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EXISTENCE AND DECAY OF SOLUTIONS OF A NONLINEAR
VISCOELASTIC PROBLEM WITH A MIXED
NONHOMOGENEOUS CONDITION

NGUYEN THANH LONG, ALAIN PHAM NGOC DINH, LE XUAN TRUONG

ABSTRACT. We study the initial-boundary value problem for a nonlinear wave
equation given by

t
Ut — Uz +/ k(t — s)uge(s)ds + |ut|q_2ut = f(z,t,u),
0

ugz(0,t) = u(0,t), uz(1,t) + nu(l,t) = g(t),

u(z,0) = uo(x), ut(z,0) = ui (),
where 7 > 0, ¢ > 2 are given constants and ug,u1, g, k, f are given functions.
In this paper, we consider two main parts. In Part 1, under a certain local
Lipschitzian condition on f with (%o, u1) € H! x L?; k,g € H(0,T), n > 0;
q > 2, a global existence and uniqueness theorem is proved. The proof is
based on the paper [10] associated to a contraction mapping theorem and
standard arguments of density. In Part 2, the asymptotic behavior of the
solution u as t — oo is studied, under more restrictive conditions, namely
9=0, f(z,t,u) = —|ulP"2u+ F(z,t), p > 2, F € L'(Ry; L?) N L*(R4; L?),
JoFoe et || F(1)||2dt < +oo, with o > 0, and (W, u1) € H' x L2, k € H'(Ry),
and some others (|| || denotes the L?(0, 1) norm). It is proved that under these
conditions, a unique solution w(t) exists on Ry such that |Ju/(t)|| + |luz(t)]]
decay exponentially to 0 as ¢t — +oco. Finally, we present some numerical
results.

1. INTRODUCTION

In this paper we will consider the following initial and boundary value problem:

t
Ut — Ugy +/ E(t — 8)ugs(8)ds + |ug|7 2u; = f(z,t,u),0 <2z < 1;0<t <T,
0

(1.1)
Uz (0,t) = u(0,¢), ux (1,8) + nu(l,t) = g(t), (1.2)
u(z,0) = uo(x), ue(x,0) = uq(x), (1.3)

where 7 > 0, ¢ > 2 are given constants and wg,u1,g,k, f are given functions
satisfying conditions specified later.
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In a recent paper [1], Berrimia and Messaoudi considered the problem

t

uge — Au + / k(t — s)Au(s)ds = |[u|P~2u,z € Q,t > 0, (1.4)
0

u=0, on 0J9Q, (1.5)

u(z,0) = up(x), u(z,0) = uy(x),z € Q, (1.6)

where p > 2 is a constant, k is a given positive function, and {2 is a bounded domain
of R™ (n > 1), with a smooth boundary 9. This type of problems have been
considered by many authors and several results concerning existence, nonexistence,
and asymptotic behavior have been established. In this regard, Cavalcanti et al.
[3] studied the following equation

¢
ugr — Au +/ k(t — s)Au(s)ds + [ulP2u+a(t)u; =0, in Qx(0,00), (1.7)
0

for a : 2 — Ry, a function, which may be null on a part of the domain Q. Under
the conditions that a(z) > a9 > 0 on w C Q, with w satisfying some geometry
restrictions and
— Cik(t) = K/ (1) = =Gok(t),t > 0, (1.8)

the authors established an exponential rate of decay.

In [2] Bergounioux, Long and Dinh studied problem (1.1), (1.3) with £k =0,¢ =
2, f(xz,t,u) = —Ku + F(x,t), and the mixed boundary conditions (1.2) standing
for

U (0,t) = g(t) + hu(0,t) — /0 H(t — s)u(0, s)ds, (1.9)
ug(1,t) + Kqu(l,t) + Mue(1,t) =0, (1.10)

where h > 0, K, A\, K1, A1 are given constants and g, H are given functions.

In [7], Long, Dinh and Diem obtained the unique existence, regularity and as-
ymptotic expansion of the problem (1.1), (1.3), (1.9) and (1.10) in the case of k = 0,
flo,t,u) = —K|u[P~2u + F(x,t), with p > 2, ¢ > 2; K, \ are given constants.

In [8], Long, Ut and Truc gave the unique existence, stability, regularity in time
variable and asymptotic expansion for the solution of problem (1.1)- (1.3) when
k=0,q=2, f(z,t,u) = —Ku+ F(x,t) and (ug,u;) € H?> x H'. In this case, the
problem (1.1)- (1.3) is the mathematical model describing a shock problem involv-
ing a linear viscoelastic bar.

In [9], Long and Giai obtained the unique existence and asymptotic expansion for
the solution of problem (1.1), (1.3) when k =0, ¢ = 2, f(z,t,u) = —Ku + F(x,t)
and (T, u;) € H' x L?, and the mixed boundary conditions (1.2) standing for

ue(0,t) =g(t) + K1|u(0,t)|*2u(0,t) + )\1|ut(0,t)\ﬁ_2ut(07 t)

t
—/ H(t — s)u(0, s)ds,
0
u(l,t) =0, (1.12)
where K, A\, K1, A1, a, (0 are given constants and g, H are given functions. In this
case, the problem (1.1), (1.3), (1.11), (1.12) is the mathematical model describing
a shock problem involving a nonlinear viscoelastic bar.

In [10], Long and Truong obtained the unique existence and asymptotic expan-
sion for the solution of problem (1.1) -(1.3) when f(z,t,u) = —K|u[P~2u+ F(x,t),

(1.11)
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(wo,u1) € H* x HY; F,F, € L*(Qr), k € W»'(0,T), g € H*(0,7); K, n > 0,
no > 0;p,q 2> 2.

