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To fix the background and notations, we shall first briefly revisit some aspects of the following Ewens-like randomized occupancy problem: assume distinguishable particles are to be placed at random into the cells of the unit interval which was previously broken into random pieces according to the (Poisson-)Dirichlet partitioning model. Particles being distinguishable, the statistical structure of the problem can be understood within the Maxwell-Boltzmann setup.

In this note, we shall address the following sampling problem of a different nature: assume now that indistinguishable particles are to be placed at random within the cells with (Poisson-)Dirichlet distributed sizes. Then the statistical formalism to be used is the one of Bose-Einstein. We show that in the grand canonical ensemble, the Bose sampling procedure from (Poisson-)Dirichlet proportions is, to a large extent, amenable to exact analytic calculations. This concerns for example the full Bose occupancy distributions, the distribution of the number of distinct occupied fragments, the number of cells with a prescribed amount of particles. Using a grand canonical approach, a phase transition phenomenon is shown to take place provided the disorder parameter of the (Poisson-)Dirichlet partition is large enough; we describe this phase transition in some details.

Introduction

Sampling from random Dirichlet and Poisson-Dirichlet partitions has for long been a subject of recurrent interest (see [START_REF] Tavaré | Multivariate Ewens distribution[END_REF] and 1 references therein for historical background and applications to various fields). In one model, a number k of distinguishable particles (balls) are sequentially and uniformly thrown on the interval which has been previously partitioned at random into n pieces (fragments, bins or cells) according to the Dirichlet law with "disorder" parameter θ > 0. Since particles are distinguishable, the statistical structure of the problem can nicely be understood within the Maxwell-Boltzmann setup. Many interesting questions can be (and have been) developed within this randomized occupancy framework, for instance and to cite only a few:

-What is the joint cells occupancy distribution? -What is the state of cell occupancies if sequential sampling process is stopped when some cell has received c > 1 particles for the first time ? (the randomized Banach match box problem if n = 2). -What is the sample size (particle number) till the first visit to smallest fragment? -What is the sample size till some fragment has been visited twice for the first time? (the birthday problem). -What is the sample size till all fragments have been visited at least once (r times)? (the coupon collector problem). -What is the sample size between consecutive visits to distinct fragments? -What is the number of distinct fragments visited by the k-sample? -The laws of succession and Pòlya urn scheme.... These problems were also naturally investigated within the extended framework of the Poisson-Dirichlet partitioning model. This model may be viewed by taking an appropriate Kingman weak limit (n ↑ ∞, θ ↓ 0 while nθ = γ > 0) of the Dirichlet partitioning model after reordering the random fragment sizes. For instance, the occupancy distribution in this context yields the celebrated Ewens Sampling Formula.

The purpose of this note is to address the following sampling problem: assume now that k indistinguishable particles are to the placed at random into the cells with Dirichlet distributed random sizes. Then the statistical formalism to be used is the one of Bose-Einstein. Since the image of a sequential throw is lost (in a way, particles are now thrown all at once), the questions relative to stopping times become meaningless, to some extent. However the questions relative to the statistics of occupancies pertain. We shall essentially be concerned here by this distributional problem and its specificities. It turns out that the canonical Bose occupancy distributions (particle number k is fixed) are difficult to handle analytically. However, we will show that in the grand canonical ensemble (where particle number is appropriately randomized), the Bose sampling procedure from Dirichlet and Poisson-Dirichlet proportions is, to a large extent, amenable to exact analytic calculations. We shall also show that when the Dirichlet disorder parameter θ is large enough (namely when θ > 1/ (n -1)), a phase transition occurs which is reminiscent of a Bose-Einstein like condensation phenomenon in a different random energy levels occupancy context. In the Poisson-Dirichlet situation, a similar phase transition occurs at the condition that γ > 1. No such critical phenomena arise in the classical Maxwell-Boltzmann formulation of the sampling problem.

Preliminaries on Ewens-sampling from Dirichlet populations

To fix the ideas, notations and analogies, we start recalling some ingredients of the classical occupancies statistics when particles are distinguishable (Maxwell-Boltzmann) before turning in the next section to the main purpose of this work: the statistical properties of Bose samples from Dirichlet populations (when particles to be placed are indistinguishable).

Dirichlet partition of the interval

Consider the following random partition into n fragments (cells or states) of the unit interval. Let θ > 0 be some 'disorder' parameter and assume that the random fragment sizes S n := (S 1 , .., S n ) (with n m=1 S m = 1) are distributed according to the (exchangeable) Dirichlet density function on the simplex, that is to say

f S1,..,Sn (s 1 , .., s n ) = Γ (nθ) Γ (θ) n n m=1 s θ-1 m • δ ( n m=1 sm-1) .
(2.1)

Alternatively, with (θ) q := Γ (θ + q) /Γ (θ) and Γ (.) the Euler-gamma function, using well-known properties of Dirichlet integrals, the law of S n can also be characterized by its joint moment function

E n m=1 S qm m = 1 (nθ) n m=1 qm n m=1 (θ) qm with q m > -θ. (2.2)
If this is so, we shall say S n d ∼ D n (θ). There are two ways to generate Dirichlet partitioning:

-(normalizing) Firstly, S n can be obtained while considering the independent and identically distributed (iid) random vector

X n := X d = X 1 , .., X n , satisfying X d ∼ gamma(θ) and by letting S m = X m / (X 1 + .. + X n ), m = 1, .., n.
-(conditioning) Secondly, with x > 0, consider the partitioning of the interval [0, x] obtained while conditioning as follows:

S n (x) := (X 1 , .., X n | X 1 + .. + X n = x)
where X n is as above. Then S n := S n (1) has Dirichlet distribution and the following important scaling property holds:

S n (x) d = xS n (1). If S n d ∼ D n (θ), S m d = S n , m = 1, ..,
n, independently of m and the individual fragments sizes are all identically distributed. Their common density on the interval (0, 1) is a beta(θ, (n -1) θ) density, with E (S n ) = 1/n and σ 2 (S n ) = n-1 n 2 (nθ+1) . In particular, φ (q) := E (S q n ) = (θ) q / (nθ) q is the moment function of typical fragment size S n . Further,

nS n d → Γ θ,θ d ∼ gamma (θ, θ) , with density f Γ θ,θ (t) = θ θ Γ (θ) t θ-1 e -θt , t > 0.
For each m 1 = m 2 ∈ [n], as conventional wisdom suggests, (S m1 , S m2 ) are negatively correlated with

