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Abstract— We present some results on systems for automat-
ically detecting bridges in high-resolution (2.5m) panchromatic
IKONOS satellite images using texture information, geometric
models, and combinations of both.

A system using simple geometric models gives good results
for bridges over roads and railroads, and very bad results for
bridges over larger regions such as rivers. In contrast, a system
using a texture-based classification and hand-made rules applied
to that classification gives good results for bridges over rivers
and railroads, and bad results for bridges over roads.

We have explored several methods for combining both ap-
proaches to achieve an improved detection rate with only a
moderate increase in the false alarm rate. Validation showed
an increase in detection rate from 57% (geometry-based) and
33% (texture-based) to 71% (best combined system).

Index Terms— geographical object detection, bridge detection,
satellite images, pattern recognition

I. INTRODUCTION

AUTOMATICALLY detecting geographical objects such
as bridges, roundabouts or road crossings on high-

resolution satellite images is useful for keeping up to date
geographical databases and for assessing the extent of damages
in case of natural disasters such as floods or earthquakes. It
may help in content-based indexing of such satellite images.
This work is also part of a larger research effort at the French
Space Agency (CNES) researching on general techniques for
automatic detection of objects in satellite images.

Bridge detection (and in general, detecting discrete objects
in satellite images) is a challenging task for several reasons.
First, satellite images are of relatively low resolution for this
problem, either spatially, spectrally or both. In our case, we
were dealing with pan-chromatic images at 2.5m resolution.
This spatial resolution is sufficient, in most cases, for human
interpretation, although narrow or complex bridges are difficult
to see. However, the fact that images were pan-chromatic pre-
cluded the use of common land cover classification techniques.

Another problem with bridge detection is that bridges ap-
pear together with other complex objects in these images, such
as roundabouts, buildings and road crossings, and that bridges
themselves are a complex and very variable object: we have
bridges of road over road, road over water, road over rail,
walkways over rail, and many others, as well as variations,
such as roundabouts over other roads, or roads which fork
while over another road (see Figure 1 for some examples). This
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variability makes it difficult to define a model for a bridge.
In addition, we not only want to determine the presence or
absence of a bridge in an image, but also to extract its position,
size and orientation.

Fig. 1. Some sample bridge images

A very limited number of articles exist in this particular
domain [1], [2]. However, a lot of work has been done on
sub-problems, such as terrain classification, that could be part
of a geographical object detection system:

A system capable of detecting objects —such as chairs, cars,
tables— which are large with respect to the image they appear
in is described in [3]. It uses multiple cooperating, negotiating
agents. No learning mechanism is used.

In [4], a system capable of extracting objects and regions
such as roads, lakes and fields from aerial images is presented.
It uses a few agents or specialists which are trained using a
corpus-based learning mechanism.

Neural networks are used in [5] and many others to classify
pixels in LANDSAT images. [6] uses spatial regularities to do
an unsupervised terrain classification. This kind of systems
tend to give visually imperfect results: [7] proposes a rule-
based system to improve the results of these classifications,
but uses data which is not available to our system, such as
terrain elevation.

We had made some preliminary explorations on the use
of geometric models [8] and local radiometric and textural
features [9], [10] to detect bridges in panchromatic, high-
resolution satellite images, obtaining a very low false alarm
rate, but also a low detection rate. Improvements to both
systems and a more consistent evaluation were presented
in [11].

This validation showed that the geometry-based system
gives good results for bridges over narrow, linear objects,
such as roads and railroads, with a precise geometry which
was captured by the model, and very bad results for bridges
over larger regions such as rivers. In contrast, the texture-
based system gives good results for bridges over large regions
which can be defined by texture rather than shape, such as
rivers and railroads, and bad results for bridges over roads.
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This complementarity was expected, because of the variability
found in bridges.