In this paper, we consider two main parts. In Part 1, under a certain local Lip-
schitzian condition on f with (ug,u;) € H' x L% k,g € H*(0,T),A > 0, o > 0;
n > 0; ¢ > 2, a global existence and uniqueness theorem is proved. The proof is
based on the paper [10] associated to a contraction mapping theorem and standard
arguments of density. In Part 2, the asymptotic behavior of the solution v as t — oo
is studied, under more restrictive conditions, namely f(z,t,u) = —|u|?~2u+F(x,1t),
p>2 Fe L' (R L)L (Ry; L2), [, e”t||F(t)|dt < +oo, with ¢ > 0, and
(g, 1) € H' x L?, g =0, k € H*(R,, and some others (|| - || denotes the L?(0,1)
norm). It is proved that under these conditions, a unique solution u(t) exists on
R, such that |lu/(t)|| + |lus(t)|| decay exponentially to 0 as ¢ — -+oco. The results
obtained here relatively are in part generalizations of those in [1-3, 6-10]. Finally,
we present some numerical results.

2. PRELIMINARY RESULTS

Put Q= (0,1), Qr = Q2 x(0,T), T > 0. We omit the definitions of usual function
spaces: C™(Q), LP(Q), W™P(Q). We denote W™P = W™P(Q), LP = WOP(Q),
H™ = Wm2(Q), 1 < p < oo, m=0,1,... The norm in L? is denoted by || - ||.
We also denote by (-,-) the scalar product in L? or pair of dual scalar product of
continuous linear functional with an element of a function space. We denote by
|- x the norm of a Banach space X and by X’ the dual space of X. We denote by
L?(0,T;X), 1 < p < oo for the Banach space of the real functions u : (0,7) — X
measurable, such that

T 1/p
Jul oo = (| Tutoligar) " <0 for1<p<oc,
0

and
lul| o< (0,75 x) = esssup |lu(t)||x for p = oco.
0<t<T

Let u(t), ' (t) = u(t), v’ (t) = un(t), ug(t), and u.,(t) denote u(x,t), %‘(x,t),
%(x,t), %(x,t), and %(m,t), respectively.

Without loss of generality, we can suppose that 7o = A = 1. For every n > 0, we
put

ay(u,v) = /0 Uy () v (2)dz + u(0)v(0) + nu(1)v(1),Yu,v € H, (2.1)

[olly = (an(v7v))1/2. (2.2)
On H! we shall use the following equivalent norm
1/2

1
wm=Qﬂm+Ahum%Q (2.3)
Then we have the following lemmas.

Lemma 2.1. The imbedding V — C°([0,1]) is compact and
||UHCU([071]) < H’UHV, forall veV. (2.4)
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Lemma 2.2. Letn > 0. Then, the symmetric bilinear form a,(-,-) defined by (2.1)
is continuous on H' x H' and coercive on H', i.e.,

(i) lan(u,0)| = Cyllullsolls, for all w0 € HY,

(ii) ay(v,v) = ||v||3, forall wveH!,

where Cy) = 14 2n.

The proofs of these lemmas are straightforward, and we omit the details.

1/2
We also note that on HY, ||v||1, [[v]lz = (||[v]|® + [[v/]|?) "7, |vlly = /(ay(v,v)) are
three equivalent norms.
[vll¥ < lollf < Cyllvll,  forall ve HY, (2.5)
1
§||v||%11 < |12 < 3|jv||3., forall ve H, (2.6)

3. THE EXISTENCE AND UNIQUENESS THEOREM OF THE SOLUTION

In this section we study the global existence of solutions for problem (1.1)-(1.3).
For this purpose, we consider, first, a related nonlinear problem. Then, we use the
well-known Banach’s fixed point theorem to prove the existence of solutions to the
nonlinear problem (1.1)-(1.3).

We make the following assumptions:

(H1) 7> 0,q > 2,

) kg€ H'(0,T),

) ﬂOEHl and €L27

H4) f € C%°Q x Ry x R) satisfies the conditions Dy f, D3f € C°(Q x Ry x R).

H1
H2
H3

For each T' > 0, we put

W(T) =veL®(0,T;H'") : v, € L(0,T; L) [ | L(Qr). (3.1)
Then W(T) is a Banach space with respect to the norm (see[5)):
lvllw (ry = l|vllo 0,701y + Vel Lo 0,522y + Vel La(@ry v € W(T). (3.2)

For each v € W(T'), we associate with the problem (1.1)-(1.3) the following varia-
tional problem.
Find v € W(T') which satisfies the variational problem

</ (t),w > +ay(u(t), w) — /0 E(t — s)a,(u(s), w)ds+ < ¢ (v (), w >

(3.3)
=g ®w()+ < f(,t,v(-,t),w> forall we H,
w(0) = uo, u(0) = uy, (3.4)
where .
be(2) = 21?2, 01(t) = g(t) — | k(t - s)g(s)ds. (3.5)

Then, we have the following theorem

Theorem 3.1. Let (H1)-(H4) hold. Then, for everyT > 0 andv € W(T'), problem
(3.3)- (3.5) has a unique solution u € W(T) and such that

W/ uge € LY (0,T; (HY)), where ¢/ =q/(q—1). (3.6)
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Furthermore, we have

t
l/ ()11 + [[u()15 + 2/ [u/ (5)[[4ds < Crrexp(TCor), ¥t € [0,T),  (3.7)
0

where
aTzcmmmmhmmzzhm2+w%ﬁ+mmmwam
) T (3.8)
+mmu%w@Ty+mwu%aQn—+[;nfmsﬂm@nﬁd%7
Car = Cor(k) = 2 [3.+ 20k(O)] + 61k 13200y + TR 3200y (39
and
t
n(0) =9(t) = [ kit = 9)g(s)ds. (310)
0

Proof of theorem 3.1. The proof consists of steps two steps
a. The existence of solution. We approximate ug, Uy, k, g by sequences
{uom} C C§° ( ) Urm C CF (), km, gm C C5°([0,T]), respectively, such that
Ugm — Uy strongly in  H?,
Uy — Uy strongly in L2
" . ) (3.11)
km — k strongly in  H"(0,T),

gm — g strongly in  H'(0,7T).

Then we consider the following variational problem: Find u,, € W(T') which satis-
fies the variational problem

< (B w > Fag(unt / Fim (8 = 8)a (tim{8), ) (3.12)
+ < g (ul, (1), w >= gim(w(1)+ < f(-,t,0(-, 1), w >, Yw € HY,
u(0) = g,/ (0) = U1, (3.13)
and
Um € L°(0,T; H?),ul, € L®(0,T; H'),u// € L=(0,T; L?), (3.14)
where
t
gm@:%@fékww@%@@. (3.15)

The existence of a sequence of solutions u,, satisfying (3.12)-(3.15) is a direct result
of the theorem 2.1 in [10]. We shall prove that u,, is a Cauchy sequence in W (T).
(i) A priori estimates.

