An interpolation theorem in toric varieties

Martin Weimann

To cite this version:

Martin Weimann. An interpolation theorem in toric varieties. Annales de l'Institut Fourier, 2008, 58 (4). hal-00136120

HAL Id: hal-00136120
https://hal.science/hal-00136120
Submitted on 22 May 2019

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

An interpolation theorem in toric varieties

WEIMANN Martin

February 24, 2016

Abstract

In the spirit of a theorem of Wood [21], we give necessary and sufficient conditions for a family of germs of analytic hypersurfaces in a smooth projective toric variety X to be interpolated by an algebraic hypersurface with a fixed class in the Picard group of X.

1 Introduction

Let X be a compact algebraic variety over \mathbb{C}. We are interested in the following problem:
Let V_{1}, \ldots, V_{N} be a collection of germs of smooth analytic hypersurfaces at pairwise distincts smooth points p_{1}, \ldots, p_{N} of X, and fix α in the Picard group $\operatorname{Pic}(X)$ of X. When does there exist an algebraic hypersurface $\widetilde{V} \subset X$ with class α containing all the germs V_{i} ?
A natural way to answer this question is to study sums and products of values of rational functions at points of intersection of the germs V_{i} with a "moving" algebraic curve ${ }^{1}$.
Let us recall a theorem of Wood [21] treating the case of N germs in an affine chart \mathbb{C}^{n} of $X=\mathbb{P}^{n}$, transversal to the line $l_{0}=\left\{x_{1}=\cdots=x_{n-1}=0\right\}$. Any line l_{a} close to l_{0} has affine equations $x_{k}=a_{k 0}+a_{k 1} x_{n}, k=1, \ldots, n-1$. The trace on $V=V_{1} \cup \cdots \cup V_{N}$ of any function f holomorphic in an analytic neighborhood of V is the function

$$
a \longmapsto \operatorname{Tr}_{V}(f)(a):=\sum_{p \in V \cap l_{a}} f(p),
$$

defined and holomorphic for $a=\left(\left(a_{10}, a_{11}\right), \ldots,\left(a_{n-1,0}, a_{n-1,1}\right)\right)$ close enough to $0 \in \mathbb{C}^{2 n-2}$.

Theorem (Wood, [21]) There exists an algebraic hypersurface $\widetilde{V} \subset \mathbb{P}^{n}$ of degree N which contains V if and only if the function $a \mapsto \operatorname{Tr}_{V}\left(x_{n}\right)(a)$ is affine in the constant coefficients $a_{0}=\left(a_{10}, \ldots, a_{n-1,0}\right)$.

[^0]We show here that Wood's theorem admits a natural generalization to the case of germs V_{1}, \ldots, V_{N} in a smooth toric compactification X of \mathbb{C}^{n} endowed with an ample line bundle. While our proof is constructive, we do not obtain (contrarly to [21]) the explicit construction of the polynomial equation of the interpolating hypersurface in the affine chart \mathbb{C}^{n}. Thus, in that toric context, we need more informations to characterize the class of \widetilde{V} in $\operatorname{Pic}(X)$.
For any projective variety X, there exist very ample line bundles L_{1}, \ldots, L_{n-1} and a global section $s_{0} \in \Gamma\left(X, L_{1}\right) \oplus \cdots \oplus \Gamma\left(X, L_{n-1}\right)$ whose zero locus is a smooth irreducible curve C which intersects transversely each germ V_{i} at p_{i}. A generic point a in the associated parameter space

$$
X^{*}:=\mathbb{P}\left(\Gamma\left(X, L_{1}\right)\right) \times \cdots \times \mathbb{P}\left(\Gamma\left(X, L_{n-1}\right)\right)
$$

