a η (u(t), w) - t 0 k(t -s)a η (u(s), w)ds+ < ψ q (u / (t)), w > = g 1 (t)w(1)+ < f (•, t, v(•, t)), w > for all w ∈ H 1 , (3.3) 
u(0) = u 0 , u t (0) = u 1 , (3.4) 
where

ψ q (z) = |z| q-2 z, g 1 (t) = g(t) - t 0 k(t -s)g(s)ds. (3.5)
Then, we have the following theorem Theorem 3.1. Let (H1)-(H4) hold. Then, for every T > 0 and v ∈ W (T ), problem (3.3)-(3.5) has a unique solution u ∈ W (T ) and such that u // , u xx ∈ L q / (0, T ; (H 1 ) / ), where q / = q/(q -1).

(3.6)

Furthermore, we have

u / (t) 2 + u(t) 2 η + 2 t 0 u / (s) q L q ds ≤ C 1T exp(T C 2T ), ∀t ∈ [0, T ], (3.7) 
where

C 1T = C 1T (v, u 0 , u 1 , k, g) = 2 u 1 2 + u 0 2 η + 2|g 1 (0) u 0 (1)| +6 g 1 2 L ∞ (0,T ) + 2 g / 1 2 L 2 (0,T ) + T 0 f (•, s, v(s)) 2 ds , (3.8) 
C 2T = C 2T (k) = 2 3 + 2|k(0)| + 6 k 2 L 2 (0,T ) + T k / 2 L 2 (0,T ) , (3.9) 
and

g 1 (t) = g(t) - t 0 k(t -s)g(s)ds. (3.10)
Proof of theorem 3.1. The proof consists of steps two steps a. The existence of solution. We approximate u 0 , u 1 , k, g by sequences

{u 0m } ⊂ C ∞ 0 Ω , u 1m ⊂ C ∞ 0 (Ω), k m , g m ⊂ C ∞ 0 ([0, T ]), respectively, such that u 0m → u 0 strongly in H 1 , u 1m → u 1 strongly in L 2 , k m → k strongly in H 1 (0, T ),
g m → g strongly in H 1 (0, T ).

(3.11)

Then we consider the following variational problem: Find u m ∈ W (T ) which satisfies the variational problem

< u // m (t), w > +a η (u m (t), w) - t 0 k m (t -s)a η (u m (s), w)ds + < ψ q (u / m (t)), w >= g 1m (t)w(1)+ < f (•, t, v(•, t)), w >, ∀w ∈ H 1 , (3.12 
)

u(0) = u 0m , u / (0) = u 1m , (3.13) 
and

u m ∈ L ∞ (0, T ; H 2 ), u / m ∈ L ∞ (0, T ; H 1 ), u // m ∈ L ∞ (0, T ; L 2 ), (3.14) 
where

g 1m (t) = g m (t) - t 0 k m (t -s)g m (s)ds. (3.15)
The existence of a sequence of solutions u m satisfying (3.12)-(3.15) is a direct result of the theorem 2.1 in [START_REF] Long | Existence and asymptotic expansion for a viscoelastic problem with a mixed nonhomogeneous condition[END_REF]. We shall prove that u m is a Cauchy sequence in W (T ).

(i) A priori estimates.

We take w = u / m (t) in (3.12), afterwards integrating with respect to the time variable from 0 to t, we get after some rearrangements

σ m (t) =σ m (0) -2g 1m (0)u 0m (1) + 2g 1m (t)u m (1, t) -2 t 0 g / 1m (r)u m (1, r)dr -2k m (0) t 0 u m (r) 2 η dr + 2 t 0 k m (t -s)a η (u m (s), u m (t))ds -2 t 0 dr r 0 k / m (r -s)a η (u m (s), u m (r))ds + 2 t 0 < f (•, s, v(•, s)), u / m (s) > ds, (3.16) 
where

σ m (t) = u / m (t) 2 + u m (t) 2 η + 2 t 0 ||u / m (s)|| q L q ds. (3.17)
Proving in the same manner as in [START_REF] Long | Existence and asymptotic expansion for a viscoelastic problem with a mixed nonhomogeneous condition[END_REF], we have the following results:

σ m (t) = C 1T (m) + C 2T (m) t 0 σ m (s)ds, ∀t ∈ [0, T ], (3.18) 
where

C 1T (m) =2 u 1m 2 + u 0m 2 η + 2|g 1m (0)u 0m (1)| + 6 g 1m 2 L ∞ (0,T ) +2 g / 1m 2 L 2 (0,T ) + T 0 f (•, s, v(s)) 2 ds , (3.19) 
C 2T (m) = 2 3 + 2|k m (0)| + 6 k m 2 L 2 (0,T ) + T k / m 2 L 2 (0,T ) . (3.20)
From the assumptions (H1)-(H4), afterwards using Gronwall's lemma, we deduce from (3.11), that

σ m (t) ≤ C T , for all m and t ∈ [0, T ], (3.21) 
where C T is a constant independent of m.

On the other hand, we deduce from (3.12), (3.21), that, for all w ∈ H 1 , we have

| < u // m (t), w > | ≤ u m (t) η w η + t 0 |k m (t -s)| u m (s) η w η ds + ψ q (u / m ) L q / (Ω) w L q (Ω) + |g 1m (t)| w η + f (•, t, v(•, t)) w ≤ C T (3C η ) 1 + ψ q (u / m ) L q / (Ω) w H 1 . (3.22)
This implies that

u // m (t) (H 1 ) / = sup 0 =w∈H 1 < u // m (t), w > w H 1 ≤ C T 3C η 1 + ψ q (u / m ) L q / (Ω) . (3.23) Hence u // m q / L q / (0,T ;(H 1 ) / ) = T 0 u // m (t) q / (H 1 ) / dt ≤ C T 3C η q / 2 q / -1 T 0 1 + u / m (t) q L q (Ω) dt ≤ C T , (3.24)
where C T always indicating a constant depending on T .