We take w = uln(t) in (3.12), afterwards integrating with respect to the time
variable from 0 to ¢, we get after some rearrangements
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anL( ) =0m 0) 291771( )u()m( )+ 2917n(

2/gm Yum (1, r)dr — 2k, /||um H dr

+2/ Fopy (t = 8)an (tm (), U, (t))ds (3.16)

2/dr

+2/ < f(ys,0(,8)),ul,(s) > ds,

(=)
BN

o

k/ (r — 8)an (um(s), um(r))ds

m

S~

BN

o

where
t
om(t) = [[ul, O + um@®)]3 + 2/0 [|ul,, (5|19 ds. (3.17)

Proving in the same manner as in [10], we have the following results:

om(t) = Cir(m) + Cor(m) /Ot om(8)ds,Vt € [0,T], (3.18)
where

Crr(m) =2 [II%LmH2 + [[wom 7 + 2191m (0)uom (1)] + 6]l g1m |7 (0,7)
(3.19)

Y

T
20l 2o + / 15 0(s))]Pds

Cor(m) =2 {3 + 2[kn (0)] + 6| km|720 1) + T||k7/n||2L2(O,T):| : (3.20)

From the assumptions (H1)-(H4), afterwards using Gronwall’s lemma, we deduce
from (3.11), that

om(t) < Cp, forall m and tel0,T), (3.21)

where Cr is a constant independent of m.
On the other hand, we deduce from (3.12), (3.21), that, for all w € H!, we have

t
< uf{ (00> | <l ll + [ (¢ = )l (5) ol s
1) g gyl ey + lgrm @)ll1olly (322)
Gt vl Dol
< Cr/BCy) [1+ 10g )l s | Nl
This implies that
/)l sy = sup <00
" 0£weH?! l|lw]| 1 (3.23)

< Cr /30, 1+ o ()l ot g
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Hence
/]9 ’ /(¢
1y = T O

< (CT\/E)q 9d/ -1 /OT [ (1% ]

S CT7

(3.24)

where C'7 always indicating a constant depending on T'.

(i) The convergence of sequence {um,}

We shall prove that u,, is a Cauchy sequence in W(T'). Let @ = u,, — u,. Then @
satisfies the variational problem

<!/ (t),w > +a,(@( /k (t — s)an(u(s), w)ds
t
~ 3.25
- [ R = shaytunls)widst < b uh®) ~ vt 0> O
=g (Hw(l) forall we HY,
u(0) = ao,a/(()) =l (3.26)
where . R
Up = Uom — Uy, U1 = Ulm — Uiy,

/k\;:km_kuv/g\:gm_gmlg\l = 91m — G1ipu, (3'27)

Gu(t) =3(t) - / Fun(t — )3(s)ds — / R(t — ), (s)ds.

We take w = u/(t) in (3.25), after integrating with respect to the time variable
from 0 to ¢, we get after some rearrangements

2(1) =2(0) = 231 (0)(1) + 25, (1) =2 | G/ ()17
- tﬂrzr tmfsaﬁsﬁ s
2/7<3m(0)/O [a(r)lyd +2/0 ke (t = s)ay(u(s), u(t))d
—2/0 dr/o kL, (r — s)a,(T(s), u(r))ds (3.28)
ka(O)/O an(uu(s),a(s))derQ/O k(t — s)ay(u,(s), u(t))ds
—2/0 dr/o %/(r—s)an(uu(s),ﬁ(r))ds,

where
Z(@t) =|@’ @)|* + |aw)|?

t
42 [ <00 (5) = (5D (5) = i (5) > d,
0
Using the following inequality
Vg >2,3C, >0: (|27 22 — |y|T%y) (z — y) > Cylz —yl?, Vo, y € R, (3.30)

(3.29)
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it follows from (3.29) that

t
Z(t) = [[@ 0 + [ + 2Cq/0 @ ()7 dls. (3.31)
Using the inequality
2ab < ea? + %b%Va, beR,Ve> 0, (3.32)
and the following inequalities
Jan (u, 0)] < Jlullylolly, Y, v € HY, (3.33)
[a(1,t)] < [[a®)llosiy < V2la@)l < vV2la)lly < v22(0), (3.34)

we shall estimate respectively the following terms on the right-hand side of (3.28)
as follows

Z(0) = 291 (0o (1) <[lurm — uyll* + l[uom — woull;

(3.35)
+ 2[g1m(0) = 91,(0)][uom (1) — uou(1)],
~ . N 1 . 1
201 (1)a(1,t) < 8[G1ll7 e 0.7y + ZZ(t), with €= 3 (3.36)
t / / t
P / 3l (L, dr < 205 agom + / Z(r)dr, (3.37)
0 0

t

2/0 km (t — s)ay(u(s), u(t))ds < éZ(t)+8Hkm||%2(0’T)/0 Z(s)ds, (3.38)
— 2k (0) / [ 2dr < 2/kyn(0) / 2(r)dr, (3.39)
,2/0 dr/or kL (r — 8)an(@(s), @(r))ds < <1+T||k{n\|%2(0,T))/0 Z(s)ds, (3.40)

t
_ 1 -
2/0 (e~ $)ag(on,(5), 8(0)ds < S 2(0) + 8Cr Rl o, (3.41)

~

— 2K(0) /O ay(u,(s),7(s))ds < TCr|k(0)|* + /O Z(s)ds, (3.42)

—Q/Ot dr/OTE/(r—s)an(uu(s),a(r))ds < T2V B o) +/Ot Z(s)ds. (3.43)
Combining (3.28), (3.29), (3.31) and (3.35)-(3.43), we obtain
Z(8) < pre(m, 1) + por(m) /0 " Z(s)ds.Vt € [0.7], (3.44)
where
prr(m,p) =2 [Ilﬁlll2 + @012 + 2[g1 (0)ao(1)] + 8l|G1l|7 o (0.7
205 132(0.2) + 8Cr R 0,1y + TCrIRO) + T2Crlb 320, (3:45)

par(m) = 2[4+ 20k (O)] + 8l 32(0.1) + TR o)
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By Gronwall’s lemma, we deduce from (3.31), (3.44), (3.45), that

t
1@ @I + a2 + 26, / o/ ()1 4.ds < Z(2)
< pir(m,p)exp(Tpar(m)), forall te[0,T].