determines a closed curve C_{a} in X, which, for a close enough to the class $a^{0} \in X^{*}$ of s_{0}, is smooth and intersects each germ V_{i} transversely at a point $p_{i}(a)$ whose coordinates vary holomorphically with a by the implicit functions theorem. For any function f holomorphic at p_{1}, \ldots, p_{N}, we define the trace of f on $V:=V_{1} \cup \cdots \cup V_{N}$ relatively to $\left(L_{1}, \ldots, L_{n-1}\right)$ as the function

$$
a \longmapsto \operatorname{Tr}_{V}(f)(a):=\sum_{i=1}^{N} f\left(p_{i}(a)\right)
$$

which is defined and holomorphic for a in an analytic neighborhood of a^{0}.
Let us suppose now that X is a toric projective smooth compactification of $U=\mathbb{C}^{n}$, endowed with a linear action of an algebraic torus \mathbb{T} that preserves the coordinate hyperplanes $x_{i}=0, i=1, \ldots, n$ (see [7]). Clearly, any germ V_{i} contained in the hypersurface at infinity $X \backslash U$ is algebraic. We can thus suppose that V is contained in U and work with the affine coordinates $x=\left(x_{1}, \ldots, x_{n}\right)$.
Since the Picard group of $U=\mathbb{C}^{n}$ is trivial, the classes of the irreducible divisors G_{1}, \ldots, G_{s} supported outside U form a basis for $\operatorname{Pic}(X)$. Any globally generated line bundle L on X has thus a unique global section $s_{U} \in \Gamma(X, L)$ such that $\operatorname{div}\left(s_{U}\right) \cap U=\emptyset$. If $s \in \Gamma(X, L)$, the quotient $\frac{s}{s_{U}}$ defines a rational function without poles on $U \simeq \mathbb{C}^{n}$, that is, a polynomial in x, which gives the local equation for the divisor $H=\operatorname{div}(s)$ in the affine chart U. Since L is globally generated, a generic section $s \in \Gamma(X, L)$ does not vanish at $0 \in U$ and the corresponding polynomial in x has a non-zero constant term.
In the context of very ample line bundles L_{1}, \ldots, L_{n-1} on X, we can then use polynomials equations for C_{a} restricted to the affine chart U :

$$
C_{a} \cap U=\left\{x=\left(x_{1}, \ldots, x_{n}\right) \in U, a_{k 0}=q_{k}\left(a_{k}^{\prime}, x\right), k=1, \ldots, n-1\right\}
$$

where $a_{k}=\left(a_{k 0}, a_{k}^{\prime}\right)$ and $q_{k}\left(a_{k}^{\prime},.\right)$ are polynomials in x vanishing at $0 \in U$.

Since X is toric, we know from [9] that the Chow groups $A_{k}(X)$ are isomorphic to the cohomology groups $H^{2 n-2 k}(X, \mathbb{Z})$, for any $k=0, \ldots, n$, and we can identify the Chow group $A_{0}(X)$ of 0 -cycles with $\mathbb{Z} \simeq H^{2 n}(X, \mathbb{Z})$. We denote by $[V]$ the class of any closed subvariety V of $X, c_{1}(L) \in H^{2}(X, \mathbb{Z})$ the first Chern class of any line bundle L on X, and we denote by \frown the usual cap product. Our first result is

Theorem 1 The set $V:=V_{1} \cup \cdots \cup V_{N}$ is contained in an algebraic hypersurface $\widetilde{V} \subset X$ such that

$$
[\tilde{V}] \frown \prod_{k=1}^{n-1} c_{1}\left(L_{k}\right)=N
$$

if and only if for all $i=1, \ldots, n$ the functions $a \mapsto \operatorname{Tr}_{V}\left(x_{i}\right)(a)$ are affine in the constant coefficients $a_{0}=\left(a_{10}, \ldots, a_{n-1,0}\right)$.