(ii) The convergence of sequence {u m } We shall prove that u m is a Cauchy sequence in W (T ). Let u = u m -u µ . Then u satisfies the variational problem

< u // (t), w > +a η ( u(t), w) - t 0 k m (t -s)a η ( u(s), w)ds - t 0 k(t -s)a η (u µ (s), w)ds+ < ψ q (u / m (t)) -ψ q (u / µ (t)), w > = g 1 (t)w(1) for all w ∈ H 1 , (3.25) u(0) = u 0 , u / (0) = u1, (3.26) where u 0 = u 0m -u 0µ , u 1 = u 1m -u 1µ , k = k m -k µ , g = g m -g µ , g 1 = g 1m -g 1µ , g 1 (t) = g(t) - t 0 k m (t -s) g(s)ds - t 0 k(t -s)g µ (s)ds. (3.27) 
We take w = u / (t) in (3.25), after integrating with respect to the time variable from 0 to t, we get after some rearrangements

Z(t) =Z(0) -2 g 1 (0) u 0 (1) + 2 g 1 (t) u(1, t) -2 t 0 g1 / (r) u(1, r)dr -2k m (0) t 0 u(r) 2 η dr + 2 t 0 k m (t -s)a η ( u(s), u(t))ds -2 t 0 dr r 0 k / m (r -s)a η ( u(s), u(r))ds -2 k(0) t 0 a η (u µ (s), u(s))ds + 2 t 0 k(t -s)a η (u µ (s), u(t))ds -2 t 0 dr r 0 k / (r -s)a η (u µ (s), u(r))ds, (3.28) 
where

Z(t) = u / (t) 2 + u(t) 2 η + 2 t 0 < ψ q (u / m (s)) -ψ q (u / µ (s)), u / m (s) -u / µ (s) > ds.
(3.29)

Using the following inequality

∀q ≥ 2, ∃C q > 0 : (|x| q-2 x -|y| q-2 y)(x -y) ≥ C q |x -y| q , ∀x, y ∈ R, (3.30) 
it follows from (3.29) that

Z(t) ≥ u / (t) 2 + u(t) 2 η + 2C q t 0 u / (s) q L q ds. (3.31) Using the inequality 2ab ≤ ǫa 2 + 1 ǫ b 2 , ∀a, b ∈ R, ∀ǫ > 0, (3.32)
and the following inequalities

|a η (u, v)| ≤ u η v η , ∀u, v ∈ H 1 , (3.33) | u(1, t)| ≤ u(t) C 0 (Ω) ≤ √ 2 u(t) 1 ≤ √ 2 u(t) η ≤ 2Z(t), ( 3 
.34) we shall estimate respectively the following terms on the right-hand side of (3.28) as follows

Z(0) -2 g 1 (0) u 0 (1) ≤ u 1m -u 1µ 2 + u 0m -u 0µ 2 η + 2|g 1m (0) -g 1µ (0)||u 0m (1) -u 0µ (1)|, (3.35) 2 g 1 (t) u(1, t) ≤ 8 g 1 2 L ∞ (0,T ) + 1 4 Z(t), with ǫ = 1 8 , (3.36) -2 t 0 g / 1 (r) u(1, r)dr ≤ 2 g / 1 2 L 2 (0,T ) + t 0 Z(r)dr, (3.37) 
2 t 0 k m (t -s)a η ( u(s), u(t))ds ≤ 1 8 Z(t) + 8 k m 2 L 2 (0,T ) t 0 Z(s)ds, (3.38) 
-2k m (0) 

t 0 u(r) 2 η dr ≤ 2|k m (0)| t 0 Z(r)dr, (3.39) -2 t 0 dr r 0 k / m (r -s)a η ( u(s), u(r))ds ≤ 1 + T k / m 2 L 2 (0,T ) t 0 Z(s)ds, (3.40) 2 t 0 k(t -s)a η (u µ (s), u(t))ds ≤ 1 8 Z(t) + 8 C T k 2 L 1 (0,T ) , (3.41) 
-2 k(0) t 0 a η (u µ (s), u(s))ds ≤ T C T | k(0)| 2 + t 0 Z(s)ds, (3.42) -2 t 0 dr r 0 k / (r -s)a η (u µ (s), u(r))ds ≤ T 2 C T k / 2 L 2 (0,T ) + t 0 Z ( 
Z(t) ≤ ρ 1T (m, µ) + ρ 2T (m) t 0 Z(s)ds, ∀t ∈ [0, T ], (3.44) 
where

ρ 1T (m, µ) = 2 u 1 2 + u 0 2 η + 2| g 1 (0) u 0 (1)| + 8 g 1 2 L ∞ (0,T ) +2 g / 1 2 L 2 (0,T ) + 8 C T k 2 L 1 (0,T ) + T C T | k(0)| 2 + T 2 C T k / 2 L 2 (0,T ) , ρ 2T (m) = 2 4 + 2|k m (0)| + 8 k m 2 L 2 (0,T ) + T k / m 2 L 2 (0,T ) .
(3.45) By Gronwall's lemma, we deduce from (3.31), (3.44), (3.45), that On the other hand, by (3.47) and the continuity of ψ q , we obtain

u / (t) 2 + u(t) 2 η + 2C q t 0 u / (s) q L q ds ≤ Z(t) ≤ ρ 1T (m, µ)exp(T ρ 2T (m)), for all t ∈ [0, T ].
ψ q (u / m ) → ψ q (u / ) a.e. (x, t) ∈ Q T . (3.48)
By means of (3.21), it follows that

ψ q (u / m ) q / L q / (QT ) = u / m q L q (QT ) ≤ 1 2 C T , (3.49) 
for all m. By Lions's lemma [5, Lemma 1.3, p. 12], it follows from (3.48) and (3.49) that ψ q (u / m ) → ψ q (u / ) in L q / (Q T ) weakly.