Cov (S m1 , S m2 ) = -σ 2 (Sn) n-1 = - 1 n 2 (nθ+1)
. When θ = 1, the partition model Eqs.(2.1, 2.2) corresponds to the standard uniform random partitioning model of the interval. When θ ↑ ∞, S n = (1/n, .., 1/n), the deterministic uniform partition. Consider next the sequence S (n) := S (m) ; m = 1, .., n obtained while ranking the spacings vector S n according to descending sizes, hence with S (1) > .. > S (m) > .. > S (n) . The S (m) s distribution can hardly be derived in closed form. However, one can prove that, as n ↑ ∞

n (1+θ)/θ S (n) d → W θ and nθ S (1) - 1 nθ log n log θ-1 n d → G θ
where W θ is a Weibull random variable, G θ a Gumbel random variable such that

P (W θ > t) = exp -t θ s θ , t > 0 and P (G θ ≤ t) = exp -1 s θ exp (-t) , t ∈ R, s θ := Γ(1+θ) θ θ > 0 a scale parameter. Note that s θ > 1 if θ ∈ (0, 1), s θ=1 = 1 and s θ < 1 if θ > 1 and s θ → θ↓0 1.
In the random division of the interval as in Eq. (2.1), although all fragments are identically distributed with sizes of order n -1 , the smallest fragment size grows like n -(θ+1)/θ while the one of the largest is of order 1 nθ log n log θ-1 n . The smaller disorder θ is, the larger (smaller) the largest (smallest) fragment size is: hence, the smaller θ is, the more the values of the S m s are, with high probability, disparate. When θ is small, the size of the largest fragment S (1) tends to dominate the other ones. On the contrary, large values of θ correspond to situations in which the range of fragment sizes is lower: the fragment sizes look more homogeneous and, in the limit θ ↑ ∞, distribution Eq. (2.1) concentrates on its centre 1 n , .., 1 n . For large disorder θ, the diversity of the partition is small.

Although S n has a degenerate weak limit when n ↑ ∞, θ ↓ 0 while nθ = γ > 0, this limit is worth being considered (see [START_REF] Kingman | Random discrete distributions[END_REF][START_REF] Kingman | Random partitions in population genetics[END_REF] and (1993)). Indeed, in this * -limit, S (n) → * S (∞) d ∼ P D (γ) which is the Poisson-Dirichlet distribution with parameter γ; see [START_REF] Kingman | Poisson processes[END_REF] and [START_REF] Tavaré | Multivariate Ewens distribution[END_REF]. We shall also call γ the "disorder" parameter since P D partitions with large γ approach the 'uniform distribution' on the infinite-dimensional simplex whereas for small values of γ, the largest fragment is the dominant one.

Maxwell-Boltzmann approach to sampling problems from Dirichlet partition

Before discussing the specific statistical features of Bose samples drawn from Dirichlet populations, we first revisit the Ewens approach to sampling formulae which is akin to a Maxwell-Boltzmann sampling procedure.

• Sampled fragment size when sample size is 1: Assume first sample size is k = 1 and suppose the sampled tagged fragment is the one hit by a uniform random throw of a particle on the interval. Under our hypothesis, this particle will launch on fragment number m with conditional (given S n ) probability S m . The corresponding fragment size attached to this single particle, say S n , has conditional law given by

P Sn (S n = S m ) = S m , m = 1, .., n.
(Here and throughout, the subscript S n in P Sn (or E Sn ) will denote conditional probability (or expectation) given S n ). Let E Sn (S q n ) be its moment function and put φ Sn (q) := n m=1 S q m . Then E Sn (S q n ) = φ Sn (q + 1) /φ Sn [START_REF] Cesaroli | Poisson randomization in occupancy problems[END_REF]. Averaging over S n ,

E (S q n ) := EE Sn (S q n ) = nE S q+1 n =: nφ (q + 1)
characterizes the distribution of the fragment size of this single particle. In particular,

E (S n ) = nφ (2) = θ + 1 nθ + 1 > 1 n .
In this size-biased picking procedure S n → S n , states with large size are clearly favored. One therefore expects (and this indeed true) that S n is stochastically larger than the typical fragment size S n from S n .

• Maxwell-Boltzmann-Ewens sampling (sample size is k > 1):

The full Maxwell-Boltzmann sampling version of the randomized occupancy problem proceeds as follows: let (U 1 , .., U k ) be k iid uniform throws on [0, 1] partitioned by S n . Let (B n,k (1) , .., B n,k (n)) be an integral-valued random vector which counts the number of visits of particles thus thrown to the different fragments in a k-sample in the following sense: if M l is the random state label which the l-th trial hits, then B n,k (m) := 

P Sn (B n,k (m) = b m ; m = 1, .., n) = k! n m=1 b m ! n m=1 S bm m . (2.3)
Proceeding in this way to fill up sequentially the states S n , particles are clearly assumed distinguishable. Indeed, in the above expression of the probability, the multinomial factor Averaging over S n gives the Maxwell-Boltzmann distribution

P (B n,k (m) = b m ; m = 1, .., n) = EP Sn (B n,k (m) = b m ; m = 1, .., n) = k! n m=1 b m ! 1 (nθ) k n m=1 (θ) bm ,
also known in the statistical context as the Dirichlet multinomial distribution.

Examples: When θ ↑ ∞, the partition S n reduces to 1 n , .., 1 n which is not random. It follows from Eq. ( 2.3) that

P (B n,k (m) = b m ; m = 1, .., n) = k! n m=1 b m ! n -k .
Unless otherwise specified, we shall assume in the sequel that θ < ∞ which means that sampling really is from Dirichlet probabilities which are indeed random.

When θ = 1, the partition S n reduces to the random uniform partition. It follows from Eq. (2.3) that

P (B n,k (m) = b m ; m = 1, .., n) = k! (n) k = 1 n+k-1 k , the uniform distribution on the set {b m ∈ N 0 , m = 1, .., n : n 1 b m = k} . ♦
We also recall the following almost sure convergence which follows from conditional strong law of large numbers:

Lemma 1 It holds that (B n,k (m) ; m = 1, .., n) /k → S n as k ↑ ∞, (2.4)
in distribution and almost surely.

In a Maxwell-Boltzmann approach to the sampling problem from Dirichlet proportions, the proportions of sampled fragments when sample size is large is balanced (no concentration phenomenon within a specific fragment) and the Dirichlet partition is recovered in the limit.

