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Abstract

This work focuses on a functional equation which extends the notion of
min-semistable distributions. Our main results are an existence theorem and
a characterization theorem for its solutions. The first establishes the existence
of a class of solutions of this equation under a condition on the first zero on
the positive axis of the associated structure function. The second shows that
solutions belonging to a subclass of complementary distribution function can
be identified by their behavior at the origin. Our constructed solutions are in
this subclass. The uniqueness question is also discussed.
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1 INTRODUCTION

In this paper we shall consider the functional equation defined on the space of com-
plementary cumulative probability distribution functions (for short ccdf) F with
support [0,∞] :

(E) : F (x) = E

[
M∏
i=1

F (Cix)Γi

]
. (1)

Here M ∈ N∗ is a integer-valued random variable and (Ci, i ≥ 1) and (Γi, i ≥ 1) are
sequences of random variables such that Ci > 0, Γi ≥ 1. In the statistical literature,
the function, F is also called the survival or survivor function. The solution F of
(E) can be regarded as a fixed point of the transformation T defined on the set of
complementary cumulative distribution functions by

TF (x) = E

[
M∏
i=1

F (Cix)Γi

]
.
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Let X be the random variable with ccdf F satisfying (E). When Γi are integral-
valued random variables, equation (E) reads in terms of random variables X

d=
min1≤i≤M min1≤j≤Γi Ci,jXi,j . Here the Xi,j are i.i.d. copies of X, for each i, Ci,j

are i.i.d. copies of Ci and Xi,j are independent of Ci,j , Γi and M . After a suitable
identification of variables, this distributional equality can be put into the simpler
form

X
d= min

1≤i≤N
AiXi (2)

in terms of new random variables N ∈ N∗ and {Ai, i ≥ 1} positive. Here, Xi are
i.i.d. copies of X ≥ 0 and independent of the random variables {N,Ai, i ≥ 1}. This
identity in law expresses the invariance property under weighted minima considered
by Alsmeyer and Rösler [1].

Let again Γi be integral-valued random variables. Equation (1), on the space of
Laplace-Stieltjes transforms instead of space of ccdf yields an equation similar to (2),
namely

X
d=

N∑
i=1

AiXi. (3)

Under this form, it has been intensively studied by several authors.
Initially, the functional equation associated to (3) was introduced in Mandelbrot

[19] and [20] in the context of a model for turbulence. Later, Kahane and Peyrière
[16] obtained necessary and sufficient conditions for the existence of solutions of (3),
when the Ai are independent and identically distributed and N is a constant. Holley
and Liggett [14] obtained the same kind of results when Ai are fixed multiple of a
given random variable.

On physical grounds, such distributions provided examples of invariant measures
for infinite interacting particle systems. Motivated by questions raised by these works
on the nature of such invariant measures, their ergodic behavior, notably the possible
display of phase transitions, Durrett and Liggett [11] studied (3) in a quite general
setting. More precisely, taking N constant and Ai non negative with arbitrary law,
they gave necessary and sufficient conditions for the existence of solutions under a
sole condition on the moments of the Ai. Moreover, they characterized all these
solutions and proved some convergence results.

Random variables satisfying (3) can also be viewed as a generalization of semistable
laws, in that they are stable under random weighted means. In this view, Guivarc’h
[13] discussed equation (3) when the Ai are independent identically distributed vari-
ables and N is constant. He gave theorems of existence and uniqueness of solutions
and analyzed particularly their behavior at infinity.

More recently, Liu [17] [18] extended the results of [11] on equation (3) allowing
N to be an almost surely finite random variable, finding the optimal conditions for
the existence of its solutions. As it is reviewed in [17], equation (3) or some variants
of it, arises in several other application fields: for instance, it defines distributions
appearing as limiting distribution of some branching processes (either of the Bellman-
Harris or of the Crump-Mode types) or Hausdorff measures of some random fractal
sets [17]. See also Caliebe [7], [8] for recent results and references.

Coming back to equation (1), the idea of taking non-integral powers Γi > 1 in a
similar equation is due initially to Barral [2]. Considering the following functional
equation

f (x) = (E (f (Cx)))γ
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where C is a positive random variable and γ ≥ 1 is non-random, he was able to
obtain analogue results as in [11] and [18] by studying it in a space containing the
space of Laplace-Stieltjes transforms and included in the space of complementary
distribution functions.

On the other hand, in [3], the problem of characterizing the cumulative distribu-
tion functions (for short cdf) with support [0,∞], say G, satisfying the functional
equation

G (x) =
m∏

i=1

G (x/ci)
γi (4)

for some integer m > 1, and real numbers ci > 0, γi > 0, i = 1, ..,m was consid-
ered. These have been called multiscaling max-semistable distributions. Functional
equation (4) may be viewed as a version of the integrated Cauchy functional equation
whose solution can be defined by appealing to Corollary 2.3.2 of [21]. This constitutes
a by-product of a Deny’s theorem (see [21]).

Setting F (x) = G (1/x) when x > 0 and F (x) = 1 for x ≤ 0, the complementary
cumulative distribution function F , with support [0,∞], is solution to

F (x) =
m∏

i=1

F (cix)γi (5)

and we can deduce similarly the class of the so called multiscaling min-semistable
distributions.