Note that the left hand side in the formula of Theorem 1 is the intersection number, so that it must be at least N if the required algebraic hypersurface \widetilde{V} exists. If the conditions of Theorem 1 are not satisfied, V can nevertheless be contained in a hypersurface \widetilde{V} of X such that $[\widetilde{V}] \frown \prod_{k=1}^{n-1} c_{1}\left(L_{k}\right)>N$. In this case, traces of affine coordinates are algebraic in a_{0} and no longer polynomials.
It is shown in [19] that in the projectice case $X=\mathbb{P}^{n}$, Wood's theorem can be derived from the Abel-inverse theorem obtained in [13], using some rigidity properties of a particular system of PDE's. Using similar arguments, the following toric Abel-inverse theorem is proved in [18], Chapter 2, as a corollary of Theorem 1.

Theorem Let ϕ be a holomorphic form of maximal degree on V, not identically zero on any germs V_{i}, for $i=1, \ldots, N_{\tilde{\tilde{V}}}$. There exists an algebraic hypersurface $\widetilde{V} \subset X$ containing V such that $[\tilde{V}] \frown \prod_{k=1}^{n-1} c_{1}\left(L_{k}\right)=N$ and a rational form Ψ on \widetilde{V} such that $\Psi_{\mid V}=\phi$, if and only if the trace form $\operatorname{Tr}_{V} \phi(a):=\sum_{i=1}^{N} p_{i}^{*}(\phi)(a)$ is rational in a_{0}.
Let us remark that it should be interesting to derive Theorem 1 from the previous theorem by choosing some form ϕ related to the coordinate functions x_{i}.

Contrarly to the projective case handled in [21], Theorem 1 does not characterize the class of \widetilde{V}. To do so, we introduce the norm on V relatively to $\left(L_{1}, \ldots, L_{n-1}\right)$ of any function f holomorphic at p_{1}, \ldots, p_{N},

$$
a \longmapsto N_{V}(f)(a):=\prod_{i=1}^{N} f\left(p_{i}(a)\right),
$$

which is defined and holomorphic for $a \in X^{*}$ close to a^{0}. We then study the degree in a_{0} of norms of some rational functions on X whose polar
divisors generate $P i c_{\mathbb{Q}}(X)$. As in [19], let us fix very ample effective divisors E_{1}, \ldots, E_{s} supported by $X \backslash U$, whose classes form a \mathbb{Q}-basis of $\operatorname{Pic} c_{\mathbb{Q}}(X)$. We can now characterize the class of the interpolating hypersurface.

Theorem 2 Suppose that conditions of Theorem 1 are satisfied. Then the equality $[\widetilde{V}]=\alpha \in \operatorname{Pic}(X)$ holds if and only if there exist rational functions $f_{j} \in H^{0}\left(X, \mathcal{O}_{X}\left(E_{j}\right)\right)$ for $j=1, \ldots, s$, whose norms $N_{V}\left(f_{j}\right)$ are polynomials in a_{10} of degree exactly

$$
d e g_{a_{10}} N_{V}\left(f_{j}\right)=\alpha \cdot\left[E_{j}\right] \frown \prod_{k=2}^{n-1} c_{1}\left(L_{k}\right) \in \mathbb{Z}_{\geq 0}
$$

Note that Bernstein's theorem [4] allows to compute the degrees of intersection in Theorems 1 and 2 as mixed volume of the polytopes associated (up to translation) to the involved line bundles.
If $X=\mathbb{P}^{n}$, then $\operatorname{Pic}(X) \simeq \mathbb{Z}$ and Theorem 2 follows from Theorem 1: if $\operatorname{Tr}_{V}\left(x_{n}\right)$ is affine in a_{0}, then $N_{V}\left(x_{n}\right)$ has degree N in a_{0}.

The proof of Theorem 1 uses a toric generalization of Abel-Jacobi's theorem [14] which gives combinatorial conditions for the vanishing of sums of Grothendieck residues associated to zero-dimensional complete intersections in toric varieties, those conditions being interpreted in terms of affine coordinates.