(3.50) Noticing (3.11) 3 and (3.47) we have

T 0 dt t 0 k m (t -s)a η (u m (s), w(t))ds - T 0 dt t 0 k(t -s)a η (u(s), w(t))ds ≤ T 0 dt t 0 k m (t -s)a η (u m (s) -u(s), w(t))ds + T 0 dt t 0 [k m (t -s) -k(t -s)]a η (u(s), w(t))ds ≤ 3C η w L 1 (0,T ;H 1 ) k m L 1 (0,T ) u m -u L ∞ (0,T ;H 1 ) + k m -k L 1 (0,T ) u L ∞ (0,T ;H 1 ) → 0 (3.51)
for all w ∈ L 1 (0, T ; H 1 ).

On the other hand, by (3.11) 3,4 and (3.15), we also obtain 

g 1m → g 1 strongly in H 1 (0, T ). ( 3 
u // (t), w + a η (u(t), w) - t 0 k(t -s)a η (u(s), w)ds + ψ q (u / (t)), w = g 1 (t)w(1)+ < f (•, t, v(•, t)), w >, ∀w ∈ H 1 , in L q / (0, T ) weak, (3.54) 
and

u(0) = u 0 , u / (0) = u 1 . (3.55)
On the other hand, we deduce from (3.54), that

u xx (t) - t 0 k(t -s)u xx (s)ds = φ(t), (3.56) 
where

φ(t) = u // (t) + |u / | q-2 u / -f (•, t, v(•, t)) ∈ L q / (0, T ; (H 1 ) / ). (3.57)
Hence, it follows from (3.56) and (3.57), that

u xx (t) q / (H 1 ) / ≤ φ(t) (H 1 ) / + t 0 |k(t -s)| u xx (s) (H 1 ) / ds q / ≤ 2 q / -1   φ(t) q / (H 1 ) / + t 0 |k(t -s)| u xx (s) (H 1 ) / ds q /   ≤ 2 q / -1 φ(t) q / (H 1 ) / + k q / L q (0,T ) t 0 u xx (s) q / (H 1 ) / ds . (3.58)
This implies that r 0 u xx (t) q / (H 1 ) / dt ≤2 q / -1 φ q / L q / (0,T ;(H 1 ) / ) + 2 q / -1 k q / L q (0,T )

r 0 dt t 0 u xx (s) q / (H 1 ) / ds (3.59)
Using Gronwall's lemma, we obtain

r 0 u xx (t) q / (H 1 ) / dt ≤ 2 q / -1 φ q / L q / (0,T ;(H 1 ) / ) exp 2 q / -1 k q / L q (0,T ) r ≤ C T , (3.60 
) where C T always indicating a constant depending on T Thus b. Uniqueness of the solution. First, we shall now require the following lemma.

u xx ∈ L q / (0, T ; (H 1 ) / ). ( 3 
Lemma 3.2. Let u be the weak solution of the following problem

u // -u xx + t 0 k(t -s)u xx (s)ds = Φ, 0 < x < 1, 0 < t < T, u x (0, t) = u(0, t), u x (1, t) + ηu(1, t) = 0, u(x, 0) = u 0 (x), u / (x, 0) = u 1 (x), u ∈ L ∞ (0, T ; H 1 ), u / ?L ∞ (0, T ; L 2 ), k ∈ H 1 (0, T ), Φ ∈ L 2 (Q T ).
(3.62)

Then we have 

1 2 u / (t) 2 + 1 2 u(t) 2 η = 1 2 u 1 2 + 1 2 u 0 2 η -k(0) t 0 u(r) 2 η dr + t 0 k(t -s)a(u(s), u ( 
u i ∈ W (T ), u // i , u ixx ∈ L q / (0, T ; (H 1 ) / ), i = 1, 2. (3.64)
Then u = u 1 -u 2 is the weak solution of the following problem where

u // -u xx + t 0 k(t -s)u xx (s)ds + ψ q (u / 1 ) -ψ q (u / 2 ) = 0, u x (0, t) -u(0, t) = u x (1, t) + ηu(1, t) = 0, u(0) = u / (0) = 0, u ∈ W (T ), u // , u xx ∈ L q / (0, T ; (H 1 ) / ).
σ(t) = u / (t) 2 + u(t) 2 η + 2 t 0 ψ q (u / 1 (s)) -ψ q (u / 2 (s)), u / (s) ds. (3.67)
By using the same computations as in the above part we obtain from (3.66) that Proof. For each T 1 > 0, we put

σ(t) = 2 1 + 2 k 2 L 2 (0,T ) + 2|k(0)| + k / 2 L 1 (0,T ) t 0 σ(r)dr. ( 3 
W 1 (T 1 ) = v ∈ L ∞ (0, T 1 ; H 1 ) : v t ∈ L ∞ (0, T 1 ; L 2 ) . (3.70)
Then W 1 (T 1 ) is a Banach space with respect to the norm (see [START_REF] Lions | Quelques méthodes de résolution des problè mes aux limites nonlinéaires[END_REF]):

v W1(T1) = v L ∞ (0,T1;H 1 ) + v t L ∞ (0,T1;L 2 ) , v ∈ W 1 (T 1 ). (3.71)
For M > 0 and T 1 > 0, we put

