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Abstract : Range image segmentation has many
applications in computer vision areas such as com-
puter graphics and robotic vision. A generic method-
ology for 3D point set analysis in which planar struc-
tures play an important role is defined. It con-
sists mainly of a specific K-means algorithm which
is able to process different shapes in cluster. At the
same time, within geometric and topologic consid-
erations, a set of application-driven heuristics is de-
signed. This helps to find out the right number of
structures in point sets in order to give a good vi-
sualization and representation of a large scale en-
vironment without a priori models. Our aim is to
propose a simple and generic frame for 3D scene un-
derstanding. Tests were realised on different types of
environment data: natural and man-made. This re-
search project has been realized with EADS (French
Air Space Society). Keywords: Fuzzy clustering,
3D reconstruction and scene analysis, range image
segmentation, environment modeling, stereovision.

1 Introduction

Given a point set and an application, how should we
process the point set in order to complete the ap-
plication? The answer to this question is obviously
of great interest in the field of computer vision and
pattern recognition. Anyone who attempts to solve
the problem refers himself to a spectific application
and so to a specific kind of cloud of points. For in-
stance, a now famous contest [3] consists in compar-
ing the results of the segmentation of range images
into planar regions. In this case, 3D point sets are
structured on a regular 2D grid. Unfortunately, in
stereoscopic vision problems of reconstruction, un-
organised, inhomogeneous in density 3D point sets
are obtained while laser range systems provide very
dense 3D point sets [10]. For each of these applica-
tions, authors have developped a specific algorithm
to process point sets. In [6], the 4-connexity informa-
tion is at the basis of the algorithms, making them
unable to process unorganised point sets. In [1], the

diversity in shape, density and homogeneity of clus-
ters to be formed is not involved in the algorithms,
making them unable to process stereoscopic data. In
[4], the range image is integrated with the reflectance
map. Besides, the only systematic study of the per-
formance of range image segmention algorithms [3]
uses only planar patches.

In this paper, we will define a generic methodol-
ogy in order to make partition in any 3D unorganised
point set where planar structures are important. For
this purpose, the next section describes a very robust
clustering method introduced by [5]. But we propose
to make it unsupervised in a more generic way. The
fourth section focuses on the design of a set of heuris-
tics and the third section brings these tools together
in a generic methodology. Finally, section five illus-
trates the efficiency of the proposed methodology on
different data sets, from structured to unstructured
environments.

Figure 1: Different environments to be dealt with.

First of all, we propose to show the kind of en-
vironments we want to analyse, just to insist on the
diversity of their nature. Figure 11 shows a natu-
ral environment which is captured by a stereoscopic
system and a polyhedrical environment which is cap-
tured by a laser range system. However, for making
simpler, we focus on a specific robotic outdoor nav-
igation goal. Natural images were acquired by the
LAMA robot belonging to LAAS-French CNRS lab.

13D point set images are best viewed in color, as many

details are not as clear in grayscale.



2 Clustering algorithm as in-

ference motor

Given a point set in ℜd, the problem consists in self-
paritionning it without learning. In this perspective,
K-means algorithms can do automatic classification,
based on the minimisation of an objective function
U , a fuzzy K-partition, and V a set of K prototypes:

J =

N∑

j=1

K∑

i=1

(uij)
md2(Xj , Vi); K ≤ N, (1)

where Xj is the coordinate vector of the jth point,
Vi is the centroide of the ith cluster, uij is the mem-
bership coefficient of Xj to Vi, d(Xj , Vi) is a distance
between Xj and Vi, N is the number of points and
K the number of clusters, and m(1 ≤ m) controls
the fuzzy degree of the final partition. The fuzzy
partition is performed by an iterative optimisation
of equation 1.