By (3.11), (3.27) and (3.45), we obtain pir(m, u)exp(Tpar(m)) — 0 as m,p —
+o00. Hence, it follows from (3.46) that {u,,} is a Cauchy sequence in W(T).
Therefore there exists u € W (T') such that

(3.46)

Um — u  strongly in - W(T). (3.47)
On the other hand, by (3.47) and the continuity of ¥,, we obtain
Vo(uly) = he(u/) ae. (z,t) € Qr. (3.48)
By means of (3.21), it follows that
1~
a1, ) = Ny < 5O (3.49)

for all m. By Lions’s lemma [5, Lemma 1.3, p. 12], it follows from (3.48) and (3.49)
that

be(ul,) = vg(u/) in LY (Qr) weakly. (3.50)
Noticing (3.11)3 and (3.47) we have

/ dt/ (t — 8)ay(um(s),w(t))ds

7/ dt/tk(ts)an(u(s),w(t))ds

dt

m(t — 8)an (um(s) —u(s), w(t))ds (3.51)

/dt/ (t = 8) — k(t — 8))ay (u(s), w(t))ds

<3Cyllwll Lr o,y [kmllLr o, 1tm — wll Lo 0,711
+l|&m = Ell 22 0, lull o< 0,7:11)] — O
for all w € L1(0,T; H).
On the other hand, by (3.11)3 4 and (3.15), we also obtain
Gim — g1 strongly in  H'(0,T). (3.52)
From (3.24), we deduce the existence of a subsequence of {u,,}, still denoted by
{um}, such that
w/! =/ in L9(0,T;(H')) weak. (3.53)
Passing to the limit in (3.12), (3.13) by (3.47) and (3.50)-(3.53) we have u satisfying
the equation

<u// (t),w> + ap (u(t), w) — /0 k(t — 8)ay (u(s), w)ds + <1/Jq(u/(t)),w>

=g Ow)+ < f(,t,v(-1),w > Yw € H', in L4’ (0,T) weak,

(3.54)
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and
u(0) = g, v/ (0) = . (3.55)
On the other hand, we deduce from (3.54), that
t
U (£) — / k(t — )t (s)ds = (1), (3.56)
0
where
o(t) = u!/ (t) + [/ |92/ — F(-,t,0(-, ) € LY (0,T; (HY)). (3.57)

Hence, it follows from (3.56) and (3.57), that

/

t q
ey < (10Ol + [ 10t~ 9llaen (Sl )

¢ q/
<2 0Ny + ([ I = a9y (3.59)

t
/_ /
<27 6Oy, + IR0 etz () gy s || -
( '\ s ()

This implies that
q/ -1
[ MOt <20 012,

t
_ /
+2q 1||k||Lq(oT)/ dt/o ”wa(s)”?}p)/ds

Using Gronwall’s lemma, we obtain

(3.59)

/_ /_
/ ||u$$ ||(H1 dt < 21 1H¢||L‘1/(OT (HYY/ )exp (2(1 1Hk||Lq(O T) ) < CT7
(3.60)

where C'1 always indicating a constant depending on T
Thus

Ugw € L9 (0,T; (HYY). (3.61)

On ther other hand, the estimate (3.7) hold by means of (3.11), (3.18), (3.19),
(3.20), (3.47). The existence of the theorem is proved completely.

b. Uniqueness of the solution. First, we shall now require the following lemma.

Lemma 3.2. Let u be the weak solution of the following problem

u!/ —um+/tk(t—s)um(s)d8:<l>,0<x< 1,0<t<T,
U, (0,t) = u(O?t), ug(1,1) + nu(l,t) =0,

u(x,0) = Ug(z), v (z,0) = Uy (x),

we L0, T; HY), u/?L>=(0,T; L?),

ke HY(0,T),® € L*(Qr).

(3.62)
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Then we have

Sl @ + S0 = GlhualP + ol = K) [ o l2ar
t — S)alul(s),u S — t’l" T/T'—SCLUS u\r S .
+ [ k= satue. s — [Car [ K- et urnis @363

t
+/ < ®(s),u/(s) >ds, ae tel0,T)
0
Furthermore, if ug = up = 0 there is equality in (3.63).
The idea of the proof is the same as in [4, Lemma 2.1, p. 79].

We now return to the proof of the uniqueness of a solution of the problem (3.3)-
(3.5). Let uy, uz be two weak solutions of problem (3.3)-(3.5), such that

wi € W(T),ul/ ttine € L9 (0,T; (H")),i = 1,2. (3.64)
Then u = u; — ug is the weak solution of the following problem
/= gy +/ F(t = 8t (5)ds + g (u]) — g (uh) =
ug(0,8) — u(0,t) = ux(1,¢) + nu(l,t) = 0, (3.65)
u(0) =/ (0) =0,
we W(T),u// ugy € L (0,T; (HY)).