We present a set of techniques and methodologies to au-
tomatically detect bridges on small high-resolution (2.5m)
pan-chromatic satellite images. Our image set contains 100
real images, provided by the French space agency (CNES),
which feature bridges in different positions, orientations and
sizes, and of different kinds, and 100 images containing other
objects, some resembling bridges, to evaluate the false alarm
rate. We describe in detail the geometry-based system which
was succinctly presented in [11], and present an improved
version of the texture-based system [9], [10]. We also present
several techniques for combining both systems so as to obtain
good detection rates for all kinds of bridge, with only a
moderate increase in false alarm rate. Validation showed an
increase in detection rate from 57% (geometry-based) and 33%
(texture-based) to 71% (best combined system) with an in-
crease in false alarm rate from 18% (geometry-based) and 22%
(texture-based) to 35% (combined system giving best detection
rate). Note that we are working with pan-chromatic images
only; not having access to multi-spectral data makes terrain
characterization more difficult which impacts our results. This
will be discussed in the conclusion.

II. TEXTURAL APPROACH

In this approach, we classify each pixel into one of several
terrain types such as vegetation, road, or water; from this
pixel classification we extract, via a vote procedure and a
regularization, a set of regions of different terrain types.
Finally, we apply some rules to determine if this configuration
of regions is characteristic of a bridge, and extract the possible
bridge position, orientation and size (see Figure 2). This
approach corresponds to a region-based representation of a
bridge.

feature
extraction

neural
network

vote and
regularization

detection
rules

Fig. 2. Processing steps for textural approach

A. Pixel classification

Since no multi-spectral data is available, it seemed natural to
use texture for the first classification stage. Texture, of course,
cannot be calculated for one pixel only. Instead, we apply
texture-extracting operators to a small neighborhood of each
pixel.

At the boundaries of texture regions, these analysis windows
span more than one texture, and therefore give imprecise clas-
sifications. The vote and regularization step, partially corrects
this problem.

By visual inspection, we selected from a larger set of
operators the following:

1) The identity (the original image).
2) Entropic structure: This parameter [12] gives the level of

structure on the neighborhood of a pixel. It allows us to

distinguish among homogeneous areas, areas structured
by man-made constructions, and unstructured areas.

3) Shadow predicate: This simple operator (adapted
from [12]) indicates which pixels belong to “shadow”
areas. This is done by finding a “shadow threshold” from
the position of the first local minimum in the intensity
histogram.

4) First-order texture parameters: entropy, energy, and vari-
ance of the intensity histogram (we found other first-
order parameters such as the mean, skewness, or kurtosis
less discriminant).

5) Texture signal activity. This apparently banal operator,
the Gaussian smoothing of the module of the intensity
gradient [13] has been successfully used for detecting
certain types of vegetation.

6) The module of the local histograms [14], which mea-
sures how different the intensity distribution in the anal-
ysis window is from a uniform distribution. We found
the phase of the local histogram to be less discriminant.

7) From the gray-level difference texture parameters [15],
a variation of the well-known gray level co-occurrence
matrices, the second angular moment, entropy, inverse
differential moment, and skewness. Other parameters,
such as the mean, contrast, variance or kurtosis were
not very significant.

8) Fourier transform texture parameters: The maximum,
mean, root-mean-square and variance, of the amplitude
of the complex Fourier transform on a square neighbor-
hood of each pixel.

We use a neural network to try to determine which type of
terrain each pixel belongs to. For this particular application, we
chose the following terrain types: water, vegetation, railroad,
road and bridge (bridge-looking texture). In previous experi-
ments we had also included a building class, but we found we
got better results without. Note that the vote procedure may
also produce other regions if the neural network gives low
responses for all classes. For each image pixel, we feed its
texture parameters to a neural network. This neural network
gives as output 5 values between 0 and 1, one for each terrain
type, indicating different amounts of confidence that the pixel
belongs to that terrain type. In Figure 3 we show some bridge
images and the corresponding neural network outputs.

The Stuttgart Neural Network Simulator (SNNS) has been
used to train and run a 3-layer feed-forward neural network.
Two thirds of the image set were used as the training set, and
one third as the test set. Labeling of the images for the training
process was done manually.

