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An interpolation theorem in toric varieties

WEIMANN Martin

February 24, 2016

Abstract

In the spirit of a theorem of Wood [21], we give necessary and
sufficient conditions for a family of germs of analytic hypersurfaces in
a smooth projective toric variety X to be interpolated by an algebraic
hypersurface with a fixed class in the Picard group of X.

1 Introduction

Let X be a compact algebraic variety over C. We are interested in the
following problem:

Let V1, . . . , VN be a collection of germs of smooth analytic hypersurfaces
at pairwise distincts smooth points p1, . . . , pN of X, and fix α in the Picard
group Pic(X) of X. When does there exist an algebraic hypersurface Ṽ ⊂ X
with class α containing all the germs Vi ?

A natural way to answer this question is to study sums and products of
values of rational functions at points of intersection of the germs Vi with a
”moving” algebraic curve1.

Let us recall a theorem of Wood [21] treating the case of N germs in an affine
chart Cn of X = Pn, transversal to the line l0 = {x1 = · · · = xn−1 = 0}.
Any line la close to l0 has affine equations xk = ak0+ak1xn, k = 1, . . . , n−1.
The trace on V = V1∪· · ·∪VN of any function f holomorphic in an analytic
neighborhood of V is the function

a 7−→ TrV (f)(a) :=
∑

p∈V ∩la

f(p) ,

defined and holomorphic for a = ((a10, a11), . . . , (an−1,0, an−1,1)) close enough
to 0 ∈ C2n−2.

Theorem (Wood, [21]) There exists an algebraic hypersurface Ṽ ⊂ Pn of
degree N which contains V if and only if the function a 7→ TrV (xn)(a) is
affine in the constant coefficients a0 = (a10, . . . , an−1,0).

1This idea goes back to Abel in his studies of abelian integrals [1].
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We show here that Wood’s theorem admits a natural generalization to the
case of germs V1, . . . , VN in a smooth toric compactificationX of Cn endowed
with an ample line bundle. While our proof is constructive, we do not obtain
(contrarly to [21]) the explicit construction of the polynomial equation of the
interpolating hypersurface in the affine chart Cn. Thus, in that toric context,
we need more informations to characterize the class of Ṽ in Pic(X).

For any projective varietyX, there exist very ample line bundles L1, . . . , Ln−1
and a global section s0 ∈ Γ(X,L1) ⊕ · · · ⊕ Γ(X,Ln−1) whose zero locus is
a smooth irreducible curve C which intersects transversely each germ Vi at
pi. A generic point a in the associated parameter space

X∗ := P(Γ(X,L1))× · · · × P(Γ(X,Ln−1))

determines a closed curve Ca in X, which, for a close enough to the class
a0 ∈ X∗ of s0, is smooth and intersects each germ Vi transversely at a
point pi(a) whose coordinates vary holomorphically with a by the implicit
functions theorem. For any function f holomorphic at p1, . . . , pN , we define
the trace of f on V := V1 ∪ · · · ∪ VN relatively to (L1, . . . , Ln−1) as the
function

a 7−→ TrV (f)(a) :=
N∑
i=1

f(pi(a)),

which is defined and holomorphic for a in an analytic neighborhood of a0.

Let us suppose now that X is a toric projective smooth compactification
of U = Cn, endowed with a linear action of an algebraic torus T that pre-
serves the coordinate hyperplanes xi = 0, i = 1, . . . , n (see [7]). Clearly, any
germ Vi contained in the hypersurface at infinity X \U is algebraic. We can
thus suppose that V is contained in U and work with the affine coordinates
x = (x1, . . . , xn).

Since the Picard group of U = Cn is trivial, the classes of the irreducible di-
visors G1, . . . , Gs supported outside U form a basis for Pic(X). Any globally
generated line bundle L on X has thus a unique global section sU ∈ Γ(X,L)
such that div(sU )∩U = ∅. If s ∈ Γ(X,L), the quotient s

sU
defines a rational

function without poles on U ' Cn, that is, a polynomial in x, which gives
the local equation for the divisor H = div(s) in the affine chart U . Since L
is globally generated, a generic section s ∈ Γ(X,L) does not vanish at 0 ∈ U
and the corresponding polynomial in x has a non-zero constant term.