• Sampling distribution as a random allocation scheme: Let (η m ) m≥1 be an iid sequence of negative-binomial (or Pòlya) distributed random variables on N 0 with mean 1 and distribution

P (η 1 = b 1 ) = (θ) b1 b 1 ! x b1 x θ , b 1 = 0, 1, ... (2.5) with x = (1 + θ) -1 , x := 1 -x. The generating function of η 1 is E (u η 1 1 ) = 1 -xu 1 x -θ , 0 ≤ u 1 < 1/x. (2.6)
The random variable η 1 has mean 1 and variance 1 + 1 θ , exceeding 1 for finite θ (it is over-dispersing compared to a mean 1 Poisson distribution). Its distribution can be obtained while randomizing the intensity a Poisson distribution by a gamma(θ, θ) -distributed independent random variable (with mean 1 and variance 1/θ); it is a gamma-Poisson mixture. Let µ n := n m=1 η m , n ≥ 1, be the partial sum sequence of (η m ) m≥1 with µ 0 := 0. Then, one can be check that

P (B n,k (m) = b m ; m = 1, .., n) = P (η 1 = b 1 , .., η n = b n | µ n = k) .
The unconditional multinomial-Dirichlet distribution is in the class of random allocation schemes as the ones obtained by conditioning a random walk by its terminal value (see [START_REF] Kolchin | Random mappings. Translated from the Russian[END_REF], [START_REF] Johnson | Urn models and their application. An approach to modern discrete probability theory[END_REF] for instance).

• The number of distinct visited fragments:

Let now P n,k := n m=1 I (B n,k (m) > 0) count
the number of distinct fragments which have been visited in the k-sampling process. With 1 ≤ m 1 < .. < m p ≤ n a subset of p labels from {1, .., n}, with b q ∈ N := {1, 2, ..}, q = 1, .., p, we clearly have

P Sn (M 1 , .., M k ∈ {m 1 , .., m p } ; B n,k (m 1 ) = b 1 , .., B n,k (m p ) = b p ; P n,k = p) = k! p q=1 b q ! p q=1 S bq mq . (2.7)
Define next B n,k (q) > 0, q = 1, .., p to be the numbers of type-q fragments where the P n,k = p fragments observed were labelled in an arbitrary way (independently of the sampling mechanism). Averaging the last formula over S n , summing over the n p sequences of hit labels and making use of its exchangeability, we easily obtain (see [START_REF] Huillet | Sampling formulae arising from random Dirichlet populations[END_REF], for details)

Theorem 2 (i) With b q ∈ N : p q=1 b q = k, we have P (B n,k (1) = b 1 , .., B n,k (p) = b p ; P n,k = p) (2.8) = n p k! p q=1 b q ! 1 (nθ) k p q=1 (θ) bq . (ii) With (θ) • := (θ) 1 , (θ) 2 , .. and B k,p ((θ) • ) := k! p! bq∈N: p q=1 bq=k p q=1 (θ) bq b q !
Bell polynomials in the indeterminates (θ) • , it holds that,

P (P n,k = p) = n! (n -p)! 1 (nθ) k B k,p ((θ) • ) (2.9)
where p = 1, .., n ∧ k.

Concerning the distribution of P n,k , we also have the conditional transition probabilities

P (P n,k+1 = p + 1 | P n,k = p) = (n -p) θ nθ + k P (P n,k+1 = p | P n,k = p) = p r=1 (θ + b r ) nθ + k = pθ + k nθ + k .
Therefore, the following recurrence holds

P (P n,k+1 = p) = (n -p + 1) θ nθ + k P (P n,k = p -1) + pθ + k nθ + k P (P n,k = p) .
As a simple application of the inclusion-exclusion principle, we shall finally recall a straightforward representation of the probability P (P n,k = p) under the form of an alternate sum (see for example [START_REF] Keener | Distributions on partitions[END_REF], pages 1471-1472). This is an explicit expression of this probability in contrast with Eq. (2.9) which, as just shown, is recursive.

Corollary 3 (i) With θ n,k;m := ((n-m)θ) k (nθ) k , m = 0, .., n -1, the generating function of P n,k reads E u P n,k = n-1 m=0 n m u n-m (1 -u) m θ n,k;m . (2.10)
In particular, the mean and variance are given by

E (P n,k ) = n 1 -θ n,k;1 = n 1 - ((n -1) θ) k (nθ) k , (2.11) σ 2 (P n,k ) = n θ n,k;1 + (n -1) θ n,k;2 -n θ 2 n,k;1 .
(ii)

P (P n,k = p) = p q=1 (-1)
p-q n p p q θ n,k;n-q . (2.12) 

Remark: When θ = 1, one can check that E (P n,k ) = (nk) / (n + k),
-limit n ↑ ∞, θ ↓ 0, nθ = γ > 0, using B k,p ((θ) • ) ∼ * θ p B k,p ((• -1)!)
, we easily get

P (P n,k = p) → * P * (P k = p) = γ p s k,p (γ) k , p = 1, .., k (2.13) and P (B n,k (1) = b 1 , .., B n,k (p) = b p | P n,k = p) → * P * (B k (1) = b 1 , .., B k (p) = b p | P k = p) = k! p! 1 s k,p p q=1 b q . (2.14)
We note that the law of P k in this case is in the class of exponential families. Further, the generating function of P k takes the simple form

E * u P k = (γu) k (γ) k . (2.15)
In particular, the mean and variance are given by

E * (P k ) = k-1 l=0 γ γ + l , σ 2 * (P k ) = k-1 l=0 γl (γ + l) 2 .
In this context, we recall the important result of Korwar and Hollander (1973)

P k log k → γ, k ↑ ∞, almost surely. (2.16)
• The second Ewens formula for Dirichlet populations:

Let now A n,k (i), i ∈ {0, .., k} count the number of fragments in the k-sample with i representatives, that is

A n,k (i) = # {m ∈ {1, .., n} : B n,k (m) = i} = n m=1 I (B n,k (m) = i) . (2.17) Then k i=0 A n,k (i) = n, k i=1 A n,k (i) = p
is the number of fragments visited by the k-sample and A n,k (0) the number of unvisited ones. Note that k i=1 iA n,k (i) = k is the sample size. The vector (A n,k (1) , .., A n,k (k)) is called the fragments vector count or the species vector count in biology, see [START_REF] Ewens | Population genetics theory -the past and the future[END_REF]. In [START_REF] Sibuya | A random clustering process[END_REF], it is called the size-index vector and in [START_REF] Good | The estimation of probabilities. An essay on modern Bayesian methods[END_REF], the frequency of frequencies.