B(M, T 1 ) = v ∈ W 1 (T 1 ) : v W1(T1) ≤ M . (3.72)
We also define the operator ̥ from B(M, T 1 ) into W (T 1 ) by u = ̥(v), where u is the unique solution of problem (3.3)-(3.5). We would like to show that ̥ is a contraction operator from B(M, T 1 ) into itself. Applying the contraction mapping theorem, the operator ̥ has a fixed point in B(M, T 1 ) that is also a weak solution of the problem (1.1)-(1.3). First, by Theorem 3.1, we note that the unique solution of problem (3.3)-(3.5) satisfies (3.7), (3.8), (3.9). On the other hand, it follows from (H3), that

t 0 f (•, s, v(s)) 2 ds ≤ 2 t 0 f (•, s, v(s)) -f (•, s, 0) 2 ds + 2 t 0 f (•, s, 0) 2 ds ≤ 2T 1 K 2 1 M 2 + 2 T 0 f (•, s, 0) 2 ds, (3.73) 
where 

K 1 = K 1 (M, T, f ) = sup |D 3 f (x, t, u)| : 0 ≤ x ≤ 1, 0 ≤ t ≤ T, |u| ≤ √ 2M . ( 3 
u / (t) 2 + u(t) 2 η + 2 t 0 u / (s) q L q ds ≤ C 1T + 2T 1 K 2 1 M 2 exp(T 1 C 2T ), ∀t ∈ [0, T 1 ], (3.75) 
where

C 1T = C 1T ( u 0 , u 1 , k, g) = 2 u 1 2 + u 0 2 η + 2 |g 1 (0) u 0 (1)| +6 g 1 2 L ∞ (0,T ) + 2 g / 1 2 L 2 (0,T ) + 2 T 0 f (•, s, 0) 2 ds , C 2T = C 2T (k) = 2 3 + 2|k(0)| + 6 k 2 L 2 (0,T ) + T k / 2 L 2 (0,T ) .
(3.76)

By choosing M > 0 large enough so that C 1T = 1 4 M 2 , then T 1 sufficiently small so that 1 4

M 2 + 2T 1 K 2 1 M 2 exp(T 1 C 2T ) ≤ 1 2 M 2 , (3.77) and 2 2T 1 K 1 exp T 1 2 + 2|k(0)| + 2 k 2 L 2 (0,T ) + k / 2 L 1 (0,T ) < 1. (3.78)
From (3.75), (3.77) we have u W1(T1) ≤ M , hence u ∈ B(M, T 1 ). This shows that ̥ maps B(M, T 1 ) into itself. Next, we verify that ̥ is a contraction. Let

u 1 = ̥(v 1 ), u 2 = ̥(v 2 ), where v 1 , v 2 ∈ B(M, T 1 ). Put U = u 1 -u 2 and V = v 1 -v 2 .
Then U is the weak solution of the following problem

U // -U xx + t 0 k(t -s)U xx (s)ds + ψ q (u / 1 ) -ψ q (u / 2 ) = f (x, t, v 1 (t)) -f (x, t, v 2 (t)), 0 < x < 1, 0 < t < T 1 , U x (0, t) -U (0, t) = U x (1, t) + ηU (1, t) = 0, U (0) = U / (0) = 0, U ∈ W (T 1 ); U // , U xx ∈ L q / (0, T 1 ; (H 1 ) / ). (3.79) By using Lemma 3.2 with u 0 = u 1 = 0, Φ = -ψ q (u / 1 ) + ψ q (u / 2 ) + f (x, t, v 1 (t)) - f (x, t, v 2 (t)), we have δ(t) = -2k(0) t 0 U (r) 2 η dr + 2 t 0 k(t -s)a(U (s), U (t))ds -2 t 0 dr r 0 k / (r -s)a(U (s), U (r))ds + 2 t 0 < f (•, s, v 1 (s)) -f (•, s, v 2 (s)), U / (s) > ds, a.e. t ∈ [0, T 1], (3.80) 
where

δ(t) = U / (t) 2 + U (t) 2 η + 2 t 0 ψ q (u / 1 ) -ψ q (u / 2 ), U / (s) ds ≥ U / (t) 2 + U (t) 2 η + 2C q t 0 U / (s) q L q ds.
(3.81)

By the assumption (H4), we have

2 t 0 f (•, s, v 1 (s)) -f (•, s, v 2 (s)), U / (s) ds ≤ t 0 U / (s) 2 ds + t 0 f (•, s, v 1 (s)) -f (•, s, v 2 (s)) 2 ds ≤ t 0 U / (s) 2 ds + 2T 1 K 2 1 V 2 W1(T1) , (3.82) 
Therefore, we can prove in a similar manner as above that

δ(t) ≤2T 1 K 2 1 V 2 W1(T1) + 2 2 + 2|k(0)| + 2 k 2 L 2 (0,T ) + k / 2 L 1 (0,T ) t 0 δ(s)ds. (3.83)
By Gronwall's lemma, we obtain from (3.83) that 

δ(t) = 2 ρ 1 (k, K 1 , T, T 1 ) V W1(T1) 2 , (3.84) where ρ 1 (k, K 1 , T, T 1 ) = 2T 1 K 1 exp T 1 2 + 2|k(0)| + 2 k 2 L 2 (0,T ) + k / 2 L 1 (0,T ) . ( 3 
U W1(T1) ≤ 2ρ 1 (k, K 1 , T, T 1 ) V W1(T1) , (3.86) 
Proof. By multiplying the equation (4.1) 1 by u t and integrate over (0, 1) × (0, t) we obtain

E(t) + 2 t 0 u / (s) q L q ds + t 0 k(s) u(s) 2 η ds - t 0 dr r 0 k / (r -s) u(s) -u(r) 2 η ds = E(0) + 2 t 0 < F (s), u / (s) > ds, (4.4) 
where