In the context of very ample line bundles L1, . . . , Ln−1 on X, we can then
use polynomials equations for Ca restricted to the affine chart U :

Ca ∩ U = {x = (x1, . . . , xn) ∈ U, ak0 = qk(a
′
k, x), k = 1, . . . , n− 1},

where ak = (ak0, a
′
k) and qk(a

′
k, .) are polynomials in x vanishing at 0 ∈ U .
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Since X is toric, we know from [9] that the Chow groups Ak(X) are isomor-
phic to the cohomology groups H2n−2k(X,Z), for any k = 0, . . . , n, and we
can identify the Chow group A0(X) of 0-cycles with Z ' H2n(X,Z). We
denote by [V ] the class of any closed subvariety V of X, c1(L) ∈ H2(X,Z)
the first Chern class of any line bundle L on X, and we denote by a the
usual cap product. Our first result is

Theorem 1 The set V := V1 ∪ · · · ∪ VN is contained in an algebraic hyper-
surface Ṽ ⊂ X such that

[Ṽ ] a
n−1∏
k=1

c1(Lk) = N

if and only if for all i = 1, . . . , n the functions a 7→ TrV (xi)(a) are affine in
the constant coefficients a0 = (a10, . . . , an−1,0).

Note that the left hand side in the formula of Theorem 1 is the intersection
number, so that it must be at least N if the required algebraic hypersurface
Ṽ exists. If the conditions of Theorem 1 are not satisfied, V can nevertheless
be contained in a hypersurface Ṽ of X such that [Ṽ ] a

∏n−1
k=1 c1(Lk) > N .

In this case, traces of affine coordinates are algebraic in a0 and no longer
polynomials.

It is shown in [19] that in the projectice case X = Pn, Wood’s theorem
can be derived from the Abel-inverse theorem obtained in [13], using some
rigidity properties of a particular system of PDE’s. Using similar arguments,
the following toric Abel-inverse theorem is proved in [18], Chapter 2, as a
corollary of Theorem 1.

Theorem Let φ be a holomorphic form of maximal degree on V , not iden-
tically zero on any germs Vi, for i = 1, . . . , N . There exists an algebraic
hypersurface Ṽ ⊂ X containing V such that [Ṽ ] a

∏n−1
k=1 c1(Lk) = N and

a rational form Ψ on Ṽ such that Ψ|V = φ, if and only if the trace form

TrV φ(a) :=
∑N

i=1 p
∗
i (φ)(a) is rational in a0.

Let us remark that it should be interesting to derive Theorem 1 from the pre-
vious theorem by choosing some form φ related to the coordinate functions
xi.

Contrarly to the projective case handled in [21], Theorem 1 does not char-
acterize the class of Ṽ . To do so, we introduce the norm on V relatively to
(L1, . . . , Ln−1) of any function f holomorphic at p1, . . . , pN ,

a 7−→ NV (f)(a) :=

N∏
i=1

f(pi(a)),

which is defined and holomorphic for a ∈ X∗ close to a0. We then study
the degree in a0 of norms of some rational functions on X whose polar
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divisors generate PicQ(X). As in [19], let us fix very ample effective divisors
E1, . . . , Es supported by X \ U , whose classes form a Q-basis of PicQ(X).
We can now characterize the class of the interpolating hypersurface.

Theorem 2 Suppose that conditions of Theorem 1 are satisfied. Then the
equality [Ṽ ] = α ∈ Pic(X) holds if and only if there exist rational functions
fj ∈ H0(X,OX(Ej)) for j = 1, . . . , s, whose norms NV (fj) are polynomials
in a10 of degree exactly

dega10 NV (fj) = α · [Ej ] a
n−1∏
k=2

c1(Lk) ∈ Z≥0.

Note that Bernstein’s theorem [4] allows to compute the degrees of intersec-
tion in Theorems 1 and 2 as mixed volume of the polytopes associated (up
to translation) to the involved line bundles.

If X = Pn, then Pic(X) ' Z and Theorem 2 follows from Theorem 1: if
TrV (xn) is affine in a0, then NV (xn) has degree N in a0.

The proof of Theorem 1 uses a toric generalization of Abel-Jacobi’s the-
orem [14] which gives combinatorial conditions for the vanishing of sums
of Grothendieck residues associated to zero-dimensional complete intersec-
tions in toric varieties, those conditions being interpreted in terms of affine
coordinates.

The difficulty to generalize Theorem 1 to other compactifications X of Cn,
as Grassmannians or flag varieties, is that there is no natural choice of affine
coordinates, so a priori no grading for the algebra of regular functions over
U = Cn naturally associated to X. Such an interpolation result in Grass-
mannians would be important to generalize Theorem 1 to any projective
variety X and to any union of germs of dimension k ≤ n − 1, by using a
grassmannian embedding of X associated to an adequat rank k ample bun-
dle E on X. Nevertheless, we know now that there exist global intrinsec
representations of residue currents, using some Chern connections acting on
global sections of some vector bundle instead of usual differentials acting
on holomorphic functions [2]. Then it has been recently shown [16] that
such a global setting provides directly some generalizations of Abel-Jacobi’s
theorem obtained in [17]. We could hope that this approach should give an
alternative proof for Theorem 1 (at least the direct part) which could admit
generalizations to larger class of manifolds than toric varieties, for instance
Grassmannians.