By using Lemma 3.2 with ug =u3 =0, & = —wq(ul) + g ( u2 we have

a(t)?/tk(ts)(() ))ds — 2k(0 /||u )12dr
—2/ dr/ K (r — 8)a(u(s), u(r))ds,
where

o(t) = ll/ O + lu(@)]]} +2 / (] ()) = g(uh(s)) 0/ (3)) ds. (3.67)

By using the same computations as in the above part we obtain from (3.66) that

(3.66)

t

o(t) =2 (1 + 2)1klI72 o,y + 21K(0)] + ||k/||il(o7T)) /O o(r)dr. (3.68)
By Gronwall’s lemma, we deduce that o(¢) = 0 and Theorem 3.1 is completely
proved. [

Theorem 3.3. Let T > 0 and (H1) — (H4) hold. Then there exists Ty € (0,T)
such that problem (1.1)- (1.3) has a unique weak solution uw € W (T1) and such that

W/ ugy € L (0, Ty; (HY). (3.69)
Proof. For each T7 > 0, we put
Wi(Ty) = {v € L>(0,Ty; H') : v, € L™(0,Ty; L?)} . (3.70)
Then W1 (Ty) is a Banach space with respect to the norm (see[5]):
[vllwy (1) = ol Lo 0,501y + Vel oo 0,71522), v € Wa(Th). (3.711)
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For M > 0 and T} > 0, we put
B(M,Ty) = {veWi(Th) : |vllwy () < M} . (3.72)

We also define the operator f from B(M,Ty) into W(T1) by u = F (v), where u
is the unique solution of problem (3.3)- (3.5). We would like to show that f is a
contraction operator from B(M,Ty) into itself. Applying the contraction mapping
theorem, the operator f has a fixed point in B(M,T}) that is also a weak solution
of the problem (1.1)- (1.3).

First, by Theorem 3.1, we note that the unique solution of problem (3.3)- (3.5)
satisfies (3.7), (3.8), (3.9). On the other hand, it follows from (H3), that

/|vuaw@m%s§2/|um&vw»—fm&mww
0 0
+2 [ IfCs0)as (3.73)

T
§2ﬂKHF+2/IH@&®W®v
0

where

Ky =K(M,T,f)

3.74
zsup{|D3f(a:,t,u)|:0§m§1,0§t§T,|u|§\/2M}. ( )
It follows from (3.7)-(3.10) and (3.73) that
t
/ 2 2 / q
u’ (t)||* + [|u(t)||z + 2 u’ (s ds
I/ OF + O3 +2 [ 1 )1, -
< (Cir + 211 K{ M?) exp(TiCar), Vit € [0,T1],
where
Cir = Cir (o, U1, k, g) = 2 {al|2 + llwoll? + 2 |g1(0)ao (1))
y T
+6]1g1 117 0.7y + 2ll91 1720, +2/0 1f(5,0)[”ds| , (3.76)

Cor = Cop(k) =2 [3 + 20k(0)] + 6lIF|[2 0.1 + T||k/||§2(O,T)} .

By choosing M > 0 large enough so that Cy, = iM2, then T} sufficiently small so
that

1 1
(4M2 + 2T1K12M2> exp(T1Car) < 5M2, (3.77)
and
2V2Ti Keap | T1 (24 206(O0)] + 2032000 + 1K 132000 )| <1 (3.78)

From (3.75), (3.77) we have ||ullw, ) < M, hence u € B(M,T1). This shows that
F maps B(M,T) into itself.

Next, we verify that f is a contraction. Let u; = [ (v1), us = F (v2), where
v1,v9 € B(M,Ty). Put U = u; —ug and V = v; — vy. Then U is the weak solution
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of the following problem

U/ Upo + /Ot k(t — $)Usa(5)ds + b (u]) — 10y ()

= f(z,t,01(t)) — f(z,t,02(2)),0 < x < 1,0 <t < T,

U (0,8) —U(0,t) = Up(1,8) +nU(1,t) = 0, (3.79)
U(0) =U’(0) =0,

UeW(T):; U/ Upp € LV (0, Ty; (HY).

By using Lemma 3.2 with @iy = T = 0, ® = —ty(u}) + g(u)) + f(.1,01(1)) —
f(.'lf,t, UQ(t)), we have

6(t):—2k(0)/0 |\U(r)||37dr+2/0 k(t — 8)a(U(s), U(t))ds
— ‘ T ' /T—Sa S T S .
2/0d / K (r — 5)a(U(s), U(r)d (3.80)

+2/0 < f(rs,01(8)) — £ 8,09(5)), U7 (5) > ds, ae. ¢ € [0,T1],

where

3(t) = U/ (®)]1* + IIU(t)II?7+2/ <¢q(u{) —wq(UQ),U/(s)>ds
o (3.81)
> U7 @)1 + IIU(t)II?ﬁQCq/0 U7 (5),4ds.

By the assumption (H4), we have
2 [ (Fs () = Flesval).U7(5)) s
t /(s)||?ds t - 5,01(8)) — f(-, 8,v2(5))||*ds .
S/OIIU()IldﬂL/Ollf(H (s)) = f(,8,02(s))[|d (3.82)

t
< / 107 (3)\2ds + 2T K3V 13, oz,

Therefore, we can prove in a similar manner as above that
2 2
6(t) <2 K7V, ()

) o ¢ (3.83)
+2 (24 200) + 2kl 00, + 1 o) [ S
By Gronwall’s lemma, we obtain from (3.83) that
2
5(t) :2(pl(k7KlvT’Tl)HVHW1(T1)) ) (384)
where
pl(k7KlaT7Tl) =

(3.85)

VaTiKreap [Ti (24 260)] + 20kl320.1) + 18 13 01))] -
It follows from (3.81), (3.84) and (3.85) that
100wy 2y < 2000k K, T ) IV (3.56)
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where
2p1(k7K17TaT1) < 17 (387)
since (3.78) and (3.85).

Hence, (3.86) shows that f : B(M,Ty) — B(M,T}) is a contraction. Applying
the contraction mapping theorem, the operator f has a fixed point in B(M,T7)
that is also a weak solution of the problem (1.1)- (1.3).

The solution of the problem (1.1)- (1.3) is unique, that can be showed using
the same arguments as in the proof of Theorem 3.1. The proof of Theorem 3.3 is
completed. ([l

Remark 3.4. In the case of A = 0, f(x,t,u) = [ulP™2u, p > 2, k € W1 (Ry),
k>0, k(0)>0,0< [[Fk(t)dt <1, k/(t) + Ck(t) < 0 for all t >0, with ¢ > 0,
and the boundary condition u(0,t) = u(1,t) = 0 standing for (1.2), S. Berrimia, S.
A. Messaoudi [1] has obtained a global existence and uniqueness theorem.