In [3], the physical meaning of functional equation (4) has been discussed to some
extent. Essentially, it was emphasized that any strictly positive random variable,
interpreted as some observable, can be viewed as the maximum of a Poisson number
of “micro-events”. The model (4) expresses that the observable under concern might
as well result from the aggregation of m > 1 independent observations of statistically
similar events, each with its specific intensity γi and scale ci (in other words, it might
as well result from more frequent micro-events but with smaller reduced amplitudes);
it translates an amplitude and scale invariance principle for the observable. Such
fixed point equation also appears in discrete scale invariance in Renormalization
Group theory in Physics. This model exhibits log-periodic features, whose empirical
evidence was underlined in diverse application fields such as finance, turbulence,
rupture theory, DLA growth, geophysics and frustrated systems’ statistics. (see [15]
and references therein). In a concrete physical situation, it seems natural to imagine
that the intensity and scale parameters are unknown, or, more realistically, modelled
by some random variables. This motivates the randomization of this model.

The functional equation (E) given by (1) can indeed be viewed as a randomization
of the equation (4). By putting G (x) = F (1/x) when x > 0 and G (x) = 0 when
x ≤ 0, conclusions drawn from (E) can readily be translated to the randomization
of the equation (4) namely

G (x) = E

[
M∏
i=1

G (x/Ci)
Γi

]
. (6)

Central to the solution of the functional equation (4) was the Kahane-Peyrière-
Mandelbrot (KPM) real valued structure function defined by q →

∑m
i=1 γic

q
i , q ∈ R.
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In its randomized version, the KPM structure function now reads

τ (q) = E

[
M∑
i=1

ΓiC
q
i

]
, q ∈ R. (7)

We shall assume that τ (q) < ∞ whenever q ≥ 0. Essentially this function is convex.
We note that τ(0) ≥ 1 and τ(0) = 1 corresponds to the case M = Γ1 = 1 and
equation (E) admits a non-degenerate solution if and only if C1 = 1. This trivial
situation will be avoided in the sequel by assuming τ(0) > 1.

The first main result is an existence theorem, which establishes the existence
of solutions under a condition on the first zero on the positive axis of the structure
function (7). Following [11], [13], [17] and [18], we first prove the existence of solutions
of (E) in the special case, where τ(1) = 1 and τ ′(1) < 0. Then, the general case is
investigated by introducing a transport operator. Our techniques follow the lines of
Durrett and Liggett [11], and Liu [17] [18].

Next, we exhibit a large space of complementary distribution functions containing
the given solutions, namely, with F := 1− F

F = {F ∈ C0(R+, [0, 1]) : ∃λ > 0, c > 0, satisfying
F (ax)
F (x)

≤ caλ, ∀a > 1, x > 0}.

Then we show a characterization theorem, which tells that the solutions of (E) be-
longing to F can be identified by their behavior at the origin.

The paper is organized as follows. In Section 2 existence of solutions of equation
(E) in the special and general case is studied. In section 3, the main characterization
theorem is first stated. The core of section 3 is devoted to the proof of some technical
results, which will contribute to elucidate the behavior at the origin of the solutions
belonging to space F . In section 4, we discuss the uniqueness of the solution.

2 EXISTENCE of SOLUTIONS

2.1 The special case: existence of a solution

In this section we suppose that, with log+ x := 0 ∨ log x, x > 0,

(i) E

[
M∑
i=1

ΓiCi log+

(
M∑
i=1

ΓiCi

)]
< ∞

(ii) τ (1) = E

[
M∑
i=1

ΓiCi

]
= 1 and (iii) τ ′ (1) < 0.

We note that τ (0) > 1. If conditions (ii) and (iii) are fulfilled, we shall refer to the
special case. Define

E =
{

F ccdf : F convex with −∞ < F
′

(0) < 0
}

,

and let E1 :=
{

F ccdf : F convex with F
′

(0) = −1
}

. Note that if F ∈ E , then F is
absolutely continuous with respect to Lebesgue measure. In the following theorem we
give sufficient conditions which guarantee the existence of a non-degenerate solution
to the functional equation (E). This result is obtained by adapting the proof of
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theorem 3.1. of Liu [17]. Liu himself used techniques developed in Durrett and
Liggett [11] and some ideas of Doney and Biggins (see [9], [10], [4]). For the reader
convenience the proof of some technical arguments used in the theorem 1 below will
be postponed to section 3.

Theorem 1 Under the above conditions (i), (ii) and (iii), there exists a solution of
(E) in E1, implying, in particular, F (x) /x → 1 as x ↓ 0.

Proof : For a complementary cumulative distribution function (ccdf) F , we
define non-negative functions D and G on R by

D(z) =
1− F (e−z)

e−z
(8)

and

G(z) = ezE

[(
M∏
i=1

F
(
e−zCi

)Γi

)
− 1 +

M∑
i=1

Γi

(
1− F

(
e−zCi

))]
. (9)

Let Z be a random variable with distribution determined by

E (Ψ(Z)) = E

(
M∑
i=1

ΓiCiΨ(− log(Ci))

)
, (10)

for all bounded measurable functions Ψ. Since τ(1) is finite Ψ(Z) is integrable.
Let F 0(x) = e−x1(x≥0) + 1(x<0) and Fn+1 = TFn, n ≥ 1. Replacing F by Fn

in equations (8) and (9) we obtain the associated functions noted by Dn and Gn in
place of D and G for all n ∈ N. Noticing that, for x ≥ 0,

F 1(x) = E

[
exp(−x

M∑
i=1

ΓiCi)

]
≥ exp

[
−xE

(
M∑
i=1

ΓiCi

)]
= exp(−x) = F 0(x) (11)

and F 1(x) = F 0(x) = 1 for x < 0 we deduce, by the monotony of T , that Fn+1 ≥ Fn.
From lemma 9 (iii), Gn+1 ≤ Gn and from lemma 8 we have

Dn+1(z) = E (Dn (z + Z))−Gn(z) ≥ E (Dn (z + Z))−G0(z). (12)