Finally, let us mention that we can hope for a generalization to the case
of non-projective toric varieties, using blowing-up and essential families of
globally generated line bundles, as presented in [20].

Section 2 is devoted to the proof of Theorem 1, and Section 3 to the
proof of Theorem 2.
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This article is part of my PhD thesis [18] “La trace en géométrie projec-
tive et torique”, which is available on the web page
http://tel.archives-ouvertes.fr/tel-00136109.

2 Proof of Theorem 1

2.1 Direct implication

Let us suppose that V is contained in an algebraic hypersurface Ṽ whose
equation in the affine chart U is given by a polynomial f ∈ C[x1, . . . , xn].
Since the line bundles L1, . . . , Ln−1 are very ample, the hypothesis on the
degree of intersection is equivalent to the fact that for a near a0, the in-
tersection Ṽ ∩ Ca is contained in U and equal to V ∩ Ca. In particular,
the n polynomials f, a10 − q1(a′1, ·), . . . , an−1,0 − qn−1(a′n−1, ·) of x define a
complete intersection in Cn. Now, it is well known (see [12], Chapter 5,
Section 2) that the trace of xi is equal, for a close to a0, to the action of
the Grothendieck residue defined by these polynomials on the holomorphic
form xidf ∧ dq1 · · · ∧ dqn−1/(2iπ)n, that is,

TrV (xi)(a) = Res

[
xidf ∧ dq1 · · · ∧ dqn−1

f, a10 − q1, . . . , an−1,0 − qn−1

]
,

where we use classical notations (see [3]) for Grothendieck residues2. This
action is given by the integral formula

TrV (xi)(a) =

∫
|ai0−qi|=εi, i=1,...n−1,|f |=εn

xidf ∧ dq1 · · · ∧ dqn−1
f(a10 − q1) · · · (an−1,0 − qn−1)

,

so that differentiation of the trace with respect to ak0 gives the equality

∂(l)ak0TrV (xi)(a) = Res

[
(−1)l l!x1 · · ·x2i · · ·xn

df∧dq1···∧dqn−1

x1···xn
f, a10 − q1, . . . , (ak0 − qk)l+1, . . . , an−1,0 − qn−1

]
.

If h, f1, . . . , fn are Laurent polynomials in t = (t1, . . . , tn) with Newton
polytopes P, P1, . . . , Pn, the toric Abel-Jacobi theorem [14] asserts that

Res

[
hdt1···∧dtnt1···tn
f1, . . . , fn

]
= 0

2From a more conceptual point of view, the Grothendieck residue action on the form
xidf ∧ dq1 · · · ∧ dqn−1/(2iπ)

n coincides with the action of the logarithmic residue

ddclog|f | ∧ · · · ∧ ddclog|an−1,0 − qn−1|

on the function xi. It is well known that this logarithmic residue, considered as an (n, n)-
current, is equal to the sum of the point masses at the points of intersection so that its
action on xi produces the trace of xi.
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as soon as P is contained in the interior of the Minkowski sum P1 + · · ·+Pn.
Since Lk is very ample, the support of the polynomial Pk is n-dimensional
and it is not difficult to check that the Newton polytope of the Jacobian
of the map (f, q1, . . . , qn−1) translated via the vector (1, . . . , 2, . . . , 1) (cor-
responding to multiplication by x1 · · ·x2i · · ·xn) is stricly contained in the
Minkowski sum of the Newton polytopes of polynomials f, a10−q1, . . . , an−1,0−
qn−1 for l ≥ 2. This shows the direct part of Theorem 1.

Remark 1 If Rk is the unique divisor in |Lk| supported outside U , the
previous argument yields the implication

h ∈ H0(X,OX(dRk))⇒ degak0TrV (h) ≤ d

with equality if the zero set of h has a proper intersection with X \U (which
is generically the case since Lk is globally generated). See [18], Corollary 3.6
p 127. In particular, the trace of the coordinate function xi is affine in ak0
if the vector ei := (0, . . . , 1, . . . , 0) is a vertice of Pk, and does not depend
on ak0 otherwise.