E(t) = u / (t) 2 + 1 - t 0 k(s)ds u(t) 2 η + 2 p u(t) p L p + t 0 k(t -s) u(s) -u(t) 2 η ds. (4.5)
On the other hand, by ( H4) and the Cauchy's inequality, we obtain

2 t 0 F (s), u / (s) ds ≤ t 0 F (s) ds + t 0 F (s) u / (s) 2 ds ≤ +∞ 0 F (s) ds + t 0 F (s) E(s)ds. (4.6) 
By Gronwall's lemma, we obtain from (4.4) and (4.6) that

E(t) ≤ E(0) + +∞ 0 F (s) ds exp t 0 F (s) ds ≤ E(0) + +∞ 0 F (s) ds exp +∞ 0 F (s) ds = C, ∀t ≥ 0. (4.7) 
By ( H3, i), we have

E(t) ≥ u / (t) 2 + 1 - t 0 k(s)ds u(t) 2 η ≥ u / (t) 2 + k ∞ u(t) 2 η . (4.8) 
Then we obtain (4.3) from (4.7) and (4.8). This completes the proof of Lemma 4.1.

In this section we state and prove decay result.

Theorem 4.2. Suppose that ( H1) -( H5) hold. Then the solution u(t) of problem (4.1) decays exponentially to zero as t → +∞ in the following sense: there exist the positive constants N and γ such that

u / (t) + u(t) η ≤ N e -γt for all t ≥ 0. (4.9) 
Proof. We use the following functional

Γ(t) = Γ(ε 1 , ε 2 , t) = E(t) + ε 1 E 1 (t) + ε 2 E 2 (t), (4.10) 
where

E 1 (t) =< u(t), u / (t) >, (4.11) 
E 2 (t) = - t 0 k(t -s) u / (t), u(t) -u(s) ds. (4.12) 
Estimating Γ(t). By (2.3), (2.4), we obtain from ( H2, i) that

|E 1 (t)| = < u(t), u / (t) > ≤ 1 2 u / (t) 2 + u(t) 2 η , (4.13) 
|E 2 (t)| = t 0 k(t -s) u / (t), u(t) -u(s) ds ≤ 1 2 u / (t) 2 + 1 2 t 0 k(t -s) u(t) -u(s) ds 2 ≤ 1 2 u / (t) 2 + (1 -k ∞ ) t 0 k(t -s) u(t) -u(s) 2 η ds. (4.14) 
Hence, it follows from (4.10)-(4.14) that for ε 1 , ε 2 small enough, there exist two positive constants α 1 , α 2 , such that

α 1 E(t) ≤ Γ(t) ≤ α 2 E(t). (4.15) 
Estimating Γ / (t). Now differentiating (4.4) with respect to t, we have

E / (t) = -2 u / (t) q L q + t 0 k / (t -s) u(s) -u(t) 2 η ds -k(t) u(t) 2 η + 2 F (t), u / (t) ≤ -2 u / (t) q L q + t 0 k / (t -s) u(s) -u(t) 2 η ds + 2 F (t), u / (t) , (4.16) 
since k(t) ≥ 0. By multiplying the equation (4.1) 1 by u and integrate over (0, 1) we obtain

E / 1 (t) = u / (t) 2 -u(t) 2 η -u(t) p L p + F (t), u(t) + t 0 k(t -s)a(u(s), u(t))ds -|u / (t)| q-2 u / (t), u(t) = u / (t) 2 -u(t) 2 η -u(t) p L p + F (t), u(t) + I 1 (t) + I 2 (t).
(4.17)

We now estimate the last two terms in the right side of (4.17) as follows

Estimating I 1 (t).

Using the inequality

ab ≤ δ r a r + r -1 r δ -r r-1 b r r-1 , ∀a, b ≥ 0, ∀r > 1, ∀δ > 0, (4.18) 
we have

I 1 (t) = t 0 k(t -s)a(u(s), u(t))ds = t 0 k(t -s)a (u(s) -u(t), u(t)) ds + t 0 k(t -s) u(t) 2 η ds ≤ δ 1 u(t) 2 η + 1 4δ 1 t 0 k(s)ds t 0 k(t -s) u(s) -u(t) 2 η ds + t 0 k(s)ds u(t) 2 η ≤ δ 1 u(t) 2 η + 1 -k ∞ 4δ 1 t 0 k(t -s) u(s) -u(t) 2 η ds + (1 -k ∞ ) u(t) 2 η ≤ (δ 1 + 1 -k ∞ ) u(t) 2 η + 1 -k ∞ 4δ 1 t 0 k(t -s) u(s) -u(t) 2 η ds, (4.19) 
for all δ 1 > 0.

Estimating I 2 (t). We again use inequality (4.18) we obtain from (4.3) that

I 2 (t) = -|u / (t)| q-2 u / (t), u(t) ≤ u / (t) q-1 L q u(t) L q ≤ δ q 1 q u(t) q L q + q -1 q δ -q q-1 1 u / (t) q L q ≤ 2 δ q 1 q √ 2C q-2 u(t) 2 η + q -1 q δ -q q-1 1 u / (t) q L q , (4.20) 
for all δ 1 > 0. By combining (4.17), (4.19) and (4.20), we obtain

E / 1 (t) ≤ -u(t) p L p + u / (t) 2 -k ∞ -δ 1 -2 δ q 1 q √ 2C q-2 u(t) 2 η + q -1 q δ -q q-1 1 u / (t) q L q + 1 -k ∞ 4δ 1 t 0 k(t -s) u(s) -u(t) 2 η ds + F (t), u(t) . (4.21) 
Then, we can always choose the constant δ 1 > 0 such that

γ 1 = k ∞ -δ 1 -2 δ q 1 q √ 2C q-2 > 0. (4.22)
This implies that

E / 1 (t) ≤ -u(t) p L p + u / (t) 2 -γ 1 u(t) 2 η + γ 2 u / (t) q L q + γ 3 t 0 k(t -s) u(s) -u(t) 2 η ds + F (t), u(t) , (4.23) 
where 

γ 2 = q -1 q δ -q q-1 1 , γ 3 = 1 -k ∞ 4δ 1 . ( 4 
+ t 0 k(t -s) |u / (t)| q-2 u / (t), u(t) -u(s) ds - t 0 k(t -s) F (t), u(t) -u(s) ds = 7 i=1 J i (t).
(4.25)

Similarly to (4.17), we estimate respectively the following terms on the right-hand side of (4.25) as follows.