Thus,

Dn(z) ≥ E (D0 (z + Sn))−
n−1∑
k=0

E (G0 (z + Sk)) , (13)

for all n ≥ 1. Here, Sn :=
∑n

k=0 Zk where (Zk)k≥1 is a sequence of independent
random variables with the same distribution as Z, and S0 = 0. As

E (Z) = −E

(
M∑
i=1

ΓiCi log(Ci)

)
> 0, (14)

Sn goes almost surely to +∞ when n tends to infinity. Since D0(z) is bounded and
limz→+∞ D0(z) = 1, we get

lim
n→+∞

E (D0 (z + Sn)) = 1. (15)
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The function f (z) :=
∑∞

k=0 E (G0 (z + Sk)) satisfies the renewal equation f = G0 +
F−Z ∗ f , where F−Z is the cdf of the random variable −Z, with −∞ < E (−Z) < 0.
When G0 is direct Riemann integrable, as we will show below, the renewal theorem
yields limz↑∞ f (z) = 0 ([12], page 381). This result, together with (13, 15) implies

lim
z↑∞

lim
n↑∞

Dn(z) ≥ 1.

But using Dn+1 ≤ Dn ≤ .. ≤ D0 we obtain limz↑∞ limn↑∞ Dn(z) ≤ limz↑∞ D0(z) =
1. This shows that limz↑∞ limn↑∞ Dn(z) = 1. Calling F∞ (x) the limiting ccdf of

Fn (x), we obtain that F∞ (x) is derivable at point 0 with F
′

∞ (0) = −1.
Next, we show that the sequence Fn remains in E1 ∩ C1 (R+, [0, 1]). In other

words, suppose Fn ∈ C1 (R+, [0, 1]) with Fn convex and F
′
n (0) = −1; let us show

that this also holds for Fn+1 = TFn. By the dominated convergence theorem

F
′
n+1 (x) = −E

 M∑
i=1

ΓiCi

∏
j 6=i

Fn (Cjx)Γj Fn (Cix)Γi−1
(
−F

′
n (Cix)

)
because the term in the bracket is bounded from above by

∑M
i=1 ΓiCi, which is in-

tegrable. Hence Fn ∈ E1 ∩ C1 (R+, [0, 1]). By passing to the limit, the convexity
property is preserved.

Now, it remains to prove direct Riemann integrability of G0. By lemma 9 (ii),
e−zG0 (z) is a decreasing function of z and following ([11], page 287) it suffices to
show that G0 is Lebesgue integrable. Using u ≤ e−(1−u), when u ∈ [0, 1] , we get

G0 (z) ≤ ez

[
Eφ

(
M∑
i=1

Γi

(
1− F 0

(
Cie

−z
)))]

(16)

where φ (x) := e−x − 1 + x, x ≥ 0. We shall split
∫

R G0 (z) dz into two parts.
• For z < 0, we note that φ is decreasing and φ (x) < x. Therefore,∫ 0

−∞
G0 (z) dz < E

(
M∑
i=1

Γi

)∫ 0

−∞
ezdz < ∞.

• For z > 0, using the inequality 1− e−x ≤ x, x ≥ 0 and recalling that F 0 (x) =
e−x, x > 0, we obtain G0 (z) ≤ ezEφ

(∑M
i=1 ΓiCie

−z
)

. As a result,

∫ ∞

0

G0 (z) dz ≤
∫ ∞

0

ezEφ

(
M∑
i=1

ΓiCie
−z

)
dz.

Introducing the random variable S =
∑M

i=1 ΓiCi and letting u = e−z, we get∫ ∞

0

G0 (z) dz ≤
∫ 1

0

1
u2

Eφ (Su) du

which by theorem B of Bingham and Doney, 1974 ([5], page 718), is finite if and only
if ES log+ S < ∞. This condition has been imposed. �
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2.2 Behavior of solutions in the special case

Let us distinguish the lattice and the non-lattice cases.

Definition 2 We will speak of the lattice case when a common span of − log Ci,
i ≥ 1 exists and is − log c, c > 0.

We consider the random walk previously introduced by Sn =
∑n

k=0 Zk where
(Zk)k≥1 is i.i.d. random variables with the same distribution as Z given in equation
(10), and S0 = 0. It is easy to check that

Proposition 3 The random variables − log Ci have a common span − log c if and
only if the random walk Sn is arithmetic in the sense that the support of the distri-
bution of Sn is {−k log c}k∈Z.

Let us give the following definition.

Definition 4 We note by Sc the set of functions s (.) : R→R+ satisfying:
→ In the lattice case with common span − log c, c > 0 : s (z) := e−ν(z) for some

right-continuous bounded periodic function ν (.) on R with period − log c, such that
z − ν (z) is non-decreasing function.

→ In the non-lattice case: s (z) := s > 0, the constant function for all z ∈ R.

The following corollary is easily obtained from theorem 1.

Corollary 5 In the special case, if F ∈ E1 is a solution to the functional equation
(E), then F s (x) := F (xs (− log x)), where s ∈ Sc, is also a solution to the same
equation. The solution F s (x) now satisfies the property Fs(x)

xs(− log x) →x↓0 1.

This means that in the special case the solutions to (E) are determined modulo
a scaling factor s which can be a log-periodic function in the lattice case.

2.3 Existence of a solution in the general case

Consider the functional equation (E). We recall that τ(0) > 1 and τ is convex.
Under a condition on τ , we obtain the following existence theorem.

Theorem 6 Suppose that there exists 0 < α < ∞ such that τ (α) = 1 and τ ′ (α) ≤ 0.
Two cases arise

(i) Case τ ′ (α) < 0: if E
[∑M

i=1 ΓiC
α
i log+

(∑M
i=1 ΓiC

α
i

)]
< ∞, there exists a

non trivial ccdf F solution to (E).
(ii) Case τ ′ (α) = 0: if E

[∑M
i=1 ΓiC

β
i log+

(∑M
i=1 ΓiC

β
i

)]
< ∞ for all β < α,

there exists a non trivial ccdf F solution to (E).