2.2 Converse implication

Let us show that TrV (xi) being affine in a0 implies that TrV (xli) is polyno-
mial of degree at most l in a0 for any l ≥ 1. We need an auxiliary lemma
generalizing to the toric case the “Wave-shock equation” used in [13] to show
the Abel-inverse theorem. We give a weak version of this lemma, which will
be sufficient for our purpose. See [18], Proposition 3.8 p 128, for a stronger
version.

For a near a0, we use affine coordinates (x
(j)
1 (a), . . . , x

(j)
n (a)) for the unique

point of intersection pj(a) of Vj with Ca. Since Lk is very ample, the mono-
mial xi occurs in the polynomial qk with a generically non zero coefficient
denoted by aki, for i = 1, . . . , n.

Lemma 1 For any i ∈ {1, . . . , n}, and any j ∈ {1, . . . , N}, the function

a 7→ x
(j)
i (a) (holomorphic at a0) satisfies the following P.D.E:

∂akix
(j)
i (a) = −x(j)i ∂ak0x

(j)
i (a)

for any k = 1, . . . , n− 1 and any a close to a0.

Proof. Let us fix i = 1 for simplicity. Trivially, the equality ak0 = qk(a
′
k, x)

holds for all k = 1, . . . , n − 1 if and only if x ∈ Ca ∩ U , and the complex
number

x
(j)
1 ((q1(a

′
1, x), a′1), . . . , (qn−1(a

′
n−1, x), a′n−1))

thus represents the x1-coordinate of the unique point of intersection of Vj
with the curve Ca passing through x. If x = (x1, . . . , xn) belongs to Vj , this
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complex number, seen as a function of a′ = (a′1, . . . , a
′
n−1) is thus constant,

equal to x1. Differentiating according to the x1-coefficient ak1 of qk gives

0 = ∂ak1x
(j)
1 ((q1(a

′
1, x), a′1), . . . , (qn−1(a

′
n−1, x), a′n−1))

+x
(j)
1 ((q1(a

′
1, x), a′1), . . . , (qn−1(a

′
n−1, x), a′n−1))

×∂ak0x
(j)
1 ((q1(a

′
1, x), a′1), . . . , (qn−1(a

′
n−1, x), a′n−1)).

We can replace x ∈ Vj with (x
(j)
1 (a), . . . , x

(j)
n (a)) ∈ Vj , and the desired

relation follows from the equality qk(a
′
k, (x

(j)
1 (a), . . . , x

(j)
n (a))) = ak0. �

In particular, Lemma 1 implies that

(l + 1)∂akiTr(x
l
i) = −l∂ak0Tr(x

l+1
i )

for any i = 1, . . . , n, any k = 1, . . . , n− 1, and all integers l ∈ N, from which
we easily deduce

degak0Tr(x
l
i) ≤ l.

More generally, let

(y1, . . . , yn)t = C(x1, . . . , xn)t, C ∈ GLn(C)

be any linear change of coordinates in U . Then, we have equality

ak1x1 + · · ·+ aknxn = αk1y1 + · · ·+ αknyn

where αk = (αk1, . . . , αkn)t = (Ct)−1(ak1, . . . , akn)t, so that

qk(a
′
k, x) = αk1y1 + · · ·+ αknyn +Qk(a

′′
k, x)

where a′k = (ak1, . . . , akn, a
′′
k) and the polynomial

Qk(a
′′
k, x) := qk(a

′
k, x)− (ak1x1 + · · ·+ aknxn)

does not depend on (ak1, . . . , akn). The proof of the previous lemma can
be obviously adapted when differentiating with respect to the new param-
eter αki (linear combination of ak1, . . . , akn, coding for the new variable yi)
instead of aki, and we obtain equality

∂αki
yi(pj(a)) = −yi(pj(a))× ∂ak0yi(pj(a)) = −1

2
∂ak0 [yi(pj(a))]2

for k = 1, . . . , n− 1, i = 1, . . . , n and j = 1, . . . , N .

Now, if y = c1x1 + · · · + cnxn is any linear combination of the affine co-
ordinates xi, its trace Tr y =

∑n
i=1 ciTrxi is affine in a0, and the previous

equality implies that

degak0Tr(y
l) ≤ l (∗)
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for any l ∈ N.
To any such holomorphic function y = y(x), we can associate its carac-

teristic polynomial

Py(X, a) :=

N∏
j=1

(X − y(pj(a))),

whose coefficients are holomorphic functions near a0. Using Newton’s for-
mulas relating coefficients of Py to the trace of the powers of y, we deduce
from (∗) that Py is polynomial in a0 = (a01, . . . , a0,n−1). For any a near a0,
the function

Qy,a′(x) := Py(y(x), (q1(x, a
′
1), a

′
1), . . . , (qn−1(x, a

′
n−1), a

′
n−1))

is thus a polynomial in (x1, . . . , xn), which, by construction, vanishes on V
independently of a′ and y. Let us consider the algebraic set

Wa′ :=
⋂

y=c1x1+···+cnxn

{x ∈ U, Qy,a′(x) = 0}.