4. DECAY OF SOLUTION

In this part, we will consider the problem of global existence and asymptotic
behavior for t — +o0o. We assume that g(t) = 0, f(x,t,u) = F(z,t) — |u|P~2u,
p > 2 and consider the following problem

t
Ut — Upg + / E(t — 8)upp(8)ds + [ulP™2u + |ug| 7 2y
0

= F(z,1),0 <z <1,t >0, (4.1)
uz(07t) = U(O, t)’ ufﬁ(]-’ t) + UU(L t) =0,
u($70) = ﬂo(%),ut(l', 0) = El(x)v
We make the following assumptions:
(H1) n>0,p,q>2,
(H2) ke W2L(R,), k > 0, satisfying
(i) k(0) >0,0<1— [ k(t)dt = koo < 1,
(ii) there exists a positive constant ¢ such that k/(t) + Ck(t) < 0 for all
t>0,
(H3) Tip € H? and @y € H',
(H4) F € LY(0,00; L?) N L?(0,00; L?), F; € L'(0,00; L?),
(H5) There exists a constant o > 0 such that [;° e[| F(t)||?dt < 4oc.

Under assumptions (H1)-(H4) and let T > 0, by theorem 2.3, the problem (4.1)
has a unique weak solution wu(t) such that

u € L®0,T; H*),u; € L>(0,T; H'), uy; € L>(0,T; L?). (4.2)
Then, we have the following

Lemma 4.1. Suppose that (H1) — (H4) hold. Then there is a unique solution u(t)
of problem (4.1) defined on Ry. Moreover

lu/ @) + l[u@)]l, < C forall t>0, (4.3)

where C' is a positive constant depending only on ug, uy, F, koo and p.
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Proof. By multiplying the equation (4.1); by u; and integrate over (0,1) x (0,t) we
obtain

E(t) +2 / /()20 + / (s)[u(s) [2ds
—t’I"T/T—SUS—UTQS .
/od/o“ Yuu(s) — u(r)2d (4.4)
= E(0) +2/ < F(s),u/(s) > ds,
0

where

E(t) =/ () + (1 - k(s)ds) o)1 + 2o

. (4.5)
+ k(t — s)||u(s) — u(t)||,27ds
0
On the other hand, by (H (~ 4) and the Cauchy’s inequality, we obtain
¢
2 [[(F @) as < [ IFGas+ [ IF I 6)as
0 (4.6)
< [T e+ [ 1F6E6s
By Gronwall’s lemma, we obtain from (4.4) and (4.6) that
+oo t
B0 < (B0 + [ 1FGds) ean ([ 171 )
0 0 (4.7)

< <E(0) + /Om ||F(s)||ds) exp (/;Oo ||F(s)||ds> = OVt > 0.

By (H3,i), we have

E(t) > |/ (1)) + (1 - k(s)ds) (@2 2 1/ O + k@2 (48)

Then we obtain (4.3) from (4.7) and (4.8). This completes the proof of Lemma
4.1. ]

In this section we state and prove decay result.

Theorem 4.2. Suppose that (H1) — (H5) hold. Then the solution u(t) of problem
(4.1) decays exponentially to zero ast — +oo in the following sense: there exist the
positive constants N and v such that

[/ @) + lw®)]l, < Ne™™*  for all t>0. (4.9)
Proof. We use the following functional
I'(t) =T(e1,e2,t) = E(t) + 1 E1(t) + e2Ex(t), (4.10)
where
Ei(t) =< u(t), v/ (t) >, (4.11)

Ea(t) = — /Ot k(t — s) <u/ (1), u(t) — u(s)> ds. (4.12)
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Estimating T'(t). N
By (2.3), (2.4), we obtain from (H2,%) that

BL(0)] = |< u(t),w () >| < S/ O + (o), (413)

B ()] = /Ot k(t — s) <u/(t),u(t) - u(s)> ds

2

< %Ilu/(t>||2 +% </0 k(t — s)||u(t) — u(s)ds> (4.14)
< %Ilu/(t)ll2 +(1- koo)/o k(t — s)|lu(t) — u(s)||2ds.

Hence, it follows from (4.10)-(4.14) that for €1, £2 small enough, there exist two
positive constants «ay, as, such that

a1 E(t) <T(t) < azE(t). (4.15)
Estimating T (t).
Now differentiating (4.4) with respect to ¢, we have
¢
E/(t) = 2|/ (1)]1, +/ K (= s)|[uls) — u(t)|5ds
0
— k@Ou(®)]2 + 2 (F(t), v/ (1)) (4.16)

< =2/ Wl + [ # (= 9)luls) —u(t s+ 2 (0.0 1),

since k(t) > 0.
By multiplying the equation (4.1); by w and integrate over (0,1) we obtain

Bl (t) = Ju/ ()17 ~ lu()2 — [u(®)][%, + (F(t), u(®))
t —s)a(u(s),u s — {|u/ ()7 2/ u .
+ / B(t = s)a(u(s), u(t))ds — (lu/ (D12’ (8), u(t) ) (4.17)
= [/ (£)1% — lu(®) 12— llu(®) |5, + (F(£), u(t)) + T () + La(2).

We now estimate the last two terms in the right side of (4.17) as follows

Estimating I (t).
Using the inequality

0, r—1
ab< —a" +
r

71671 ,Va,b > 0,Vr > 1,V > 0, (4.18)
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we have
L) = /O k(t — $)a(u(s), u(t))ds
= / k(t — s)a (u(s) —u(t),u(t)) ds + / k(t — s)||u(t)|\f]ds
0 0

< (el + g5 ([ wtssas) ([ b= 9uts) - tozas)

+(/ t k(s)ds ) )1 (#19)

1—ky [°
< illu@))? + 15, /Ok(t—S)IIU(S)—U(t)Hf,ds

+ (1= koo) a7

<G 1= kOl + 5 [ k(= s)uls) ) s,

for all §; > 0.
Estimating I5(t).
We again use inequality (4.18) we obtain from (4.3) that