Proof: (i) Suppose τ
′
(α) < 0. Consider the ccdf Fα, as a solution to the

functional equation

(Eα) : Fα (x) = E

[
M∏
i=1

Fα (Cα
i x)Γi

]
(17)
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The associated structure function is τα (q) = τ (αq) with τα (1) = 1, τ
′

α (1) =
ατ

′
(α) < 0. The existence of Fα in E1 is given by the theorem 1, in the special

case, substituting Cα
i to Ci. Finally, the ccdf F (x) = Fα (xα) solves the functional

equation (E).

(ii) Suppose τ
′
(α) = 0. Let 0 < β < α. Consider the random variables Ci (β) =

Cβ
i τ (β)−1 and introduce the functional equation

(Eβ) : F β (x) = E

[
M∏
i=1

F β (Ci (β) x)Γi

]
. (18)

Its associated structure function is τβ (q) = τ (βq) /τ (β)q. We have τβ (1) = 1. As
τ(0) > 1 and τ is convex, τ(β) > 1 and τ

′
(β) < 0, for each β < α. We have

τ
′

β (1) = βτ
′
(β)−τ(β) log τ(β)

τ(β) < 0. Consider now a sequence βn with 0 < βn < α, and
βn → α as n →∞. From theorem 1 and corollary 5, (Eβn) has a solution, say F βn ,
in E satisfying F βn

(1) = 1/2. The sequence F βn
∈ E is an equi-continuous sequence

of functions [0,∞) → [0, 1], because, for all x > 0, Fβn
(x) /x is non-increasing.

By an extended version of Arzelà’s theorem [6], one can extract a convergent sub-
sequence. By the same transformation as in (i), the ccdf F (x) = Fα (xα) also solves
the functional equation (E) in this case. �

Remark 1 From the above proof, we note that when α ≤ 1 the constructed solution
is convex.

3 CHARACTERIZATION of SOLUTIONS

The space of solutions: We will look for a solution of equation (E) in the space
F . We recall that F = 1− F and

F = {F ∈ C0(R+, [0, 1]) : ∃λ > 0, c > 0, satisfying
F (ax)
F (x)

≤ caλ, ∀a > 1, x > 0}.

We note that this space contains the space of all absolutely continuous distributions
with density f such that xf

F is bounded which itself contains E . For the first inclusion,
there exists λ > 0 such that xf(x)

F (x) < λ. Then for a > 1 and x > 0, integrating on the

interval [x, ax], we get F (ax)
F (x) ≤ aλ. For the second inclusion, as F is convex 1−F (x)

x

is decreasing. By differentiating, we obtain xf(x)
F (x) < 1. Moreover, We have E ⊂ F .

As recalled in the introduction, Barral (in his paper [2]) studied a similar equation
and found out a space of continuous functions possessing some key properties. We
go further along this way, defining a space F containing the constructed solutions
given by theorem 1 and theorem 6.

3.1 Behavior of the solutions in F
We now come to the behavior at the origin of the solutions to (E) belonging to F .
In [11], Durrett and Liggett characterize the behavior at the origin of the solutions
of the functional equation for Laplace transforms corresponding to the identity in
law given in (3). This is found in theorem 2.18 of ([11] pages 288-291) and is based
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on several technical results, namely lemma 2.3, corollary 2.17 and theorem 2.12.
Replacing them respectively by our lemma 8, corollary 13 and theorem 12, we can
adapt their proof and obtain the following theorem. For the reader convenience the
statement and proof of the quoted technical results are postponed to a subsequent
sub-section.

Theorem 7 Suppose the following condition (Hδ) holds,

∃δ > 0 : ∀q ∈ R+,
M∑
i=1

ΓiC
q
i ∈ L1+δ, (Hδ) .

Suppose also that there is an α > 0 such that τ (α) = 1, τ
′
(α) ≤ 0. Then, if F is

solution to (E) and if F ∈ F , there exists s (.) : R→R+, continuous periodic with
period − log c, c > 0, in the lattice case and constant in the non-lattice case, such
that x → xαs (− log x) is increasing, with

(i)
F (x)

xαs (− log x)
→x↓0 1, if τ

′
(α) < 0

and

(ii)
F (x)

xα |log x| s (− log x)
→x↓0 1, if τ

′
(α) = 0.

3.2 Technical results

In order to adapt the techniques developed in Durrett and Liggett [11] and Liu [17]
we start by giving several technical lemmas which are essential to obtain theorem 12
and corollary 13. Finally, we derive our main theorem 7. We recall that τ (q) < ∞
whenever q ≥ 0. Let us define a random variable Zα, α > 0, by the equality

EΨ(Zα) = τ (α)−1 E

(
M∑
i=1

ΓiC
α
i Ψ(− log Ci)

)
, (19)

for all bounded measurable function Ψ.
For an arbitrary ccdf F , we define the functions Dα and Gα by

Dα(z) =
1− F (e−z)

e−αz
(20)

and

Gα(z) = eαzE

[(
M∏
i=1

F
(
e−zCi

)Γi

)
− 1 +

M∑
i=1

Γi

(
1− F

(
e−zCi

))]
. (21)

We let F 1 an arbitrary ccdf and F 2 = TF 1. We denote by Dα,i and Gα,i the
corresponding functions associated to F i, i = 1, 2. We first give a series of lemmas

Lemma 8 We have

Dα,2 (z) = τ (α) EDα,1 (z + Zα)−Gα,1 (z) .