In this case (see [START_REF] Huillet | Sampling formulae arising from random Dirichlet populations[END_REF] for computational details), with {n} p := n (n -1) .. (n -p + 1) the order p falling factorial of n, we have

Theorem 4 For any a i ≥ 0, i = 1, .., k satisfying k i=1 ia i = k and k i=1 a i = p, we have P (A n,k (1) = a 1 , .., A n,k (k) = a k ; P n,k = p) (2.18) = {n} p k! k i=1 i! ai a i ! 1 (nθ) k k i=1 (θ) ai i .
Considering the Kingman limit n ↑ ∞, θ ↓ 0 while nθ = γ > 0, using (θ) i ∼ θ↓0 θ (i -1)! and {n} p ∼ n↑∞ n p , we recover the celebrated Ewens Sampling Formula (1972): Corollary 5 In the Kingman limit, the probability displayed in (2.18) converges to

P * (A k (1) = a 1 , .., A k (k) = a k ; P k = p) = k!γ p (γ) k k i=1 i ai a i ! . (2.

19)

• Ewens grand-canonical sampling formula: Although Poissonization of sample size in occupancy problems was addressed in [START_REF] Cesaroli | Poisson randomization in occupancy problems[END_REF], this point has not been discussed in the specific random context of Dirichlet partitioning, to the best of the author knowledge. As it will prove essential when considering Bose samples, we shall briefly introduce this topic.

The problem here is to randomize sample size k. Let z > 0 be some "activity" parameter. Let K n,z be the random sample size and assume it has Poisson distribution with mean κ := z > 0.

Multiplying the probability displayed in Eq. (2.3) by z k k! e -z , with b m ∈ N 0 , m = 1, .., n, we get

P Sn (B n,z (m) = b m ; m = 1, .., n) = n m=1 e -zSm (zS m ) bm b m !
where the random occupancies B are now indexed by z instead of k. In this formulation, the annoying restriction that m 1 b m = k has been lifted, which is the usual trick used in the grand-canonical ensemble of equilibrium statistical mechanics. Given S n , the grand canonical distribution of B n,z (m) ; m = 1, .., n turns out to be the product of n independent Poisson random variables with intensities zS m , m = 1, .., n. Averaging the last formula over S n and making use of its exchangeability, we get

P (B n,z (m) = b m ; m = 1, .., n) = e -z (nθ) b1+..+bn n m=1 z bm (θ) bm b m ! .
The unconditional distribution of B n,z (m) = b m ; m = 1, .., n is still exchangeable but independence is lost.

Multiplying now the probability displayed in Eq. (2.7) by z k k! e -z , with b q ∈ N, q = 1, .., p, we get

P Sn (M 1 , .., M k ∈ {m 1 , .., m p } ; B n,z (m 1 ) = b 1 , .., B n,z (m p ) = b p ; P n,z = p) = e -z p q=1 zS mq bq b q ! . Summing over b q ∈ N P Sn (M 1 , .., M k ∈ {m 1 , .., m p } ; P n,z = p) = e -z p q=1
e zSm q -1 .

Averaging the last formula over S n and making use of its exchangeability, we get the unconditional grand-canonical probability for the number P n,z of distinct visited fragments

P (P n,z = p) = n p e -z E p q=1
e zSq -1 .

Here p ∈ {0, 1, .., n} with the convention that P (P n,z = 0) = e -z which, as required, is the probability that there is no particle in the system: the event K n,z = 0. Clearly, for each p ∈ {1, .., n}, one can check that

P (P n,z = p) = k≥p z k e -z k! P (P n,k = p)
where P (P n,k = p) is the canonical distribution given that the sample size is k, displayed above in Eq. (2.9) or Eq. (2.12).

Bose samples from Dirichlet populations

We now come to the announced Bose-Einstein version of the sampling process from Dirichlet proportions. In this problem, particles are assumed to be indistinguishable.

The statistical structure of the Bose model

Let there now be k indistinguishable particles to place at random on the states S n . Conditionally on S n (quenched disorder), let B n,k (m) denote the occupancy of state m with Bose equilibrium collective law given by

P Sn (B n,k (m) = b m ; m = 1, .., n) = 1 Z k,Sn (θ) n m=1 S bm m . (3.1)
With z k f (z) the coefficient of z k in the power-series expansion of f (z) the normalizing partition function term reads

Z k,Sn (θ) = b 1 +..+b n =k n m=1 S b m m = z k n m=1 (1 -zS m ) -1 . (3.2)
The distribution thus defined favors configurations with minimal (interaction free) "energy": Example: When θ ↑ ∞, the limiting partition S n reduces to 1 n , .., 1 n which is not random. It follows from the above equation that

H n,k (S n ) := -
P (B n,k (m) = b m ; m = 1, .., n) = 1 n+k-1 k
, the uniform distribution on the set {b m ∈ N 0 , m = 1, .., n : n 1 b m = k} . This distribution is known as the Bose-Einstein distribution (see [START_REF] Feller | An introduction to probability theory and its applications, 1 and 2[END_REF] and [START_REF] Holst | On discrete spacings and the Bose-Einstein distribution[END_REF]). Curiously, it coincides with the Maxwell-Boltzmann sampling formula from the random uniform partition S n (the Dirichlet partition obtained when θ = 1). ♦ Thanks to the representation of S n in terms of ratios of iid gamma distributed random variables X n , this is also

P Sn (B n,k (m) = b m ; m = 1, .., n) = P Xn (B n,k (m) = b m ; m = 1, .., n) where P Xn (B n,k (m) = b m ; m = 1, .., n) = 1 Z k,Xn (θ) n m=1 X bm m , Z k,Xn (θ) = b 1 +..+b n =k n m=1 X b m m .
Given there are k particles, averaging over disorder S n (or X n ), the Bose unconditional occupancy probability now is

P (B n,k (m) = b m ; m = 1, .., n) = EP Sn (B n,k (m) = b m ; m = 1, .., n) = EP Xn (B n,k (m) = b m ; m = 1, .., n) .
As a symmetric function of the b m s, this distribution is exchangeable. In particular, E (B n,k (m)) = k/n, m = 1, .., n. Even though, by using this 'ratio trick', the average to perform can be over the simpler sequence of iid random variables X n (rather than over S n on the simplex), these canonical occupancy distributions conditioned on sample size being equal to k remain clearly hard to evaluate in practice.

• One-dimensional distribution:

We here briefly give the occupancy law of any cell. With b 1 ∈ {0, .., k} and X n\1 := (X 2 , .., X n )

P Xn (B n,k (1) = b 1 ) = X b1 1 Z k,Xn (θ) b 2 +..+b n =k-b1 n m=2 X b m m , = X b1 1 Z k-b1,X n\1 (θ) Z k,Xn (θ) 
and

P (B n,k (1) = b 1 ) = E X b1 1 Z k-b1,X n\1 (θ) Z k,Xn (θ)
is the one-dimensional marginal of (B n,k (m) ; m = 1, .., n).