1a(t) = — {Ju/ ()1 2u/ (1), u(t)) < o/ ()15 fu(t)

o1 g—1 =%
< iIIU(t)Iquq + T5f /()14 (4.20)
U
q

q—2 q—1_=2
<2% (vac) el + =88 1w/ (1l

for all §; > 0.
By combining (4.17), (4.19) and (4.20), we obtain

B{() < ~Iut@E, + 1o/ @1 - (ke =61 25 (vEC) ™) Jutol

g—1_ =% 1 -k [ (4.21)
F L2 W Ol + 5 [ K= 9)luls) — u(t)|ds
q 461 0
+ (F(t),u(t)) .
Then, we can always choose the constant §; > 0 such that
64 q-2
= koo — 0 — 224 (\@C’) > 0. (4.22)
q
This implies that
B{(t) < — [, + llw/ (O = nllu@)]2 + 2l ¢,
¢ ) (4.23)
[ (e ) luls) — u@)ds + (F(0).ult)
0
where
—1 =« 1— koo
Y2 = qTfsfﬂ Y3 = : (4.24)

46,
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Direct calculations give

El(t) = - (/Otk:(s)ds> (1)) /Ot ¥ (0= ) (! (1), u(t) — u(s) ) ds

—i—/otk(t—s
t(

k(t — s)a (/ k(t — 7)u(r)dr, u(t) — u(s)) ds

(u(t), u(t) — u(s))ds

(4.25)

+ kt—s

J
/ (B 2u(t), u(t) — u(s)) ds

0
t
+ [k
0
t
_ / k
0
Similarly to (4.17), we estimate respectively the following terms on the right-hand
side of (4.25) as follows.

Estimating J1(t).
Since k is continuous and k(0) > 0 then there exists to > 0, such that

a
)

t—s) <|u/ |92/ (1), u(t) — u(s)> ds
) (

( (
7
( P(t),u(t) —u(s))ds = Y _ Ji(t)
i=1

t—s

t to
/ k(s)ds > / k(s)ds = ko >0 forall t>t. (4.26)
0 0

Hence,

Ji(t) = — </Ot k:(s)ds) [u/ (£)||? < —kol[u/ (t)]|* for all ¢ > to. (4.27)

Estimating Jo(t).

/k:/t—s u(t) — u(s) ) ds
<m0+ o ([ |k:/ts|ds> ([ W= oliuts) - wioyas)
< Sl W) + (/ /(0= s)las) (/ /6= 9l u(s) ~ u(o)2ds )

<l 01 = 5[4/ uts) - o

FEstimating J5(t).

(4.28)

J3(t) = /0 E(t — s)a (u(t),u(t) —u(s))ds

< sau(tl+ g5 ([ #sas) ([ 1= ot —ulias) @20

1— koo [*
< (b + g [ k= s)luls) — (o) 3ds
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Estimating Jy(t).

/kt_s (/kt—r 7)dr,u(t) — (s))ds
g/o k(t = 7)|[u(r) ||,7d7/0 k(t = 5)|u(s) — u(t)||yds
<o ([ k- T>||u<r>||ndf)2
b ([ k0 o)~ wlas) w0
<oty ([ k- Pt )

+ (20445 (/ k(e =) u(s) ) )

< 265(1 — koo )?|Ju(t)

2

I5

1 — ' — S)|fluls) —u 2 S
(252+452)<1 ko) / Kt — s)[[u(s) — u(t) 2ds.

Estimating Js(t).

J5(t) = /o k(t — s) (Ju(t)Pu(t), u(t) — u(s)) ds

IA

2(v20)"™" [kt~ 01yt ~ (s

2 (\@C)p_2 [&Hu(t)ﬁ7 + % (/t k(t — s)||u(t) — u(8)||nd5> 2]

2 (\/ic)pf2

(4.31)

IN

IN

Bl + 10— b) [ K= o)att) — 5]

Estimating Jg(t). We again use inequality (4.18) with r = ¢, = J2, we obtain
from (4.3) that
<|u/ (72 (8),u(t) — u(s) ) < llu/ O Nult) = u(s) 1o
qg—1 %
Zlu(t) —u(s)l| 7, + " e ()10 (4.32)

<% (2f0> [[u(t) *U(S)Hfﬁ%%‘%llu/(t)lliq-
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It follows from (4.32) that

Jo(t) = /Ot k(t — s) <|u/ ()92 (¢), u(t) — u(5)> ds

t

2% (avac) " / (t — ) u(t) — u(s)]3ds

+—5q T (¢ kt—s (4.33)
2% (2vac) " / K(t— 5)[u(t) — u(s)]3ds

+ 2 1= k)l 01

Estimating Jz(t)

o) = — / Kt — 3) (F (), u(t) — u(s)) ds
< / k(t — )| F@)||u(t) — u(s)]ds

< el + 0o ([ ke syas) ([ 1= o)uto — wis2as)

< EIIF( )I? +202(1 — koo)/o k(t = s)llu(t) — u(s)|l3ds.

(4.34)

By combining (4.25), (4.27)-(4.31), (4.33) and (4.34), we obtain

By (t) = — (ko — &) [/ ()II? + a7 [u(t) |2 + Fallu/ (£)]]%,

3 / k(t — 9)llu(t) — u(s)|2ds (4.35)
) / k/(t—swu(s)fu<t>ugds+4%2||F<t>\|2,

where

p—2
A =14 201 — ko) +2 (\/50)
T = —1-67 (1~ ko),

_ 5% (2\fc) - k) {252 (\fC) Ty (462+ 2352” )
. k(0)

209

2
N
Il
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Combining of (4.10), (4.16), (4.23) and (4.35), we obtain
I/ (t) + erl[u)l[7, + (ko = 62)e0 — 1) [/ (1))
+ (e171 — e262%1) lu() |2 + (2 — £172 — £272) [/ ()14,