9



Proof. We have

Dα,2 (z) = eαz
(
1− F 2(e−z)

)
= eαzE

[
M∑
i=1

Γi

(
1− F 1

(
Cie

−z
))]

−Gα,1 (z) =

E

[
M∑
i=1

ΓiC
α
i Dα,1 (z − log Ci)

]
−Gα,1 (z) = τ (α) EDα,1 (z + Zα)−Gα,1 (z) . �

Lemma 9 We have
(i) Gα (z) ≥ 0.
(ii) e−αzGα (z) is a decreasing function of z.
(iii) If F 2 ≥ F 1 then for all z: Gα,2 (z) ≤ Gα,1 (z) .

Proof: From the inequality(
M∏
i=1

uΓi
i

)
− 1 +

M∑
i=1

Γi (1− ui) ≥

(
M∏
i=1

vΓi
i

)
− 1 +

M∑
i=1

Γi (1− vi) , (22)

0 ≤ ui ≤ vi ≤ 1, we deduce the monotone decreasing feature of the function
e−αzGα(z). Let F 1 and F 2 be two ccdfs with F 1 ≤ F 2. Replacing F by F 1,
respectively by F 2, in equation (21), we obtain their associated functions Gα,1 and
Gα,2. From the above inequality we have Gα,2 ≤ Gα,1. Finally, inequality (22) can
be checked by remarking

∂uj

[(
M∏
i=1

uΓi
i

)
− 1 +

M∑
i=1

Γi (1− ui)

]
= Γj

∏
i 6=j

uΓi
i u

Γj−1
j

− 1

 ≤ 0. �

Lemma 10 With φ (u) := e−u − 1 + u and a ccdf F ∈ F , we have
(i)

Gα (z) ≤ eαzE
[
φ
(
WDα (z) e−αz

)]
where W :=

∑M
i=1 Γi max

(
cCλ

i , 1
)
.

(ii)

lim
z↑∞

Gα (z)
Dα (z)

= 0.

Proof: (i) Using u ≤ e−(1−u) if 0 < u < 1, we get

Gα (z)≤ eαzE

[(
M∏
i=1

[
e−(1−F(Cie

−z))
]Γi

)
− 1 +

M∑
i=1

Γi

(
1− F

(
Cie

−z
))]

≤ eαzE

[
e−

∑M
i=1 Γi(1−F(Cie

−z)) − 1 +
M∑
i=1

Γi

(
1− F

(
Cie

−z
))]

≤ eαzE

[
φ

(
M∑
i=1

Γi

(
1− F

(
Cie

−z
)))]

.

Now, two cases arise

10



• if Ci ≤ 1, then Cie
−z ≤ e−z and 1− F (Cie

−z) ≤ 1− F (e−z) .
• if Ci ≥ 1, then

F
(
Cie

−z
)
≤ cCλ

i F
(
e−z
)

and so, 1− F
(
Cie

−z
)
≤ cCλ

i

(
1− F

(
e−z
))

.

As a result, 1 − F (Cie
−z) ≤

(
cCλ

i ∨ 1
) (

1− F (e−z)
)

and function u → φ (u) being
monotone increasing

E

[
φ

(
M∑
i=1

Γi

(
1− F

(
Cie

−z
)))]

≤ E

[
φ

(
M∑
i=1

Γi

(
cCλ

i ∨ 1
) (

1− F
(
e−z
)))]

.

Finally, Gα (z) ≤ eαzE [φ (WDα (z) e−αz)] .

(ii) We first note that e−αzDα (z) →z↑∞ 0. To prove (ii), we need to check
limt↓0 E {φ (Wt) /t} = 0. Now, φ (u) /u is bounded and so |φ (Wt) /t| < K ·W, for a
suitable constant K > 0. Further, W is integrable since W ≤

∑M
i=1 Γi +

∑M
i=1 cΓiC

λ
i

and EW ≤ τ (0) + c τ (λ) < ∞. �

Lemma 11 Let α ∈ R and Zα be defined by (19). Let g be a non-negative function
on R. If g (y) = τ (α) Eg (y + Zα), then

g (y) =
∑
β∈S

ζβ (y) exp (− (β − α) y)

where ζβ (y) ≥ 0 with: ζβ (x + y) = ζβ (y) for all x ∈ Supp(Zα) and S := {β : τ (β) = 1},
with |S| ∈ {0, 1, 2} . If |S| = 0, we use the convention g = 0.

Proof: Following Lau-Rao-Shanbhag theorem [21]: if |S| = 0, then g = 0; if
|S| ∈ {1, 2}, we get g (y) =

∑
β∈S ζβ (y) exp (−ηβy) where ηβ satisfies

τ (α) E (exp (−ηβZα)) = 1.

Clearly E
(∑M

i=1 ΓiC
α
i exp (ηβ log Ci)

)
= E

(∑M
i=1 ΓiC

α+ηβ

i

)
= 1, leading to β =

α + ηβ where β ∈ S. �

Remark 2 In the lattice case, ζβ are periodic functions and in the non-lattice case,
ζβ are constants. Under the additional hypothesis g (0) = 1, when |S| = 2, necessarily
ζβ2 (0) = 1− ζβ1 (0) where (β1, β2) are the two solutions to τ (β) = 1.

Theorem 12 Assume F ∈ F and that F ∈ F is a solution of (E). Then
(i) there exists α > 0: τ (α) = 1.
(ii) Let α > 0 satisfy τ (α) = 1 and τ ′ (α) ≤ 0, then

lim sup
x↑∞

Dα (x + y)
Dα (x)

≤ 1 if τ ′ (α) < 0

and

lim
x↑∞

Dα (x + y)
Dα (x)

= 1 if τ ′ (α) = 0

where y is any non negative multiple of − log c in the lattice case and y ∈ R+ in the
non-lattice case.
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Proof: Following [11], let α > 0 and hx (y) = Dα(x+y)
Dα(x) . We have

hx (y) = τ (α) Ehx (y + Zα)− Gα (x + y)
Dα (x + y)

hx (y) .