• Random allocation scheme representation of Bose distribution:

We first observe from Eqs. (3.1, 3.2) that, given S n :

(B n,k (m) = b m ; m = 1, .., n) d = (ξ 1 , .., ξ n | ζ n = k)
where (ξ 1 , .., ξ n ) are mutually independent on N n 0 with sum ζ n := n 1 ξ m and

P Sn (ξ m = b m ) = S bm m (1 -S m ) , b m ∈ N 0 ,
geometric distributions with random success probabilities S m d ∼ beta(θ, (n -1) θ), for each m = 1, .., n. Such a representation of the occupancies is called a random allocation scheme property in [START_REF] Kolchin | Random mappings. Translated from the Russian[END_REF].

• A concentration phenomenon: Let us now show that, when the number of fragments is fixed, the proportions of particles tend to concentrate on ground state (which is the fragment with largest size) when the number of particles increases. This result should be compared with the one displayed in Lemma 1 when sampling uses a Maxwell-Boltzmann procedure. appearing in Eq. (3.2) into a sum of n rational fractions, extracting its coefficient of z k , we easily get (after obvious identification of the coefficients)

Z k,Sn (θ) = Z k,S (n) (θ) = n m=1 C (m) S k (m) where C (m) := l =m 1 - S (l) S (m) -1
.

Isolate the ground state term and factorize S (1) . Then

Z k,S (n) (θ) = S k (1) C (1) + n m=2 C (m) S k (m)
where S (m) := S (m) /S (1) , m = 1, .., n. With b 1 + .. + b n = k, we want to compute the law of the occupancies B (n),k (m) of S (m) which is

P S (n) B (n),k (m) = b m ; m = 1, .., n = 1 Z k,S (n) (θ) n m=1 S bm (m) . Since b 1 = k -(b 2 + .. + b n ), using the expression of Z k,S (n) (θ)
, the occupancy distribution of all states but ground state reads

P S (n) B (n),k (m) = b m ; m = 2, .., n = n m=2 S bm (m) C (1) 1 + n m=2 C (m) C (1) S k (m) = n m=2 S bm (m) 1 -S (m) 1 + n m=2 C (m) C (1) S k (m) , using C (1) = m =1 1 -S (m) -1
.

Developing the denominator in power series, we finally obtain

P S (n) B (n),k (m) = b m ; m = 2, .., n = (1 -ε (k)) n m=2 S bm (m) 1 -S (m) . (3.4) Since S (n) < .. < S (3) < S (2) < 1, the corrective term ε (k) := S k (2) C (2) /C (1)
< 0 is dominant to the second order. It goes to 0 exponentially fast with k becoming large. When k is large, a good approximation of occupancies of all ordered states but ground state therefore is a product of geometrically distributed random variables with normalized success probabilities S (m) .

Suppose b m = kx m for some fixed x m ∈ (0, 1] ; m = 2, .., n. In this case, the probability displayed in Eq. (3.4) goes to 0 when k goes to ∞: in other words, the probabilities of B (n),k (m) /k; m = 2, .., n all concentrate at 0 and therefore all the probability mass goes to ground state (m = 1). This is the content of statement displayed in Eq. (3.3) where by the event S m > S n\m it is meant that S m is larger than all entries constituting the random vector S n\m . Note that almost surely n m=1 P m,n = 1 and that for each m, E (P m,n ) = 1/n and σ 2 (P m,n ) = (1 -1/n) /n.

• Gibbs randomization of sample size (variable particle number):

As it can be guessed from above, the canonical conditional distributions given sample size is k are difficult to evaluate in general (except for k = 1). To circumvent this drawback, we shall again assume that the number of particles is variable and so randomize sample size. In this way, we shall obtain a tractable grand-canonical version of Bose sample from Dirichlet proportions.

Let α > 0 stand for fugacity and let z = e -α ∈ (0, z c := 1) be the activity parameter. Assume the number of particles K n,z is now random with law given by the Gibbs model

P Sn (K n,z = k) = z k Z k,Sn (θ) Z z,Sn (θ)
where the grand canonical partition now reads

Z z,Sn (θ) = k≥0 z k Z k,Sn (θ) = n m=1 1 1 -zS m .
Alternatively, with u ∈ [0, 1], we clearly have

E Sn u Kn,z = Z uz,Sn (θ) Z z,Sn (θ) = n m=1 1 -zS m 1 -uzS m E u Kn,z = E n m=1 1 -zS m 1 -uzS m .
Under this form, this shows that, given S n , K n,z is the sum of n independent geometric random variables with respective success probabilities zS m , m = 1, .., n.

To each value z ∈ (0, 1) there is a unique corresponding value of κ := E (K n,z ) through:

E Sn (K n,z ) = -∂ α log Z e -α ,Sn (θ) = n m=1 zS m 1 -zS m E (K n,z ) = : κ = EE Sn (K n,z ) = nE zS n 1 -zS n .
As will be checked below, κ is an increasing function of z ∈ (0, 1), possibly diverging when z ↑ z c , depending on the range of the variables θ and n parameterizing the Dirichlet model (see below where condition (n -1) θ ≤ 1 versus (n -1) θ > 1 appears that separates two phases depending on whether κ ↑ ∞ or not when z ↑ 1 -). Indexing now cell occupancies by z rather than k, with b m ∈ N 0 ; m = 1, .., n, the joint occupancies probability takes the product form

P Sn (B n,z (m) = b m ; m = 1, .., n) = n m=1 (zS m ) bm (1 -zS m )
where each B n,z (m) now follows a geometric distribution with success probability zS m . In other words, given S n , the grand canonical distribution of B n,z (m) ; m = 1, .., n now turns out to be the product of n independent geometric random variables with success probabilities zS m , m = 1, .., n.