— (e17s + £27%) / Bt — ) Ju(t) — u(s)[2ds

(4.37)
t
(1= =@) [ K@= 9luls) - ) 2ds
0
€2
< / —= 2,
< (F0).20/ (1) +2ru(®)) + 71 FO)
Whence 47 is fixed, choosing
1 k(O)’Yl 2 . .
09 = = = — h 0 bit 4.38
2 37+ ,E9 = koel’ where & > is arbitrary, ( )
we deduce from (4.37) and (4.38) that
5 7 £ 7
I/ (t) + e llu(®)|7, — H IO+ —% H O]k
w(2-a (14 i% ||u/(t)||q
k(0) b
2 t
1| v3+ —=<73 / k(t — s)||u(t) — u(s)Hids (4.39)
k(0) 0
2 t
— (1 -~ k(o)sﬁ4) /0 K/ (t — s)llu(s) — u(t)||2ds
<(FO.200 + o) + 5 (142 ) PO
Next, we choose g1 > 0, with
: ¢ 2
g1 < min > —
Y3+ Vs + 540 1+ 572
and (4.15) is satisfied, then by the assumption (H2,ii), we deduce that
eﬁl €17}
I (t) + e u®)|7, + e I L)1 + o +1 a5 + kallw/ ()|
ks / (t— 8)lu(s) — ult)]2ds (4.40)
< (F(t), 26/ () + exu(t)) + ks | F (1)
where
2
ki =2—¢; <1+%) > 0,
ko
2 2
ka=¢ (1 - k€1’Y4> —€1 (’Yg + k’)@,) > 0, (4.41)
0 0

k 1
o kQ( +71>
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By combining (4.5), (4.15) and (4.40), we can always choose the constant ¥ > 0 is
independent of ¢ such that

/() + 23T (t) < <F(t), 2/ (t) + €1u(t)> + k| F ()], (4.42)

for all t > tg.
On ther other hand,

(F(), 20/ (1) + exu®)) + K5 | FO)IP < NIF@)|? +300),  (443)
for some constant N > 0. Therefore
T/ (t) +3T(t) < N||F(@#)|? for all > to. (4.44)
Putting v = 2min{o,7}. A simple integration of (4.44) over (to,t) gives
~ [T
I(t) < [F(to)e‘”0 + N/t e‘”F(s)|2ds} e " = Nje 2t (4.45)
0

for all £ > tg.
By the boundedness of T'(t) on [0, t], we deduce from (4.45) that

F(t) = ||F||Loo(07t0)€_2’Y(t_to) + N1€_2’Yt = N2€_27t, (446)
for all t > 0.
By (4.15), it follows from (4.46) that
1 1
E(t) < —TI(t) < —Noe ', forall t>0. (4.47)
a1 (65)
This completes the proof of Theorem 4.2. O

Remark 4.3. The estimate (4.9) holds for any regular solution corresponding to
(g, 1) € H? x H'. This remains holds for solutions corresponding to (tg,u1) €
H' x L? by simple density argument.

5. NUMERICAL RESULTS

Consider the following problem:
t
Ugt — Ugg +/ E(t — 8)uge(s)ds +ul = u? + F(2,1),0 <2 <1,0<t<T, (5.1)
0

with boundary conditions

uz(0,8) = u(0,t), ux(1,¢) +u(l,t) =0, (5.2)
and initial conditions
U(I‘,O) = ﬁO(QSI)vut(a%O) :al(x)v (53)
where )
uo(x) = 2+ r+1,1 (x) = —up(z), k(t) = §e_t, (5.4)
F(z,t) =2 —t)e "+ Uep(1 — Uep — U2), (5.5)
where
Uep(x,t) = (—2® + 2+ 1)e ", (5.6)

The exact solution of the problem (5.1)-(5.3) with ug(z), @i(x), k(t) and F(x,t)
defined in (5.4) and (5.5) respectively, is the function Ue, given in (5.6). To solve
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problem (5.1)-(5.3) numerically, we consider the differential system for the un-

knowns u;(t) = u(z;,t), v;(t) = Di(t), with z; = jh, h = i =0,1,...,N:

du; .
ditj(t) = U](t)7j = 07 17 "'7N7

%(t) - % [—(1 + h)uo(t) + ui(t)]

dt
—% /0 k(t — s) [~ (14 h)uo(s) + ui(s)] ds — vp (t) + ud(t) + F(zo, 1),
Wity = 5 Ty (0) — 25 0) + 52 (1)

1 (5.7)

i | O 9 () - 205(6) + (o) s
—v3(t) +u3(t) + Flzj,t),j =1,2,..,N — 1,

%(t) = % [’LLNfl(t) — (1 + h)uN(t)]
(

1 t
—oz | K= 5) avoa(s) = (14 Wy (9)]ds = o (0) + i (6) + Flo. )
0
u](O) = ﬂo(.ﬁj),vj(()) = ﬁl(xj),j = 0, 1, ...,N.
To solve the nonlinear differential system (5.7), we use the following linear recursive
scheme generated by the nonlinear term

dugn)

() =" (1), =0,1,.., N,

J

()
0 (1) = o [~ m )+ 0)]

At
—73 D k(t—iAd) [7(1 + h)ul” (iAL) + u(ln)(iAt)}

i=1

(W) + () + Flao),
i
1) = - [ul )~ 20 0+ w0

Nl 1
Z k(t — iAt) [ ™ (iAt) —2u(”)(zAt)+uJ+1(zAt)} (5.8)

- (”J(‘"fl)(t)) + (u§"’1)(t))2 + F(aj,0),5 = 1,2, N — 1,

()
N (1) = o [0 = (L ) 0]

At i
Z k(t — iAt) [u§v> LGAL) = (14 h)ul (zAt)]

- (U%H)(t))?) + (u%’*“(t))2 + Flan,t),

u"(0) = T (y), 0" (0) = s (), § = 0,1,... N,
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and where u§n)(iAt), i=1,..Ny—1,j=0,1,...,N, of the system (5.8) being
calculated at the time t = N At.

The latter system is solved by a spectral method and since the matrix of this
system is very ill-conditioned so we have to regularize it by adding to the diagonal
terms a small parameter in order to have a good accuracy of the convergence.

Figure 1

In fig.1 we have drawn the approximated solution of the problem (5.1)-(5.5) while
fig.2 represents his corresponding exact solution (5.6).

14

12

The fig.3 corresponds to the surface (z,t) — u(x,t) approximated solution in
the case where F'(x,t) = 0. So in both cases we notice the very good decay of these
surfaces to zero from T = 2.



EXISTENCE AND DECAY OF SOLUTIONS 25

0.8

Figure 3
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