This model is flexible enough to be able to deal
with a great diversity of data, just by replacing the
distance function or the expression of prototypes.
For instance, when clusters of different shape and
density are considered, we can introduce an “expo-
nential” distance de, inspired by the estimation of the
maximum of likelihood. This distance is involved in
the computation of the a posteriori probability uij

of selecting the ith cluster knowing the jth vector of
coordinate Xj :

uij =

1
d2

e(Xj ,Vi)∑K
i=1

1
d2

e(Xj ,Vi)

,

d2
e(Xj , Vi) =

[det(Fi)]
1/2

Pi
exp[(Xj−Vi)

T Fi(Xj−Vi)/2],

where Pi =
1

N

N∑

j=1

uij

and Fi =

∑N
j=1 uij(Xj − Vi)(Xj − Vi)

T

∑N
j=1 uij

Fi being the fuzzy covariance matrix of the ith

cluster and Pi the a priori probability of selecting
the ith cluster.

This specific algorithm performs well in the cases
of shape diversity (it is able to differentiate between
linear and spherical clusters), density and size di-
versity, which are characteristic properties of stereo-
scopic data [8].

Besides, using a validity measure of partition
called Average Partition Density ( APD ), this algo-
rithm gives an idea of the optimal number of clusters
in the point set:

APD(K) =
1

K

K∑

j=1

Sj

Vj

where the fuzzy hypervolume Vj and the ”sum of
central moment” Sj are given by:

Vj = det(Fj)
1/2 and Sj =

∑

xi∈Xj

uij

for each Xj = {x ∈ X : (x− vj)
T

∑
−1
j (x− vj) < 1}.

Thus, we focus on this specific clustering method
called UFP-ONC algorithm (unsupervised fuzzy par-
tition - optimal number of classes) described in
[5]. This generic algorithm is fundamental to our
methodology in which it acts as inference motors do
in knowledge-based systems.

Yet, unsupervised clustering is a somewhat arbi-
trary concept in the field of data analysis. What is
certain is that we rarely know what we are looking
for. This is particularly the case in data mining ap-
plications. In the computer vision field, things are
somewhat easier. Most of the time, we know rather
or less what kind of structures we are looking for,
even without any available a priori model. In au-
tonomous robotics for instance, the vision task con-
sists in building an obstacle map. In this specific ap-
plication, the nature of the structures we are looking
for is binary: either navigable areas like the ground
or obstacle areas emerging from the ground. In the
range segmentation contest described in [3], the na-
ture of clusters is represented by planar patches.
Hence, some basic knowledge of the nature of ob-
jects is sufficient to validate the clustering process.
We propose to represent this basic knowledge by a
set of heuristics. Henceforth an inference is a mean-
ingful subset of points and the semantics is going
to be captured by a set of topological, metric and
geometrical heuristics.

3 Methodology

3.1 Axiom

Our methodology is based on an axiom.

Axiom 1 For any point set in which planar struc-

tures play an important role, there is at least one K-

partition derived by the UFP − ONC algorithm ex-

hibiting a structuration into areas and objects which

is adapted to any specific computer vision goal.



Let us illustrate this axiom in the context of au-
tonomous robotic navigation goals. As a matter of
fact, this observation has been verified on numerous
such data scenes as outdoor natural environments.
As a specific illustration, figure 2 shows that any K-
partition for K between 2 and 10 provides a coher-
ent interpretation of the scene. In association with
each cluster, spheres represent the fuzzy center of
gravity of the cluster and boxes represent the fuzzy
eigen values and vectors of the correlation matrix
of the point set corresponding to the cluster. The
2-partition exhibits a partitionning into foreground
and background which differente each other by their
point density. The 4-partition homogeneously di-
vides the scene into four coherent areas, one of which,
in the right background, gathers a white textured up-
set dust bin and the rising part of the ground. The
5-partition isolates for the first time the stoney area
in the left background. Finally, the 10-partition ex-
hibits every obstacle identified in the scene and cor-
rectly isolated from the navigable areas: the upset
dust bin, the rising ground part and the stoney area.
This series of K-partitions illustrates the “clever”
behavior of the UFP −ONC algorithm in this kind
of data. As a matter of fact, for any K-partition,
one obtains a coherent and useful interpretation of
the scene in K clusters.