• The Bose sample grand-canonical distribution:

First we note that P Sn (B n,z (m) ≥ b m ; m = 1, .., n) = n m=1 (zS m ) bm . Av- eraging over S n , with k := n 1 b m , P (B n,z (m) ≥ b m ; m = 1, .., n) = 1 (nθ) k n m=1 z bm (θ) bm .
In particular,

P (B n,z (m) ≥ 1; m = 1, .., n) = (θz) n (nθ) n
is the probability that all fragments have been visited at least once in a Bose sample (the coupon collector problem, see [START_REF] Feller | An introduction to probability theory and its applications, 1 and 2[END_REF]). In other related applications (reminiscent of the Banach match box problem), with c ∈ N, some cell capacity parameter, one can find useful to estimate the probability P (B n,z (m) ≤ c; m = 1, .., n) to have less than c particles in all cells. To compute this quantity, we first need to estimate P (B n,z (m) = b m ; m = 1, .., n) and then sum over each b m ∈ {0, .., c}. Averaging over S n , this unconditional occupancy probability is

Theorem 7 With k := n m=1 b m , P (B n,z (m) = b m ; m = 1, .., n) := EP Sn (B n,z (m) = b m ; m = 1, .., n) = z k (nθ) k n m=1 (θ) bm n q=0 (-z) q (nθ + k) q n q q r=1 (θ + b r ) . Proof: Using exchangeability of S n P (B n,z (m) = b m ; m = 1, .., n) = E n m=1 (zS m ) bm (1 -zS m ) = n q=0 (-1) q 1≤m1<..<mq≤n E   q r=1 (zS mr ) bm r +1 m ={m1,..,mq} (zS m ) bm   = z k n q=0 (-z) q n q E q r=1 S br+1 r n r=q+1 S br r = z k n q=0 (-z) q (nθ) k+q n q q r=1 (θ) br+1 n r=q+1 (θ) br = z k (nθ) k n m=1 (θ) bm n q=0 (-z) q (nθ + k) q n q q r=1 (θ + b r ) .
We used (θ) k+q = (θ) k (θ + k) q and (θ) 0 = 1.

It is exchangeable but not of product form. From this, we would get the law of K n,z itself

P (K n,z = k) = b1+..+bn=k P (B n,z (m) = b m ; m = 1, .., n) .
This result allows to extract some information of interest on the grandcanonical equilibrium law of individual cell occupancy. Indeed, with b 1 ∈ N 0

P (B n,z (1) = b 1 ) = E (zS n ) b1 (1 -zS n ) = z b1 (θ) b1 (nθ) b1 -z (θ) b1+1 (nθ) b1+1
is the one-dimensional expression of B n,z (1) law. Therefore, Corollary 8 (i) The probability that in any cell there is more than b 1 particles is

P (B n,z (1) ≥ b 1 ) = z b1 (θ) b1 (nθ) b1 , b 1 ∈ N 0 .
(ii) When z < z c := 1, this one-dimensional probability decays exponentially.

(iii) At critical point z = z c , B n,z (1) 
has power law tails with exponent

(n -1) θ > 0: therefore, E (B n,z (1)) = ∞ if and only (n -1) θ ∈ (0, 1] and σ 2 (B n,z (1)) < ∞ if and only (n -1) θ > 2. Proof: (iii) We have (θ) b 1 (nθ) b 1 = Γ(nθ) Γ(θ) (b1) θ (b1) nθ
and when b 1 is large, using Stirling formula, (b 1 ) θ ∼ b θ 1 . This shows that

(θ) b 1 (nθ) b 1 ∼ Γ(nθ) Γ(θ) b -(n-1)θ 1 and B n,z (1) 
has power law tails with exponent (n -1) θ > 0.

• The number of distinct visited fragments in a Bose sample: Let P n,z := n m=1 I (B n,z (m) > 0) be the number of distinct visited fragments in a Bose sample of the grand canonical ensemble. With p ≤ n, assume that P n,z = p. Let m 1 < .. < m p be a realization of the labels M q ; q = 1, .., p of these p visited fragments. With b q ∈ N, q = 1, .., p, we have

P Sn (M q = m q ; B n,z (m q ) = b q ; q = 1, .., p; P n,z = p) = p q=1 zS mq bq n m=1 (1 -zS m ) .
Summing over b q ∈ N, q = 1, .., p P Sn (M q = m q ; q = 1, .., p; P n,z = p) = showing that given S n , if the visited labels sequence is known, P n,z is the sum of independent Bernoulli distributed random variables with success probability zS mq . Averaging over S n and using exchangeability of S n , with p ∈ {0, .., n}

P (P n,z = p) = n p E p q=1 (zS q ) n q=p+1 (1 -zS q ) .
Differentiating this expression with respect to z, we obtain z∂ z P (P n,z = p) = pP (P n,z = p) -(p + 1) P (P n,z = p + 1) so that if Φ n,z (u) := E u Pn,z is the generating function of P n,z , it satisfies

z∂ z Φ n,z (u) = -(1 -u) ∂ u Φ n,z (u). In particular, ∂ u Φ n,z (1) 
=: E (P n,z ) satisfies z∂ z E (P n,z ) = E (P n,z ) suggesting E (P n,z ) ∝ z . In fact, as shown below

E (P n,z ) = z ∈ (0, 1) ,
independently of n: the Bose grand-canonical expected number of visited fragments is at most one.

Developing the second product in the expression of P (P n,z = p) and making use of Eq. (2.2), we get the alternate sum representation

P (P n,z = p) = (zθ) p n p n-p q=0 n -p q (-θz) q (nθ) p+q = n p n r=p (-1) r-p n -p r -p (θz) r (nθ) r . 
Summing over p ∈ {0, .., n} and reversing the summation order, this gives

E (P n,z ) = n! n p=1 1 (p -1)! n r=p (-1) r-p (r -p)! (n -r)! (θz) r (nθ) r = n! n r=1 1 (n -r)! (θz) r (nθ) r 1 (r -1)! r-1 q=0 (-1) q r -1 q = z ∈ (0, 1) .
More generally, proceeding similarly

E u Pn,z = n r=0 n r (-θz (1 -u)) r (nθ) r .
From this, the variance of P n,z is σ 2 (P n,z ) = z -z 2 (θ + 1) / (nθ + 1) > 0 and more generally, (iii) With r ∈ {0, .., n}, the falling factorial moments of P n,z are

E {P n,z } r = {n} r (θz) 
E {P n,z } r = {n} r (θz) r (nθ) r .
In particular: E (P n,z ) = z and σ 2 (P n,z ) = z -z 2 (θ + 1) / (nθ + 1) .

In the * -Kingman limit, we clearly obtain Proof: Points (i) to (iii) can easily be derived from the latter Theorem. Point (iv) is obtained by passing to the limit γ ↑ ∞ on E * u Pz and, recalling (γ) r ∼ γ r , E * u Pz → γ↑∞ exp {-z (1 -u)}, the moment generating function of a Poisson(z) random variable.