Estimating J 1 (t). Since k is continuous and k(0) > 0 then there exists t 0 > 0, such that Estimating J 2 (t).

t 0 k(s)ds ≥ t0 0 k(s)ds = k 0 > 0 for all t ≥ t 0 . ( 4 
J 2 (t) = - t 0 k / (t -s) u / (t), u(t) -u(s) ds ≤ δ 2 u / (t) 2 + 1 4δ 2 t 0 |k / (t -s)|ds t 0 |k / (t -s)| u(s) -u(t) 2 ds ≤ δ 2 u / (t) 2 + 1 2δ 2 t 0 |k / (t -s)|ds t 0 |k / (t -s)| u(s) -u(t) 2 η ds ≤ δ 2 u / (t) 2 - k(0) 2δ 2 t 0 k / (t -s) u(s) -u(t) 2 η ds.
(4.28)

Estimating J 3 (t).

J 3 (t) = t 0 k(t -s)a (u(t), u(t) -u(s)) ds ≤ δ 2 u(t) 2 η + 1 4δ 2 t 0 k(s)ds t 0 k(t -s) u(s) -u(t) 2 η ds ≤ δ 2 u(t) 2 η + 1 -k ∞ 4δ 2 t 0 k(t -s) u(s) -u(t) 2 η ds (4.29)
Estimating J 4 (t).

J 4 (t) = - t 0 k(t -s)a t 0 k(t -τ )u(τ )dτ, u(t) -u(s) ds ≤ t 0 k(t -τ ) u(τ ) η dτ t 0 k(t -s) u(s) -u(t) η ds ≤ δ 2 t 0 k(t -τ ) u(τ ) η dτ 2 + 1 4δ 2 t 0 k(t -s) u(s) -u(t) η ds 2 ≤ 2δ 2 t 0 k(t -τ ) u(τ ) η dτ 2 + 2δ 2 + 1 4δ 2 t 0 k(t -s) u(s) -u(t) η ds 2 ≤ 2δ 2 (1 -k ∞ ) 2 u(t) 2 η + 2δ 2 + 1 4δ 2 (1 -k ∞ ) t 0 k(t -s) u(s) -u(t) 2 η ds.
(4.30)

Estimating J 5 (t).

J 5 (t) = t 0 k(t -s) |u(t)| p-2 u(t), u(t) -u(s) ds ≤ 2 √ 2C p-2 t 0 k(t -s) u(t) η u(t) -u(s) η ds ≤ 2 √ 2C p-2 δ 2 u(t) 2 η + 1 4δ 2 t 0 k(t -s) u(t) -u(s) η ds 2 ≤ 2 √ 2C p-2 δ 2 u(t) 2 η + 1 4δ 2 (1 -k ∞ ) t 0 k(t -s) u(t) -u(s) 2 η ds .
(4.31)

Estimating J 6 (t). We again use inequality (4.18) with r = q, δ = δ 2 , we obtain from (4.3) that

|u / (t)| q-2 u / (t), u(t) -u(s) ≤ u / (t) q-1 L q u(t) -u(s) L q ≤ δ q 2 q u(t) -u(s) q L q + q -1 q δ -q q-1 2 u / (t) q L q ≤ 2 δ q 2 q 2 √ 2C q-2 u(t) -u(s) 2 η + q -1 q δ -q q-1 2 u / (t) q L q .
(4.32)

It follows from (4.32) that 

J 6 (t) = t 0 k(t -s) |u / (t)| q-2 u / (t), u(t) -u(s) ds ≤ 2 δ q 2 q 2 √ 2C q-2 t 0 k(t -s) u(t) -u(s) 2 η ds + q -1 q δ -q q-1 2 u / (t) q L q t 0 k(t -s)ds ≤ 2 δ q 2 q 2 √ 2C q-2 t 0 k(t -s) u(t) -u(s) 2 η ds + q -1 q δ -q q-1 2 (1 -k ∞ ) u / (t) q L q (4.33) Estimating J 7 (t) J 7 (t) = - t 0 k(t -s) F (t), u(t) -u(s) ds ≤ t 0 k(t -s) F (t) u(t) -u(s) ds ≤ 1 4δ 2 F (t) 2 + δ 2 t 0 k(t -s)ds t 0 k(t -s) u(t) -u(s) 2 ds ≤ 1 4δ 2 F (t) 2 + 2δ 2 (1 -k ∞ ) t 0 k(t -s) u(t) -u(s)
E / 2 (t) = -(k 0 -δ 2 ) u / (t) 2 + δ 2 γ 1 u(t) 2 η + γ 2 u / (t) q L q + γ 3 t 0 k(t -s) u(t) -u(s) 2 η ds -γ 4 t 0 k / (t -s) u(s) -u(t) 2 η ds + 1 4δ 2 F (t) 2 , (4.35) 
where

γ 1 = 1 + 2(1 -k ∞ ) 2 + 2 √ 2C p-2 , γ 2 = q q -1 δ -q q-1 2 (1 -k ∞ ), γ 3 = 2 δ q 2 q 2 √ 2C q-2 + (1 -k ∞ ) 1 2δ 2 √ 2C p-2 + 4δ 2 + 1 2δ 2 , γ 4 = k(0) 2δ 2 . 
(4.36)