However, the UFP − ONC algorithm doest not
yet provide the optimal number of clusters to de-
scribe the scene. The whole strategy of interpreta-
tion is reliant on the determination of the optimal pa-
rameter K. With this in mind, we briefly overviewed
the partition measure of validity proposed in the lit-
terature, focusing on the Average Density Partition
or APD(K) defined in [5] which appeared to be the
most robust for our experiments.

Unfortunately, the use of this sole measure is un-
able to guarantee an optimal interpretation of the
scene for our robotic navigation purpose (the first
local optimum of APD(k) for k from one to ten is
obtained for four clusters in the scene depicted in fig-
ure 2). It may provide an under segmentation result.
More details are generally required. To find out this
optimal number K of clusters, we need to use some
more heuristic criteria based on the geometry and
topology of the segmented structures.

3.2 Strategy

Depending on the application, some specific charac-
teristics of the clusters are required to belong to an
optimal description of the point set. For instance, in
a famous contest launched by Herbert [3] , several re-
search teams can compare their range data segmen-

Figure 2: Typical scene for outdoor robotic naviga-
tion. Red line delimitates the processed area and
different K-partitions : (a) k=2 (b) k=4 (c) k=5 (d)
k=6 (e) k=8 (f) k=10

tation into planar regions results using a database
made of polyhedrical objets. In this case, the re-
quired geometrical property for the clusters is pla-
narity. In robotic stereoscopy, to avoid obstacles,
we seek well-shaped and isolated clusters emerging
from planar ground. Each application will need its
own heuristics to perform the best partitionning ac-
cording to some geometrical and topological require-
ments. Thus, the proposed methodology is based on
the UFP −ONC algorithm and the proposed axiom
to build a generic range data partitionning process.

First, we process point sets to exhibit an ini-
tial structuration by incrementally computing K-
partition for K between 1 and 10, and we stop as
soon as APD(K) reaches a local maximum. From
this first partitionning, in the case of clusters not
verifying specific heuristics defined for the applica-
tion, we continue the incremental partitionning pro-
cess. This strategy is illustrated in the process chart
of figure 3.

4 Heuristic set

The second fundamental element of the strategy con-
sists in the creation of a set of heuristics to caracter-



Figure 3: Process chart of the basic strategy

ize the validity of a cluster. Just as the declara-
tive knowledge concept used in expert systems, this
heuristic set is separate from the core of the system
and can be easily modified and updated. This set
may be a user accessible part to which some new
application-oriented heuristic may be easily added.

We focus on outdoor scene analysis. In this con-
text, obstacles and navigable areas must be iden-
tified. Navigable areas correspond to planar struc-
tures in the direction of the ground, and obstacles
are structures emerging from these structures. Be-
sides, obstacles are caracterized by a main direction
which has to be not parallel to the ground direction
(physical property). In fact, ground direction can be
easily obtained as the closest large planar area to the
captor obtained after the preliminary K-partitioning.

When clustering (as defined in the last section)
is performed on 3D outdoor scene data, two biased
behaviors of algorithm appear. As there is a ”pref-
erence” for topological shape information in the dis-
tance function, it may happen that:

• obstacles emerging from the ground are gath-
ered because they emerge together from a large
planar structure;

• small obstacles like little rocks are ”swallowed
up” by a large planar structure.

4.1 Connexity Ambiguity heuristic

One of the biased behaviours of the UFP-ONC algo-
rithm consists in gathering some obstacles (the black
ones) which emerge from a wide ground cluster (the
gray one) just because they are similar in term of
shape (see Figure 4). We solve this problem by de-
signing a CAh heuristic.

Figure 4: 2D schema of the first biased behaviour of
the UFP-ONC algorithm: unfortunately, there are
only two clusters (in black and gray) as opposed to
three clusters for ”ground truth”.