• Statistics of the number of energy states with prescribed amount of particles (Bose-Ewens sampling formula):

The understanding of the number of occupied (and therefore also of unoccupied) states is part of the broader problem of the number of states with prescribed amount of particles. Let therefore

A n,z (i) := n m=1 I (B n,z (m) = i) ; i ≥ 0
count the number of fragments with i particles. Clearly, A n,z (0) = n -P n,z is the number of free fragments and i≥0 A n,z (i) = n. The case i = 1 (i = 2) corresponds to singleton (doubleton) states. Recall first

P (B n,z (m) = b m ; m = 1, .., n) = E n m=1 P Sn (ξ m,z = b m )
where, given S n , (ξ 1,z , .., ξ n,z ) is an independent sequence each with geometric distribution such that:

P Sn (ξ m,z ≥ b m ) = (zS m )
bm . From this, using exchangeability of S n , after a simple rearrangement, we easily get:

Proposition 11 For all sequences (a i ∈ N 0 ; i ≥ 0) satisfying i≥0 a i = n, the grand canonical Bose-Ewens sampling formula from Dirichlet proportions is:

P (A n,z (1) = a 1 , .., A n,z (i) = a i , ..) = n! • E   l≥1 la l i=0 1 a i ! i k=0 a k j=ai-1+1 P Sn (ξ j,z = i)  
where P Sn (ξ j,z = i) = (zS j )

i (1 -zS j ) and a -1 := 0.

The exact distribution of (A n,z (i) ; i ≥ 0) could easily be obtained in closed form by further evaluating the Dirichlet integrals appearing in the right hand side of the latter formula. As it would lead to heavy combinatorial developments, we skip the details for the reader convenience.

We note however that the expected values of (A n,z (i) ; i ≥ 0) are quite easy to derive. Indeed, recalling A n,z (i) =

n m=1 I (B n,z (m) = i), we get E (A n,z (i)) = n m=1 P (B n,z (m) = i) = n m=1 EP Sn (ξ m,z = i) = nEP Sn (ξ n,z = i) = nE (zS n ) i (1 -zS n ) = n z i (θ) i (nθ) i -z i+1 (θ) i+1 (nθ) i+1 = nz i (θ) i (nθ) i 1 -z θ + i nθ + i .
Thus, consistently,

E (K n,z ) = i≥1 iE (A n,z (i)) = n i≥1 iz i (θ) i (nθ) i -z (θ) i+1 (nθ) i+1 = n i≥1 z i (θ) i (nθ) i = nE zS 1 1 -zS 1 and E (P n,z ) = i≥1 E (A n,z (i)) = z.
Note also that, taking the Kingman limit

E (A n,z (i)) → * E * (A z (i)) = γ (i -1)! (γ) i z i 1 - zi γ + i .
• Bose randomized occupancy and order statistics:

In practice, it can be useful to consider the sampling process from S (n) that is after having ordered the fragment sizes. Let then S (n) := S (1) , .., S (n) be the order statistics of S n , with S (1) > .. > S (n) . The joint probability density of this vector now is

f S (n) (s 1 , .., s n ) = n!Γ (nθ) Γ (θ) n n m=1 s θ-1 m • I (s 1 > .. > s n ) • δ ( n m=1 s (m) -1) .
Clearly, sampling under S n does not reduce to sampling under S (n) .

For instance, given S (n) , the joint probability of occupancies B (n),z (m) of fragment m with size S (m) ; m = 1, .., n now reads

P S (n) B (n),z (m) = b m ; m = 1, .., n = n m=1 zS (m) bm 1 -zS (m)
Exchangeability is lost; averaging over S (n) with distribution f S (n) on the simplex, the unconditional occupancy probability would be

P B (n),z (m) = b m ; m = 1, .., n := EP S (n) B (n),z (m) = b m ; m = 1, .., n = E n m=1 zS (m) bm 1 -zS (m) .
In particular:

Averaging over S (n) , using the joint law of S (n) , we get the unconditional probability P (M q = m q ; q = 1, .., p; P n,z = p) that only p ≤ n of the ordered cells with labels m q are occupied. In particular

E n q=2 1 -zS (q) zS (1)
is the unconditional probability that only ground state S (1) is occupied.

Evidence of a phase transition in some cases

It remains to interpret z in more details to get a deeper insight into the phase transition question. Recall that

E Sn (B n,z (m)) = zS m 1 -zS m = i≥1 z i S i m
and so, using exchangeability of S n

E Sn (K n,z ) = n m=1 zS m 1 -zS m κ : = EE Sn (K n,z ) = nE zS n 1 -zS n .
Recalling S n d ∼ beta(θ, (n -1) θ), we get the following expression for the expected number of particles in the sample

κ = n i≥1 z i E S i n = n i≥1 z i (θ) i (nθ) i .
This is also the implicit state equation

κ = H n,θ (z) 
where H n,θ (z) has the power series representation

H n,θ (z) = n i≥1 z i (θ) i (nθ) i .
Usually, it is of interest to try to deduce z from (θ, κ) which are the physical quantities which are known in practice. The convergence radius of the series H n,θ (z) clearly is z c = 1. Two cases arise: either H n,θ (1) = ∞ or H n,θ (1) < ∞.

The condition H n,θ (1) < ∞ is fulfilled if and only if θ > 1 n-1 ; indeed,

(θ) i (nθ) i = Γ(nθ) Γ(θ) (i) θ (i) nθ
and, when i is large, by Stirling formula, (i) θ ∼ i θ . This shows that (θ) i (nθ) i ∼ Γ(nθ) Γ(θ) i -(n-1)θ which is the term of a summable series if and only if θ > 1 n-1 : A phase transition phenomenon pops in when the disorder parameter θ is large enough.

When θ > 1 n-1 , the function θ → H n,θ (1) is monotone decreasing and maps θ ∈ .

Remark: In this approach, the free parameter is the average number of particles κ and the Lagrange inversion formula only holds for θ < θ c (disorder is small enough). If θ is the free parameter, Lagrange inversion formula only is valid for κ < κ c := H n,θ (1) (the expected number of particles is small enough). In the (θ, κ) plane, the critical line κ c =: κ c (θ) separates a weak disorder phase κ < κ c from a strong disorder phase κ > κ c .

When θ ≤ 1 n-1 (disorder is small enough), the largest fragment is dominant: particles largely tend to accumulate within this fragment. The same holds true when θ > 1 n-1 provided κ < κ c . However, if θ > 1 n-1 (disorder strong enough) and κ > κ c (the expected number of particles is large enough), we conjecture that κ c particles in average will accumulate in the largest fragment while the rest (κ -κ c ) is scattered on all the other fragments. In the strong disorder phase, particles tend to spread on all cells. This property seems to result from the conjunction of two effects: the randomness of the sampling probabilities within bins and the indistinguishability of balls to be packed. ♦ One can summarize shortly the results as follows:

Proposition 13 We have:

(i) If 0 < θ ≤ 1/ (n -1), there is a unique weakly disordered phase. Recalling that S n d ∼ beta(θ, (n -1) θ), the phase transition criterion θ > 1/ (n -1) indicates that the probability mass of fragment sizes in a neighborhood of s = 1 has to be small enough (in the sense that the density of S n should vanish at point 1).