Combining of (4.10), (4.16), (4.23) and (4.35), we obtain

Γ / (t) + ε 1 u(t) p L p + ((k 0 -δ 2 )ε 2 -ε 1 ) u / (t) 2 + (ε 1 γ 1 -ε 2 δ 2 γ 1 ) u(t) 2 η + (2 -ε 1 γ 2 -ε 2 γ 2 ) u / (t) q L q -(ε 1 γ 3 + ε 2 γ 3 ) t 0 k(t -s) u(t) -u(s) 2 η ds -(1 -ε 2 γ 4 ) t 0 k / (t -s) u(s) -u(t) 2 η ds ≤ F (t), 2u / (t) + ε 1 u(t) + ε 2 4δ 2 F (t) 2 .
(4.37)

Whence δ 1 is fixed, choosing

δ 2 = 1 2 k(0)γ 1 γ 1 + γ 1 , ε 2 = 2 k 0 ε 1 , where ε 1 > 0 is arbitrary, (4.38) 
we deduce from (4.37) and (4.38) that

Γ / (t) + ε 1 u(t) p L p + ε 1 γ 1 γ 1 + γ 1 u / (t) 2 + ε 1 γ 2 1 γ 1 + γ 1 u(t) 2 η + 2 -ε 1 1 + 2 k(0) γ 2 u / (t) q L q -ε 1 γ 3 + 2 k(0) γ 3 t 0 k(t -s) u(t) -u(s) 2 η ds -1 - 2 k(0) ε 1 γ 4 t 0 k / (t -s) u(s) -u(t) 2 η ds ≤ F (t), 2u / (t) + ε 1 u(t) + ε 1 k 2 0 1 + γ 1 γ 1 F (t) 2 . (4.39) 
Next, we choose ε 1 > 0, with

ε 1 < min ζ γ 3 + 2 k0 γ 3 + 2 k0 γ 4 ζ , 2 1 + 2 k0 γ 2
and (4.15) is satisfied, then by the assumption ( H2, ii), we deduce that

Γ / (t) + ε 1 u(t) p L p + ε 1 γ 1 γ 1 + γ 1 u / (t) 2 + ε 1 γ 2 1 γ 1 + γ 1 u(t) 2 η + k 1 u / (t) q L q + k 2 t 0 k(t -s) u(s) -u(t) 2 η ds ≤ F (t), 2u / (t) + ε 1 u(t) + k 3 F (t) 2 , (4.40) 
where This completes the proof of Theorem 4.2.

k 1 = 2 -ε 1 1 + 2 k 0 γ 2 > 0, k 2 = ζ 1 - 2 k 0 ε 1 γ 4 -ε 1 γ 3 + 2 k 0 γ 3 > 0, k 3 = ε 1 k 2 0 1 + γ 1 γ 1 . ( 4 
Remark 4.3. The estimate (4.9) holds for any regular solution corresponding to ( u 0 , u 1 ) ∈ H 2 × H 1 . This remains holds for solutions corresponding to ( u 0 , u 1 ) ∈ H 1 × L 2 by simple density argument.

Numerical results

Consider the following problem:

u tt -u xx + t 0
k(t -s)u xx (s)ds + u 3 t = u 2 + F (x, t), 0 < x < 1, 0 < t < T, (5.1) with boundary conditions u x (0, t) = u(0, t), u x (1, t) + u(1, t) = 0, (

and initial conditions u(x, 0) = u 0 (x), u t (x, 0) = u 1 (x), (5.3) where u 0 (x) = -x 2 + x + 1, u 1 (x) = -u 0 (x), k(t) = 1 2 e -t , (5.4) F (x, t) = (2 -t)e -t + U ex (1 -U ex -U 2 ex ), (5.5) where U ex (x, t) = (-x 2 + x + 1)e -t .

(5.6) The exact solution of the problem (5.1)-(5.3) with u 0 (x), u 1 (x), k(t) and F (x, t) defined in (5.4) and (5.5) respectively, is the function U ex given in (5.6). To solve problem (5.1)-(5.3) numerically, we consider the differential system for the unknowns u j (t) = u(x j , t), v j (t) = duj dt (t), with x j = jh, h = 1 N , j = 0, 1, ..., N : u j (0) = u 0 (x j ), v j (0) = u 1 (x j ), j = 0, 1, ..., N.

du j dt (t) = v j (
(5.7)

In fig. 1 we have drawn the approximated solution of the problem (5.1)-(5.5) while fig. 2 represents his corresponding exact solution (5.6). The fig. 3 corresponds to the surface (x, t) → u(x, t) approximated solution in the case where F (x, t) = 0. So in both cases we notice the very good decay of these surfaces from T = 0 to T = 2. 

  s)ds. (3.43) Combining (3.28), (3.29), (3.31) and (3.35)-(3.43), we obtain

( 3 .