Note that F is not necessarily convex as in the Laplace transform context. Never-
theless we can adapt the proof of theorem 2.12 in [11] to ccdfs F ∈ F . When F ∈ F ,
there exists λ > 0 and c > 0 such that

hx (y) ≤ eαy1y≥0 + ce(α−λ)y1y<0.

As a result, the set {hx (.) , x ∈ R} is uniformly bounded and equi-continuous on
the bounded subsets of R. We can therefore extract a subsequence hxn

converging
uniformly on the bounded subsets of R to some function h. The sequence (xn)n∈N
converges to infinity when n tends to ∞. From the inequality above hxn

(y + Zα) is
dominated by eα(y+Zα)1(y+Zα)≥0 + ce(α−λ)(y+Zα)1(y+Zα)<0 and

E
[
eα(y+Zα)1(y+Zα)≥0 + ce(α−λ)(y+Zα)1(y+Zα)<0

]
≤ eαy τ (0)

τ (α)
+ ce(α−λ)y τ (λ)

τ (α)
< ∞.

By dominated convergence theorem and lemma 10 (ii), we obtain

h (y) = τ (α) Eh (y + Zα) .

Consider an α > 0 satisfying τ (α) > 1. From lemma 11, there exists β ∈ R such
that τ (β) = 1; equivalently, β satisfies E exp {− (β − α) Zα} = 1/τ (α) leading to
β > α > 0. This proves (i) . In the non-lattice case, assuming |S| = 2 with S :=
{β : τ (β) = 1}, with ζβ > 0

h (y) =
∑
β∈S

ζβ exp (− (β − α) y) .

Assuming β1 < β2, taking α = β1 and recalling h (0) = 1, we have for y > 0

h (y) = ζβ1 + (1− ζβ1) exp (− (β2 − α) y) ≤ 1.

In the case β1 = β2, with τ ′ (β1) = 0, h (y) = ζβ1 = 1. In the lattice case, for y a
multiple of − log c,

h (−k log c) =
∑
β∈S

ζβ (0) exp (− (β − α) y)

and using similar arguments, h (y) ≤ 1 if τ ′ (β1) < 0, h (y) = 1 if τ ′ (β1) = 0.
Fix y > 0. Let (xn)n∈N a sequence converging to infinity when n tends to ∞ such

that

lim sup
x↑∞

Dα (x + y)
Dα (x)

= lim
n↑∞

hxn
(y) .

Extracting a convergent subsequence from {hxn}n≥1, converging uniformly to some
h on bounded subsets of R, this function h fulfills the above conditions and similar
arguments apply, completing the proof. �
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Corollary 13 Let F ∈ F and assume there is an α > 0 satisfying τ (α) = 1 and
τ ′ (α) ≤ 0. Then, under the condition (Hδ) that

∃δ > 0 : ∀q ∈ R+,
M∑
i=1

ΓiC
q
i ∈ L1+δ,

Gα (x) is direct Riemann integrable on R.

Proof: We first note, following [11], that if Gα (x) is integrable, and if, as follows
from lemma 9, e−αxGα (x) is a decreasing function of x, then Gα (x) is direct Riemann
integrable.Hence it suffices to show that Gα is integrable. By lemma 10, for F ∈ F
we have 0 ≤ Gα (z) ≤ eαzE [φ (WDα (z) e−αz)] where φ (u) = e−u − 1 + u and
W =

∑M
i=1 Γi max

(
cCλ

i , 1
)
.

At z = −∞ : from monotonicity of φ and recalling φ (x) ≤ x,

φ
(
WDα (z) e−αz

)
≤ φ (W ) ≤ W ≤

M∑
i=1

Γi +
M∑
i=1

cΓiC
λ
i .

Hence, Gα (z) ≤ eαz (τ (0) + cτ (λ)), which is integrable at z = −∞.
At z = +∞ : as e−αzDα (z) →z↑∞ 0, there exists z0 : ∀z ≥ z0, Dα (z) ≤ eβz for

some 0 < β < α. By lemma 10,∫ +∞

z0

Gα (x) dx≤
∫ +∞

z0

eαxEφ
(
WDα (x) e−αx

)
dx

≤
∫ +∞

z0

eαxEφ
(
We(β−α)x

)
dx.

Passing to the variable u = e(β−α)x, letting u0 = e(β−α)z0 , we obtain∫ +∞

z0

Gα (x) dx ≤ 1
α− β

∫ u0

0

Eφ (Wu)
u2+β/(α−β)

du =
1

α− β

∫ u0

0

ϕW (u)− 1 + uEW

u2+β/(α−β)
du

where ϕW (u) is the Laplace-Stieltjes transform of W . By theorem B of Bingham and
Doney, 1974 ([5], page 718), this integral is finite if and only if Eφ

(
W 1+β/(α−β)

)
< ∞.

Assuming 0 < β/ (α− β) < 1, this condition holds as soon as 0 < β
α−β < 1 ∧ δ or

when 0 < β < αδ
δ+1 ∧

α
2 . �

3.3 Characterization of the constructed solutions

We now give a more precise statement on the constructed solutions of equation (E)
as given by theorem 1 and theorem 6. Using theorem 7 we are able to describe more
precisely their behavior at the origin. The definition 4 of the space Sc is adapted to
the special case. We introduce a more general space Sα,c which will be used in the
general case and for which S1,c := Sc.