B. Regularization

The results of the neural networks are noisy, fuzzy and full
of holes and other artifacts. To improve them,

1) each channel (corresponding to one terrain type) is
smoothed by convolution with a Gaussian mask, and
then thresholded;

2) in a neighborhood of each pixel, we calculate a weighted
histogram of terrain types. We weight each pixel in the
neighborhood based on its distance from the base pixel
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Fig. 3. Sample neural network output; top: source images, bottom: network
output (darker pixels represent stronger responses); from left to right, bridge,
railroad, road, vegetation and water neural network output channels for each
image on the top row

and its terrain type. For each pixel, the terrain type with
higher histogram count wins the “voting”; finally

3) we further regularize the resulting regions by mathemat-
ical morphology opening and closing operations, and
by removing small regions. This regularization further
allows us to convert from a pixel-level classification to
a small set of classified regions, which we can use in
the following step.

In Figure 4 we show some bridge images and the output of
the regularization step.

C. Rule-based detection

The final step towards bridge detection, once we have a
good classification of pixels into terrain types as given by the
neural network and the vote procedure, is to apply a certain
number of “detection rules” to that terrain classification.

These manually-produced rules match particular combina-
tions of regions of a certain type and geometry, returning a
possible bridge location, dimensions and orientation. We give
here an informal description of some of them. See [9] for the
formal definition of these rules. In Figure 4 we show some
bridge images and the output of the detection rules.

1) Two large regions of water or rail terrain (same type for
both regions) are separated by a narrow and long strip.
This strip is a bridge.

2) One large and narrow region of bridge terrain is a bridge.
3) There is a narrow and long region of bridge or road

terrain separating two large regions of water or rail
terrain (same type for both regions). This strip is a
bridge.

4) Two regions of road terrain, long and narrow, are sepa-
rated by less than a certain distance. Additionally, they
are aligned. There is a bridge at the middle of the
separation between the two regions.

5) We apply rule (4) not to road terrain, but to the terrain
channel resulting of taking all road and bridge terrain
and removing any water, vegetation or rail intersecting
it.

6) One long and narrow region of road or bridge terrain
intersects a very narrow strip of road or bridge terrain —
both regions of different type. Both regions are roughly
orthogonal. Then there is a bridge at the intersection.

Fig. 4. Regularization and detection rules; top: source images; middle:
regularized classification (gray=vegetation, vertical=railroad, horizontal=road,
diagonal=water), bottom: corresponding detected bridges

D. Evaluation

Evaluation is performed on a set of small ( �������������
pixels), pan-chromatic, high-resolution satellite images (SPOT
5 images at 2.5m per pixel). We have 100 images containing
one or more bridges, and 100 images containing other kinds
of objects (round-about, roads). Contrary to previous experi-
ments [9], [10], all images were of acceptable quality. For lack
of a larger database, we used the same images we had used
for training the neural network; since we are evaluating the
whole system (and, more particularly, the detection rules) we
do not think that this will bias the results substantially. Note
that 27 images contain a bridge over water, 66 a bridge over
road, and 7 a bridge over rail.

Table I gives the number of images with scores of correct
detections (real bridges that the system detects, further sub-
divided according to the type of bridge) and false alarms for
a typical set of parameters 1 . Note that the parameter set
(governing the regularization process and the detection rules)
can be modified to balance between detection and false alarm
rates.

TABLE I

TEXTURE-BASED SYSTEM EVALUATION

detection rate 33%
bridge over road 15%
bridge over rail 87%
bridge over water 66%

false-detection rate 22%

The system correctly detects most bridges over rail or
water (87% and 66% ), while missing most bridges over
road (15%). This is because rail and water are very textured
terrains, which the pixel classifier detects easily. Road, being

1For a set of images containing bridges, the detection rate indicates how
many images have their bridge correctly detected. For a set of images
not containing bridges (but containing other objects such as crossroads or
buildings), the false alarm rate indicates in how many images a bridge is
(incorrectly) detected.
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less textured and narrow in shape, is more difficult to detect,
and the output of the road neural network is too noisy and
is usually discarded by the vote procedure. The system has
a false-detection rate (22%) which should be improved. Pixel
classification from only one panchromatic image is obviously
not very robust: performance would be improved by the use
of other sources of information (mainly multi-spectral images)
for terrain classification.