First, we project the 3D point set corresponding
to a cluster on a specific plane. In general, the pro-
jection plane corresponds to the best approximating
plane of the point set (see subsection 4.4). Then, we
compute a filtered mesh representing the projected
point set (see Figures 6 and 7). This operation is
based on Delaunay triangulation and α-shape the-
ory [2]. In a precedent article [9], we exposed our
design of morphological operators like α-erosion, α-
dilatation, α-opening performing on such structure.
These operators can filter shape represented by 2D
unorganised point set (see figure 5).

Figure 5: (b) Erosion and (c) Opening of the (a)
original mesh

Then, if the number of significative connex com-
ponents is greater than one, we decide that the clus-
ter is ambiguous. Let us call this heuristic the CAh
heuristic for Connexity Ambiguity heuristic. This
heuristic captures the topological incoherence of a
cluster.



Figure 6: Above: 4-partition in which three little
rocks with hyperellipsoidal shapes emerge from a
ground plane and are gathered in a single cluster.
Below: the ambiguous object has been isolated

Figure 7: Connexity Ambiguity for black-colored ob-
ject

4.2 Size Ambiguity heuristic

Let us define now a more specific heuristic for out-
door vision goal, which will be very useful for the
robotic navigation purpose. The other biased behav-
ior of the UFP-ONC algorithm consists in gathering
a wide, dense planar ground cluster with non-dense,
little obstacles (see Figure 8). This makes a clus-
ter which is not planar but whose direction is very
similar to ground direction. In this case, we do not
classify the cluster as an obstacle because its main
orientation is almost parallel to the ground orienta-
tion. So it remains an ambiguous cluster. Let us call
this heuristic SAh for Size Ambiguity heuristic.

Figure 8: 2D schema of the second biased behaviour
of the UFP-ONC algorithm: unlikely, there is only
one cluster as opposed to two clusters for ”ground
truth”

4.3 Planar Ambiguity heuristic

The last important heuristic to add consists in a sim-
ple planarity test. This very useful heuristic is suf-
ficient for the planar range segmentation contest of
[3] as will be illustrated in the results section. Let us
call it the PAh, Planar Ambiguity heuristic.

Note that these three heuristics are quite general
and that they can be applied to most applications.

4.4 Parameter setting

All these parameters are computed from the fuzzy
correlation matrix Fi of the point set corresponding
to the cluster i, that is the eigen values µ1 ≤ µ2 ≤ µ3

and vectors of this matrix, plus the fuzzy center of
gravity C of the cluster.

heuristic parameters
Best
approx-
imating
plane
(BAP)

Plane(C, ~µ2, ~µ3)

Ground
direction

The closest to the captor best ap-
proximating plane

PAh µ1

SAh Angle( BAP,
−−−−→
ground )



5 Results

We test the proposed methodology on different sorts
of data:

• natural range image database from LAAS-
CNRS laboratory at Toulouse, France, acquired
by a stereoscopic system on the LAMA robot
(100 scenes);

• contest range image database from different uni-
versities, and describing arrangments of poly-
hedrical objets (30 scenes).

5.1 Natural range image database

We illustrate in figure 9 the way our methodology
processes such 3D point sets with :

heuristic parameters
PAh µ1 ≤ 5cm

SAh Angle( ~µ2 ~µ3, ~ground) ≤ π/8

The proposed methodology gives coherent results
for the entire scene set, allowing the robot to avoid
the obstacles during autonomous navigation, and
also the 3D reconstruction of the scenes in terms of
obstacle shape and navigable area.

We are also working on large scale environment
exploration. Then, the point is to merge the dif-
ferent partitioned views of a sequence of 3D point
clouds to globally reconstruct the environment as an
obstacle map. We worked on a robot which moved
straight forward and obtained an initial 3D mesh re-
construction of the different obstacles encountered
on its path, as illustrated in Figure 10.

5.2 Contest range image database

Figure 11 illustrates the way our methodology pro-
cesses such 3D point sets. The PAh heuristic only
was used with a 1cm threshold for planar tests.