Definition 14 Define the space Sα,c as the set of functions s (.) : R→R+ satisfying
→ In the lattice case with common span − log c, c > 0 : s (z) := e−αν(z) for some

right-continuous bounded periodic function ν (.) on R with period − log c, such that
z − ν (z) is non-decreasing function.

→ In the non-lattice case: s (z) := s > 0, the constant function for all z ∈ R.

13



Theorem 15 Suppose that there exists 0 < α < ∞ such that τ (α) = 1 and τ ′ (α) ≤
0. Two cases arise

(i) If τ ′ (α) < 0 and E
[∑M

i=1 ΓiC
α
i log+

(∑M
i=1 ΓiC

α
i

)]
< ∞, then for each s ∈

Sα,c there exists F , solution of (E), satisfying

F (x)
xαs (− log x)

→x↓0 1.

(ii) If τ ′ (α) = 0 and E
[(∑M

i=1 ΓiC
β
i

)1+δ
]

< ∞ for all 0 < β < α, then, for each

s ∈ Sα,c, there exists F , solution of (E), satisfying

F (x)
xα |log x| s (− log x)

→x↓0 1.

Proof: Consider the ccdf Fα, as a solution to the functional equation

(Eα) : Fα (x) = E

[
M∏
i=1

Fα (Cα
i x)Γi

]
. (23)

(i) If τ
′
(α) < 0, reconsidering the proof of theorem 6 concerning this case, there

exists Fα in E1, solution to (Eα). In particular we have

lim
x↓0

Fα (x)
x

= 1.

Now for each s ∈ Sα,c the ccdf F (x) = Fα (xαs (− log x)) solves the functional
equation (E) with the claimed behavior at 0.

(ii) If τ
′
(α) = 0, reconsidering the proof of theorem 6 concerning this case, there

exists Fα solution to (Eα). By construction, Fα is convex, and a fortiori Fα ∈ F .
Hence we can deduce from theorem 7 that

lim
x↓0

Fα(x)
x |log x| sα (− log x)

= 1,

where sα (.) is continuous and log-periodic. Following the arguments of ([11] page
290), using the convexity of Fα and the fact that the structure function τα associated
to (Eα) satisfies τα (q) = τ (αq) = 1 and τ ′α (q) = 0 at point q = 1, the function sα (.)
is monotone and periodic and so is a constant, say κ > 0.

Now for each function s̃ (.) ∈ Sα,c, the ccdf F (x) := Fα (xαs̃ (− log x)) solves the
functional equation (E) and:

lim
x↓0

F (x)
xα |log x| s̃ (− log x)

= lim
x↓0

Fα (xαs̃ (− log x))
xα |log (xαs̃ (− log x))| s̃ (− log x)

· |log (xαs̃ (− log x))|
|log x|

.

Using the behavior at 0 of Fα(x), we obtain

lim
x↓0

F (x)
xα |log x| s̃ (− log x)

= κ · lim
x↓0

|log (xαs̃ (− log x))|
|log x|

= κα.

So F (x) has the claimed behavior at 0 with s (.) = κα · s̃ (.) ∈ Sα,c. �

Remark 3 From the proof, we note that for α < 1 and s (.) = s > 0 constant, the
constructed solution is convex.
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4 UNIQUENESS of SOLUTIONS

In this section we discuss the uniqueness of solutions of equation (E).
As it was noticed in the introduction, when Γi are integral-valued random vari-

ables, a fortiori when Γi = 1, equation (E) yields the following equation in distribu-
tion

X
d= min

1≤i≤N
AiXi (24)

where Ai > 0. We can adapt the proof of the uniqueness theorem given in Liu ([18]
page 105) to our ccdf context. We obtain the following result.

Theorem 16 Assume Γi are integral-valued random variables. Assume there is an
α > 0 satisfying τ(α) = 1 and τ ′(α) ≤ 0. Under condition (Hδ) of theorem 7, the
solution to (E) in the space F is unique. By uniqueness, it is meant that: if F 1

and F 2 are solutions whose behaviors in a neighborhood of zero are both given by the
same pair (α, s (.)) in (i) and (ii) of theorem 7, then F 1 = F 2.

Sketch of proof: For all sequences σ ∈ ∪i≥1N∗ of positive integers, with |σ|
the length of σ, let (Aσ,1, Aσ,2...) be i.i.d. copies of (A1, A2....). For a ccdf F ,
TnF is the ccdf of min|σ|=n lσXσ, where lσ := Aσ1Aσ1σ2 ..Aσ1σ2..σn

if σ = σ1σ2..σn,
{Xσ : |σ| = n} are i.i.d. copies with ccdf F , independent of {Aσ : |σ| ≤ n} . The
results of Lemmas 7.1 and 7.2 of ([18] page 104) still hold because we have the
same tree structure. We are in the position to obtain a version of lemma 7.3 of
([18] page 104) while considering the quantity TnF (x) = E

∏
|σ|=n F (xlσ) replacing

Laplace-Stieltjes transforms by ccdfs. Under (Hδ) , let F 1 and F 2 be two solutions
in F of (E) whose behaviors in a neighborhood of zero are both given by the same
pair (α, s (.)) in (i) and (ii) of theorem 7. Then, 1−F 1 ∼ 1−F 2 in a neighborhood
of 0 and following the steps of theorem 7.1. in ([18] page 105), limn↑∞ TnF 1 = F 2. �

In the general case, when Γi ≥ 1 but not necessarily integral-valued, we obtain the
uniqueness in the only case when we suppose that there is an α satisfying τ(α) = 1
and τ ′(α) < 0.

Theorem 17 Assume there is an α > 0 satisfying τ(α) = 1 and τ ′(α) < 0. Under
condition (Hδ), the solution to (E) in the space F is unique: if F 1 and F 2 are
solutions whose behaviors in a neighborhood of zero are both given by the same pair
(α, s (.)) in (i) of theorem 7, then F 1 = F 2.