III. GEOMETRIC APPROACH

In this approach, we use a parallel-line extraction algorithm
to detect roads, railroads, and other thin regions with parallel
edges. We will then detect a bridge by the gap it creates on the
lower road or railroad (see Figure 5). Note that, by its very
design, this system cannot detect bridges over wide regions
such as rivers or sea inlets. This approach corresponds to an
edge-based representation of a bridge.

edge
extraction

extract
facing regions

parallel edge
detector

Fig. 5. Processing steps for geometric approach

A. Algorithm

We start by running an edge detector on the image, and
polygonalizing the results. We then extract pairs of “parallel”
segments: two edges are deemed parallel if their relative angle
is small and the projection of each segment onto the other
segment’s line overlaps that other segment. Additionally, only
edges closer than a certain distance and longer than a certain
minimum length are considered. Each pair of parallel edges
gives a candidate region, which we represent as a rectangle.

We further examine all pairs of candidate regions. We select
those which are facing and separated by less than a certain
distance � (based on the typical width of a wide road). By
facing, we mean that the angles � , � and � in Figure 6 are
smaller than a certain threshold.

PSfrag replacements �

�

�

�
Fig. 6. Two facing candidate regions

We assume that facing candidate regions correspond to
the lower road or railroad, and that the gap is caused by a
bridge. The algorithm then gives the center of the gap as a
possible bridge position. In Figure 7 we show examples of
this algorithm on several bridge images.

B. Evaluation

Evaluation is performed on the same set of images as in
the texture-based system. Table II gives the number of images

Fig. 7. Bridge detection by extraction of parallel edges; top: source images;
middle: facing candidate regions; bottom: detected bridges

TABLE II

GEOMETRY-BASED SYSTEM EVALUATION

detection rate 57%
bridge over road 71%
bridge over rail 87%
bridge over water 15%

false-detection rate 18%

with scores of correct detections (real bridges that the system
detects) and false alarms for a typical set of parameters.

The system correctly detects most bridges over rail or road
(71% and 87%), while missing most bridges over water (15%).
This is because rail and road regions are bounded on their
sides by parallel lines. Waterways usually have non-straight
limits (except for some canals which, we believe, would also
be detected by this system), which the system discards. False-
detections (18%) occur mainly for crossing roads and could be
easily improved by taking into account radiometric difference
in the case of bridge over road.

IV. COMBINING BOTH SYSTEMS

Evaluation showed that the texture-based system gives good
results for bridges over large regions which can be defined
by texture rather than shape, such as rivers and railroads, and
bad results for bridges over roads, and that the geometry-based
system gives good results for bridges over roads and railroads,
narrow, linear objects, with a precise geometry which was
captured by the model, and bad results for bridges over larger
regions such as rivers.

We explored three ways of combining both systems to
improve their overall performance.

A. Union of results

If we are willing to accept an increased false-alarm rate
of the geometry-based system, one trivial solution is to run
both systems in parallel and take as bridges the union of their
responses, as in Figure 8. The results are given in table III.

Detection rate is dramatically improved (71%) in spite of
an increase in false-detection rate.

To be really complete, we give the results of other fusion
experiments even though they do not give better detection rate
results.
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Fig. 8. Processing steps for union of results

TABLE III

COMBINATION BY UNION

detection rate 71%
bridge over road 71%
bridge over rail 87%
bridge over water 66%

false-detection rate 35%

B. Geometry as additional source for classification

The main problem of the texture-based approach is that only
local information is used for the classification, giving less than
optimal results. Note that the detection rules would also detect
bridges over roads, if these roads were properly detected by
the pixel classifier.