The evaluation of the proposed methodology is
also performed following the methodology of Hoover
et al. [3]. The evaluation methods involves 30 struc-
tured light scanner images (ABW set) which were
segmented using CAD models of the objects in or-
der to obtain ground truth (GT ) images. A tool
tries to objectively compare the machine segmenta-

tion (MS) to the corresponding GT image using a
set of defined performance metrics for instances of
correctly segmented, missed and noise regions, over

Figure 9: Segmenting natural range image.



Figure 10: Sequence of scenes captured by LAMA
robot moving straight forward and obstacle map wih
3D-meshed reconstructed structures.

and undersegmentation, and accuracy of the recov-
ered geometry. For the sake of comparaison, we im-
plement some post-processing: for instance, our al-
gorithm automatically merges ground planes, which
is a better performance in terms of interpretation,
but it would yield undersegmentation results in the
Hoover frame.

Figure 11: Different steps of incremental partitioning
of a polyhedrical range image.

Numerous research teams have attempted to

compare their segmentation algorithm using this
database. Following [7], we propose some quanti-
tative results as illustrated in Table 1. Numbers are
averages over the set of images : on an average im-
age, there are 15.2 GT regions.

research
group

GT
regions

correct
detection

angle diff.
(std. ev.)

USF 15.2 12.7 1.6 (0.8)
WSU 15.2 9.7 1.6 (0.7)
UB 15.2 12.8 1.3 (0.8)
UE 15.2 13.4 1.6 (0.9)
UBham 15.2 13.4 1.6 (0.9)
UP5 15.2 12.2 1.7 (0.9)

research
group

over-
segment.

under-
segment.

missed noise

USF 0.2 0.1 2.1 1.2
WSU 0.5 0.2 4.5 2.2
UB 0.5 0.1 1.7 2.1
UE 0.4 0.2 1.1 0.8
UBham 0.4 0.3 0.8 1.1
UP5 0.3 0.1 2.6 2.2

Table 1: Quantitative comparison with other seg-
mentation results

These tables show the good quantitative perfor-
mances of our algorithm (UP5 results) even though
they do not surpass the correct detection rates of
UB and Ubham. However, the other algorithms
were specifically designed for this contest: they pro-
vide segmentation results in the case of range im-
ages which are structured depth information. As a
matter of fact, segmentation is performed on depth
or disparity maps which are classical 2D intensity
images with neighbourhood relationships. Our algo-
rithm performs as well on such organised data as on
unorganised geometric point sets. It performs par-
titionning much more than segmentation. In this
sense, it outperforms the other algorithms by the
weak hypothesis on data, and so by its genericity.
Besides, the Hoover tool is not as objective as it is
said to be. Actually, the relative loss of performance
comes mostly from the missed or noise regions which
are subtracted from the score of correct detection.
This means that whatever the size of the missed re-
gion, it counts plus one in the score of missed detec-
tion and minus one for the score of correct detection.
In fact, we observe that most of our missed regions
are little regions - that our fuzzy modelling considers
as outliers and - whose detection can be controlled
by internal parameters but whose importance is ac-
tually not so obvious.



6 Conclusion

Basically, we sought to answer a difficult method-
ological problem in computer vision: how to develop
generic tools for point set partitionning in the field
of computer vision. The word generic here means
able to easily adapt itself not only to new data with
new characteristics but also to new goals with new
specifications.

This generic aspect is performed in the context
of knowledge-based systems as illustrated in fig-
ure 12. The inference motor acts independently of
the knowledge module. A specific algorithm called
UPF − ONC was used as “cluster maker”. In par-
allel, a set of heuristics is fed to incorporate either
basic knowledge on expected cluster characteristics
depending on the specific application, or more com-
plex knowledge models if available.
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Figure 12: Knowledge-based system paradigm for
point set analysis

First experiments show qualitatively that this
flexibility makes it possible to deal with any kind
of unorganised point sets for any application. They
also yield good quantitative results after comparison
with results coming from an international range seg-
menter contest.

Further experiments and real implementation on
a robot for obstacle avoidance are planned. A recog-
nition module of obstacles based on the point set
analysis is also under consideration.

Basically, we think that it is a promising step
towards modeling large scale environments.
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