Proof: Let us now show that if there are two solutions in F , with similar behavior
close to 0, then they coincide. Let F 1 and F 2 be two distinct ccdfs in F which are
solutions to (E) , with F 1 and F 2 both equivalent close to 0 to xαs (− log x) with s (.)
continuous and periodic from theorem 7. Consider d

(
F 1, F 2

)
:=sup

x>0

∣∣∣F 1(x)−F 2(x)
xαs(− log x)

∣∣∣.
As F 1 and F 2 are solutions in F , the function x →

∣∣∣F 1(x)−F 2(x)
xαs(− log x)

∣∣∣ is continuous
on [0,∞), vanishes at ∞, so its supremum is attained at some point x0 in (0,∞).
Clearly, d

(
F 1, F 2

)
=
∣∣∣TF 1(x0)−TF 2(x0)

xα
0 s(− log x0)

∣∣∣. Now, from Jensen’s inequality

∣∣TF 1 (x0)− TF 2 (x0)
∣∣ ≤ E

∣∣∣∣∣
M∏
i=1

F 1 (Cix0)
Γi −

M∏
i=1

F 2 (Cix0)
Γi

∣∣∣∣∣ .
15



Using the inequality
∣∣∣∏M

i=1 ai −
∏M

i=1 bi

∣∣∣ ≤∑M
i=1 |ai − bi| for ai ∈ [0, 1] and bi ∈ [0, 1],

i = 1, ..,M , we obtain

∣∣TF 1 (x0)− TF 2 (x0)
∣∣ ≤ E

[
M∑
i=1

∣∣∣F 1 (Cix0)
Γi − F 2 (Cix0)

Γi

∣∣∣] . (25)

Let A :=
{
F 1 (Cix0) 6= F 2 (Cix0) , Γi > 1 for some i ∈ {1, ...,M}

}
.

If P (A) > 0, using the Hölderian character of u → uγ , γ > 1, u ∈ [0, 1] , that is
|xγ − yγ | < γ|x− y|, for x, y ∈ [0, 1] and x 6 =y , we get from (25)

∣∣TF 1 (x0)− TF 2 (x0)
∣∣ < E

[
M∑
i=1

Γi

∣∣F 1 (Cix0)− F 2 (Cix0)
∣∣] .

Now,

d
(
F 1, F 2

)
=
∣∣∣∣TF 1 (x0)− TF 2 (x0)

xα
0 s (− log x0)

∣∣∣∣
< E

[
M∑
i=1

ΓiC
α
i

∣∣∣∣∣
(
F 1 (Cix0)− F 2 (Cix0)

)
Cα

i xα
0 s (− log (Cix0))

∣∣∣∣∣
]
≤ E

(
M∑
i=1

ΓiC
α
i

)
d
(
F 1, F 2

)
.

For the first inequality, we use the fact that − log Ci, i ≥ 1 have a common span
− log c, c > 0, and s () is periodic with period − log c. In this case, d

(
F 1, F 2

)
<

d
(
F 1, F 2

)
, which is absurd.

If P (A) = 0, we have almost surely, either Γi = 1 or F 1 (Cix0) = F 2 (Cix0), for
all i ∈ {1, ...,M} . From this, we get

M∑
i=1

∣∣∣F 1 (Cix0)
Γi − F 2 (Cix0)

Γi

∣∣∣ = M∑
i=1

∣∣F 1 (Cix0)− F 2 (Cix0)
∣∣ ,

almost surely. In this case, using the argument above on the support of − log Ci,
i ≥ 1, and the periodicity of s (.), we obtain

d
(
F 1, F 2

)
=
∣∣∣∣TF 1 (x0)− TF 2 (x0)

xα
0 s (− log x0)

∣∣∣∣
≤E

[
M∑
i=1

Cα
i

∣∣∣∣∣
(
F 1 (Cix0)− F 2 (Cix0)

)
Cα

i xα
0 s (− log (Cix0))

∣∣∣∣∣
]
≤ E

(
M∑
i=1

Cα
i

)
d
(
F 1, F 2

)
.

If d
(
F 1, F 2

)
6= 0, then E

(∑M
i=1 Cα

i

)
≥ 1. Since E

(∑M
i=1 Cα

i

)
≤ E

(∑M
i=1 ΓiC

α
i

)
,

recalling that E
(∑M

i=1 ΓiC
α
i

)
= 1, we obtain E

(∑M
i=1 (Γi − 1) Cα

i

)
= 0, which

means Γi = 1, for all i ∈ {1, ...,M} , almost surely. Hence, we recover the first case,
which was dealt with by theorem 16. �

5 CONCLUDING REMARKS

In this paper, solutions to the functional equation (E), extending min-semistable
distributions, are considered. The main extension with respect to previously studied
functional equations of the same type is that it involves non-integral random powers.
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The techniques employed to derive our results are largely inspired from the ones
originally designed for Laplace-Stieltjes transforms in the semistable case for sums.

In a special case, we start constructing solutions from scratch in space E1 involving
convexity. When considering the general case, we need to introduce a larger space,
namely space F . It is the largest space within which solutions can be searched for,
with the techniques we use to do so. The behavior at the origin of the solutions
within F is elucidated. The characterization theorem involving space Sα,c shows
that there are solutions to (E) whose behaviors in a neighborhood of the origin are
possibly far from regular. This suggests that, due to some restrictions imposed on
the solutions (in particular continuity), we possibly miss some solutions with a wild
behavior near zero. Nevertheless, despite some technical constraints that we feel not
intrinsical to the solutions of the posed problem, we hope to have done a further step
towards the comprehension of a widely explored functional equation.
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