Then V ⊂Wa′ and x ∈Wa′ ∩ Ca if and only if

y ∈ {y(p1(a), . . . , y(pN (a))}

for any linear combination y of the affine coordinates xi. This implies that
x ∈ {p1(a), . . . , pN (a)} by duality so that Wa′ ∩Ca = V ∩Ca for any a near
a0. Consider now

Ṽ :=
⋂

anear a0

W̄a′ ,

where W̄a′ denotes the Zariski closure in X of the affine algebraic hypersur-
face Wa′ . Then

codimX Ṽ ∩ (X \ U) ≥ 2,

so that the intersection Ṽ ∩Ca is generically contained in U . For a near a0,
there is thus equality Ṽ ∩Ca = V ∩Ca, so that [Ṽ ] a

∏n−1
k=1 c1(Lk) = N . �

3 Proof of Theorem 2

We can associate to any codimension 2 closed subvariety W ⊂ X its dual
set W ∗ ⊂ X∗ associated to the line bundles (L1, . . . , Ln−1), defined by

W ∗ := {a ∈ X∗, Ca ∩ V 6= ∅}.

From [10], this is an hypersurface in the product of projective spaces X∗,
irreducible if W is, whose multidegree (d1, . . . , dn−1) in X∗ is given by the
intersection numbers

di = [W ] a
n−1∏

i=1,i 6=j
c1(Li), j = 1, . . . , n− 1.
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We call the (L1, . . . , Ln−1)-resultant of W , noted RW , the multihomoge-
neous polynomial of multidegree (d1, . . . , dn−1) vanishing on W ∗ (it is de-
fined up to a non zero scalar, but this has no consequence here). By linearity,
we generalize this situation to the case of cycles:

R∑
ciWi

:=
∏

(RWi)
ci .

Duality respects rational equivalence so that the degree of the resultant of
a cycle W only depends of the class of W in the Chow group of X (see [18],
Proposition 7 p 100).

A generic rational function fj ∈ H0(X,OX(Ej)) defines a principal divisor

Hj−Ej , where the zero divisor Hj intersects properly Ṽ and X \U . In that
case, the product formula [15] gives rise to the equality :

N
Ṽ

(fj) =
R
Ṽ ·Hj

R
Ṽ ·Ej

.

Since the constant coefficents a0 = (a10, . . . , an−1,0) do not influence the
asymptotic behavior of the curves Ca outside the affine chart U , the resultant
R
Ṽ ·Ej

(a) does not depend on a0. We thus obtain

dega10N(fj) = dega10RṼ ·Hj
≤ dega1RṼ ·Hj

= dega1RṼ ·Ej
.

Since we deal with homogeneous polynomials in a1, strict inequality in the
previous expression is equivalent to the equality

R
Ṽ ·Ej

((a10, 0, . . . , 0), a2, . . . , an−1) ≡ 0.

This happens if and only if all subvarieties C = {s = 0} given by sections
s ∈ Γ(X,⊕n−1k=2Lk) intersect the set Ṽ ∩ Hj ∩ (X \ U). By a dimension

argument, this would imply that Ṽ has an irreducible branch contained in
X \U , and this can not occur since Ṽ ∩Ca = V ∩Ca ⊂ U for a close to a0.
Thus we have proved the equality:

dega10NṼ
(fj) = [Ṽ ] a [Ej ] a

n−1∏
k=2

c1(Lk)

Since the classes [Ej ], j = 1, . . . , s determine a basis for An−1(X) ⊗Z Q,
the non degenerated natural pairing between the Chow groups A1(X) and
An−1(X) shows that the hypothesis of Theorem 2 is equivalent to

[Ṽ ] a
n−1∏
k=2

c1(Lk) = α a
n−1∏
k=2

c1(Lk).

Since the Strong Lefschetz theorem remains valid for any very ample alge-
braic vector bundle on a smooth projective variety X (see Prop. 1.1 in [5]),
the preceding equality is equivalent to [Ṽ ] = α. �
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[18] M. Weimann, La trace en géométrie projective et torique, Thesis, Bor-
deaux, 22 Juin 2006.

[19] M. Weimann, Trace et Calcul résiduel : une nouvelle version du
théorème d’Abel-inverse et formes abéliennes, Annales de la faculté des
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