Passing to the Kingman limit n ↑ ∞, θ ↓ 0, while nθ = γ > 0, assuming z < 1, one can check that

K n,z d → * K z .
Indeed, with S (∞) the Poisson-Dirichlet weak * -limit of S (n)

E * u Kz = E ∞ m=1 1 -zS (m) 1 -uzS (m) ,
showing that, given S (∞) , K z is the sum of independent geometric random variables with respective success probabilities zS (m) , m = 1, .., ∞.

In particular, κ := E (K n,z ) → * κ * := E * (K z ) = Γ (γ + 1)

i≥1 z i (i) γ .
At z c = 1, this series is convergent if and only if γ > 1. Proceeding similarly as for the finite Dirichlet case, we have 

  k l=1 I (M l = m), m = 1, .., n (where I (A) stands for the set indicator of the event A). As stated above P Sn (M l = m) = S m and state m is chosen proportionally to its size S m . With (b 1 , .., b n ) ∈ N n 0 , (where N 0 := {0, 1, 2, ..}) satisfying n m=1 b m = k, (B n,k (m) = b m ; m = 1, .., n) clearly follows the conditional multinomial distribution with randomized probabilities S n :

  represents the number of ways to distribute k labelled particles into n distinguishable boxes with respective occupancies (b 1 , .., b n ) . We note from Eq. (2.3) that, given S n , (B n,k (m) ; m = 1, .., n) d = (ξ 1 , .., ξ n | ζ n = k) where (ξ 1 , .., ξ n ) are mutually independent on N n 0 with sum ζ n := n 1 ξ m and P Sn (ξ m = b m ) = S bm m e -Sm b m ! , b m ∈ N 0 , which are Poisson distributions with random means S m d ∼ beta(θ, (n -1) θ), for each m = 1, .., n.

  which is half the geometric average of n and k. ♦ • Kingman limit: With s k,p := B k,p ((• -1)!) the absolute value of the first kind Stirling numbers, taking the *

n

  m=1 b m log S m . In Eq. (3.1), b m ∈ N 0 , m = 1, .., n, with no restriction but b 1 + .. + b n = k. Imposing the additional condition that b m ∈ {0, 1}, m = 1, .., n (the Pauli exclusion principle), would lead to a Fermi-Dirac occupancy problem which we shall not further develop specifically.
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 61 Let S n d ∼ D n (θ) with 0 < θ < ∞. For each m ∈ {1, .., n}, let S n\m := (S 1 , .., S m-1 , S m+1 , ..S) n . With n fixed, as the number of particles grows, conditionally given S n , we have B n,k (m) k ; m = 1, .., n → k↑∞ P m,n := I S m > S n\m ; m = 1, .., n (3.3) in distribution. Proof: Let us first consider the ordered version S (n) of the energy sequence S n , namely: S (n) := S (1) , .., S (n) with S (1) > .. > S (n) . Developing the product partition function n m=1 zS m )

( 1 -

 1 zS m )

r

  (nθ) r are the falling factorial moments of P n,z . To summarize, we obtained Theorem 9 The law of P n,z is characterized by any of the three equivalent properties (i) For p ∈ {0, .., n}, with z ∈ (0, 1)P (P n,z = p) With u ∈ [0,1], P n,z has the generating function E u Pn,z =

Corollary 10 →

 10 We have P n,z d → * P z . Specifically, (i) With p ∈ {0, .., n} P (P n,z = p) → * P * (P z = p) = r where p ∈ N 0 .(ii)E u Pn,z → * E * u Pz = ∞ r=0 (-γz (1 -u)) r r! • (γ) r .(iii) From this, E * (P z ) = z and σ 2 * (P z ) = z -z 2 / (γ + 1) > 0 and more generally, with r ∈ N 0E * ({P z } r ) = (γz)r (γ) r are the r-falling factorial moments of P z . (iv) When γ ↑ ∞ P z d Poisson (z) .

1 n- 1 ,

 11 ∞ onto ∞, n n-1 ; assuming κ > n n-1 , there is therefore a unique θ c > 1 n-1 defined by κ = H n,θc(1). For θ < θ c , by Bűrmann-Lagrange inversion formulaz = 1 + l≥1 κ l l h l (θ) with h l (θ) := z l-1 H n,θ (z) z -l

  (ii) If ∞ > θ > 1/ (n -1), a phase transition occurs: the critical line separating the strong disorder (κ > κ c > n/ (n -1)) from weak disorder (κ < κ c ) phases has equation κ = κ c (θ) = nE Sn 1-Sn which is also the convergent series κ = κ c (θ) = n i≥1 (θ) i (nθ) i .

Corollary 14

 14 Consider Bose samples from Poisson-Dirichlet partitioning. Then: (i) If 0 < γ ≤ 1, there is no phase transition and the only available phase is the weakly disordered one.(ii) If ∞ > γ > 1, there is a phase transition: the critical line separating the strong disorder (κ > κ c > 1) from weak disorder (κ < κ c ) phases has equation κ = κ c (γ) which is the convergent seriesκ = κ c (γ) = γ i≥1 (i -1)! (γ) i = Γ (γ + 1) i≥1 1 (i) γ .

 Proposition 12The grand canonical distribution of ground state occupancy is

(1) stand for the integral moments of S [START_REF] Cesaroli | Poisson randomization in occupancy problems[END_REF] . With b 1 ∈ N 0 , the ground state S (1) occupancy is

Recalling (see [START_REF] Holst | The Poisson-Dirichlet distribution and its relatives revisited[END_REF], for instance) that, with S (1) ∈ 1 n , 1 , the complementary distribution function of S (1) is

> s s b1-1 ds .

Let p ∈ {1, .., n} and 1 ≤ m 1 < .. < m p ≤ n be an increasing subsequence of {1, .., n}. Let M 1 , .., M p be the labels of visited fragments from S (n) and P n,z denote the number of such occupied states. With b q ∈ N, we clearly have

Averaging over S (n) whose joint law is known, first gives the unconditional probability of the event M q = m q , B (n),z (m q ) = b q ; q = 1, .., p; P n,z = p. Next, summing the above conditional probability over b q ; q = 1, .., p, we get P S (n) (M q = m q ; q = 1, .., p; P n,z = p) = q ={1,..,p} 1 -zS (mq) p q=1 zS (mq) .