One experiment then is to run the systems as follows (see
Figure 9):

� Run the geometry-based system, and for each detected
bridge extract region masks for the candidate regions and
for the the bridge area (the gap between the candidate
regions).

� Use the masks for facing candidate regions and the masks
for bridge areas as two additional “texture” parameters
of the pixel classifier neural network of the texture-based
system.

� Run the pixel classification, the regularization, and the
bridge detection steps of the texture-based system, and
take as final result the output of the texture-based system.

feature
extraction

neural
network

vote and
regularization

detection
rules

edge
extraction

parallel edge
detector

extract
facing regions

Fig. 9. Processing steps for using geometry as an additional source for pixel
classification

Note that the pixel-classifying neural network will have to
be retrained to accept these two new parameters. We also need
to change some parameters in the regularization step to take
into account the different response of the new neural network.

The results are given in table IV (we name this system
“geometry into classification” in the global results table VI
below).

We have been surprised by these results (compared to those
in Section II, which we will investigate in more depth in future
research.

TABLE IV

GEOMETRY AS ADDITIONAL INPUT TO PIXEL CLASSIFICATION

detection rate 26%
bridge over road 9%
bridge over rail 87%
bridge over water 55%

false-detection rate 12%

C. Geometry of classified images

Conversely, the main problem of the geometry-based system
is that it takes only the shape of a region into account, without
checking that it is actually a road, rail or water region.

One improvement then is to run the systems as follows (see
Figure 10:

� Run the pixel classification step and the regularization
step of the texture-based system.

� Use the regularized pixel classification as input to the
geometry-based system, instead of the usual gray-level
image. Take the output of the geometry-based system as
the final output.

feature
extraction

neural
network

vote and
regularization

extract
facing regions

parallel edge
detector

edge
extraction

Fig. 10. Processing steps for using classified images as input to the geometry-
based system

The results are given in table V (we name this system
“classification into geometry” in the global results table VI
below). In this experiment, the false-detection rate is clearly
improved.

TABLE V

PIXEL CLASSIFICATION AS INPUT TO THE GEOMETRY-BASED SYSTEM

detection rate 30%
bridge over road 32%
bridge over rail 87%
bridge over water 7%

false-detection rate 3%

V. CONCLUSION

We were surprised to find that the texture-based system
detects most bridges by “omission”, that is, it infers the pres-
ence of a bridge because of a gap on an otherwise continuous
region of water, rail or, sometimes, road. Retrospectively, this
is because most times the overhead road is not detected, as we
have explained. With this in mind, we designed the geometry-
based system to detect bridges by omission also (in a previous
implementation the overhead road had to be detected as well).

For comparison, we give the results for all systems in
table VI.
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TABLE VI

EVALUATION RESULTS FOR ALL SYSTEMS

detection false detection
texture-based 33% 23%
geometry-based 57% 18%
union of responses 71% 35%
geometry into classification 26% 12%
classification into geometry 30% 3%

Our initial goal was to develop a set of techniques and
methods to automatically detect bridges in high-resolution
satellite images. Because of the wide variability of bridges
a single approach does not give acceptable results. We have
presented two approaches, one based on texture and a model
of bridge defined by regions, and another based purely on
geometry, and several ways of combining both approaches
to get improved results. We have implemented all these in
running systems.

We have evaluated their performances with satisfactory
results. We believe that our techniques are easily generalizable
to other kinds of objects; however we have not conducted
experiments to show it.

Besides, we believe that the only means to improve the
robustness of the approach (false detection rate) is to use other
sources of information (such as multi-spectral images) —one
of the most important causes of errors were misclassifications
between water and green pixels—. That would allow a sub-
stantially improved classification of pixels into terrain classes,
and therefore better global performance.

These methods rely on static detection rules designed by
the authors. In future research, we intend to construct rules
automatically by using data mining, machine learning tech-
niques, and qualitative spatial reasoning on a sufficiently large
training set. We also think that a finer bridge typology —which
treats different bridge types in different ways— is necessary
to improve results.
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Av. Pasteur, 94165 Saint-Mandé, France, 1997.
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