 3 46)By(3.11),(3.27) and (3.45), we obtain ρ 1T (m, µ)exp(T ρ 2T (m)) → 0 as m, µ → +∞. Hence, it follows from (3.46) that {u m } is a Cauchy sequence in W (T ). Therefore there exists u ∈ W (T ) such that u m → u strongly in W (T ).(3.47)

  .52) From (3.24), we deduce the existence of a subsequence of {u m }, still denoted by {u m }, such that u // m → u // in L q / (0, T ; (H 1 ) / ) weak.(3.53)Passing to the limit in (3.12), (3.13) by (3.47) and (3.50)-(3.53) we have u satisfying the equation

  .61) On ther other hand, the estimate (3.7) hold by means of (3.11), (3.18), (3.19), (3.20), (3.47). The existence of the theorem is proved completely.

k 0 <

 0 / (r -s)a(u(s), u(r))ds+ t Φ(s), u / (s) > ds, a.e. t ∈ [0, T ]. (3.63) Furthermore, if u 0 = u 1 = 0 there is equality in (3.63).The idea of the proof is the same as in [4, Lemma 2.1, p. 79].We now return to the proof of the uniqueness of a solution of the problem (3.3)-(3.5). Let u 1 , u 2 be two weak solutions of problem (3.3)-(3.5), such that

(3. 65 )/ 1 ) + ψ q (u / 2 )k

 6512 By using Lemma 3.2 with u 0 = u 1 = 0, Φ = -ψ q (u -s)a(u(s), u(t))ds -2k(0) / (r -s)a(u(s), u(r))ds,(3.66) 
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 33 .68) By Gronwall's lemma, we deduce that σ(t) = 0 and Theorem 3.1 is completely proved. Let T > 0 and (H1) -(H4) hold. Then there exists T 1 ∈ (0, T ) such that problem (1.1)-(1.3) has a unique weak solution u ∈ W (T 1 ) and such that u // , u xx ∈ L q / (0, T 1 ; (H 1 ) / ).(3.69)

  .74) It follows from (3.7)-(3.10) and (3.73) that

  .85) It follows from (3.81), (3.84) and (3.85) that
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  F (t), 2u / (t) + ε 1 u(t) + k 3 F (t) 2 ≤ N F (t) 2 + γΓ(t),(4.43)for some constant N > 0. ThereforeΓ / (t) + γΓ(t) ≤ N F (t) 2 for all t ≥ t 0 . (4.44)Putting γ = 1 2 min{σ, γ}. A simple integration of (4.44) over (t 0 , t) givesΓ(t) ≤ Γ(t 0 )e σt0 + N +∞ t0 e σs F (s) 2 ds e -2γt = N 1 e -2γt ,(4.45)for all t ≥ t 0 . By the boundedness of Γ(t) on [0, t 0 ], we deduce from (4.45) that Γ(t) = Γ L ∞ (0,t0) e -2γ(t-t0) + N 1 e -2γt = N 2 e -2γt ,

	By combining (4.5), (4.15) and (4.40), we can always choose the constant γ > 0 is
	independent of t such that			
	Γ / (t) + 2 γΓ(t) ≤ F (t), 2u / (t) + ε 1 u(t) + k 3 F (t) 2 ,	(4.42)
	for all t ≥ t 0 . On ther other hand,				
						(4.46)
	for all t ≥ 0. By (4.15), it follows from (4.46) that	
	E(t) ≤	1 α 1	Γ(t) ≤	1 α 1	N
						.41)

2 e -2γt , for all t ≥ 0. (4.47)

  t), j = 0, 1, ..., N,

						dv 0 dt	(t) =	1 h 2 [-(1 + h)u 0 (t) + u 1 (t)]
		-	1 h 2		0	t	k(t -s) [-(1 + h)u 0 (s) + u 1 (s)] ds -v 3 0 (t) + u 2 0 (t) + F (x 0 , t),
						dv j dt	(t) =	1 h 2 [u j-1 (t) -2u j (t) + u j+1 (t)]
						-	1 h 2	0	t	k(t -s) [u j-1 (s) -2u j (s) + u j+1 (s)] ds
						-v 3 j (t) + u 2 j (t) + F (x j , t), j = 1, 2, ..., N -1, dv N dt (t) = 1 h 2 [u N -1 (t) -(1 + h)u N (t)]
	-	1 h 2	0	t

k(t -s) [u N -1 (s) -(1 + h)u N (s)] ds -v 3 N (t) + u 2 N (t) + F (x N , t),

where 2ρ 1 (k, K 1 , T, T 1 ) < 1, (3.87) since (3.78) and (3.85). Hence, (3.86) shows that ̥ : B(M, T 1 ) → B(M, T 1 ) is a contraction. Applying the contraction mapping theorem, the operator ̥ has a fixed point in B(M, T 1 ) that is also a weak solution of the problem (1.1)- (1.3).

The solution of the problem (1.1)-(1.3) is unique, that can be showed using the same arguments as in the proof of Theorem 3.1. The proof of Theorem 3.3 is completed.

and the boundary condition u(0, t) = u(1, t) = 0 standing for (1.2), S. Berrimia, S. A. Messaoudi [START_REF] Berrimia | Existence and decay of solutions of a viscoelastic equation with a nonlinear source[END_REF] has obtained a global existence and uniqueness theorem.

Decay of solution

In this part, we will consider the problem of global existence and asymptotic behavior for t → +∞. We assume that g(t) = 0, f (x, t, u) = F (x, t) -|u| p-2 u, p ≥ 2 and consider the following problem

We make the following assumptions:

) There exists a constant σ > 0 such that ∞ 0 e st F (t) 2 dt < +∞. Under assumptions ( H1)-( H4) and let T > 0, by theorem 2.3, the problem (4.1) has a unique weak solution u(t) such that

Then, we have the following Lemma 4.1. Suppose that ( H1) -( H4) hold. Then there is a unique solution u(t) of problem (4.1) defined on R + . Moreover

where C is a positive constant depending only on u 0 , u 1 , F , k ∞ and p.

To solve the nonlinear differential system (5.7), we use the following linear recursive scheme generated by the nonlinear term

+ F (x j , t), j = 1, 2, ..., N -

and where u (n) j (i∆t), i = 1, ..., N 1 -1, j = 0, 1, ..., N , of the system (5.8) being calculated at the time t = N 1 ∆t.

The latter system is solved by a spectral method and since the matrix of this system is very ill-conditioned so we have to regularize it by adding to the diagonal terms a small parameter in order to have a good accuracy of the convergence.