The difficulty to generalize Theorem 1 to other compactifications X of \mathbb{C}^{n}, as Grassmannians or flag varieties, is that there is no natural choice of affine coordinates, so a priori no grading for the algebra of regular functions over $U=\mathbb{C}^{n}$ naturally associated to X. Such an interpolation result in Grassmannians would be important to generalize Theorem 1 to any projective variety X and to any union of germs of dimension $k \leq n-1$, by using a grassmannian embedding of X associated to an adequat rank k ample bundle E on X. Nevertheless, we know now that there exist global intrinsec representations of residue currents, using some Chern connections acting on global sections of some vector bundle instead of usual differentials acting on holomorphic functions [2]. Then it has been recently shown [16] that such a global setting provides directly some generalizations of Abel-Jacobi's theorem obtained in [17]. We could hope that this approach should give an alternative proof for Theorem 1 (at least the direct part) which could admit generalizations to larger class of manifolds than toric varieties, for instance Grassmannians.

Finally, let us mention that we can hope for a generalization to the case of non-projective toric varieties, using blowing-up and essential families of globally generated line bundles, as presented in [20].

Section 2 is devoted to the proof of Theorem 1, and Section 3 to the proof of Theorem 2.

This article is part of my PhD thesis [18] "La trace en géométrie projective et torique", which is available on the web page
http://tel.archives-ouvertes.fr/tel-00136109.

2 Proof of Theorem 1

2.1 Direct implication

Let us suppose that V is contained in an algebraic hypersurface \widetilde{V} whose equation in the affine chart U is given by a polynomial $f \in \mathbb{C}\left[x_{1}, \ldots, x_{n}\right]$. Since the line bundles L_{1}, \ldots, L_{n-1} are very ample, the hypothesis on the degree of intersection is equivalent to the fact that for a near a^{0}, the intersection $\widetilde{V} \cap C_{a}$ is contained in U and equal to $V \cap C_{a}$. In particular, the n polynomials $f, a_{10}-q_{1}\left(a_{1}^{\prime}, \cdot\right), \ldots, a_{n-1,0}-q_{n-1}\left(a_{n-1}^{\prime}, \cdot\right)$ of x define a complete intersection in \mathbb{C}^{n}. Now, it is well known (see [12], Chapter 5, Section 2) that the trace of x_{i} is equal, for a close to a^{0}, to the action of the Grothendieck residue defined by these polynomials on the holomorphic form $x_{i} d f \wedge d q_{1} \cdots \wedge d q_{n-1} /(2 i \pi)^{n}$, that is,

$$
\operatorname{Tr}_{V}\left(x_{i}\right)(a)=\operatorname{Res}\left[\begin{array}{c}
x_{i} d f \wedge d q_{1} \cdots \wedge d q_{n-1} \\
f, a_{10}-q_{1}, \ldots, a_{n-1,0}-q_{n-1}
\end{array}\right],
$$

where we use classical notations (see [3]) for Grothendieck residues ${ }^{2}$. This action is given by the integral formula

$$
\operatorname{Tr}_{V}\left(x_{i}\right)(a)=\int_{\left|a_{i 0}-q_{i}\right|=\epsilon_{i}, i=1, \ldots n-1,|f|=\epsilon_{n}} \frac{x_{i} d f \wedge d q_{1} \cdots \wedge d q_{n-1}}{f\left(a_{10}-q_{1}\right) \cdots\left(a_{n-1,0}-q_{n-1}\right)},
$$

so that differentiation of the trace with respect to $a_{k 0}$ gives the equality

$$
\partial_{a_{k 0}}^{(l)} \operatorname{Tr}_{V}\left(x_{i}\right)(a)=\operatorname{Res}\left[\begin{array}{c}
(-1)^{l} l!x_{1} \cdots x_{i}^{2} \cdots x_{n} \frac{d f \wedge d q_{1} \cdots \wedge d q_{n-1}}{x_{1} \cdots x_{n}} \\
f, a_{10}-q_{1}, \ldots,\left(a_{k 0}-q_{k}\right)^{l+1}, \ldots, a_{n-1,0}-q_{n-1}
\end{array}\right] .
$$

If h, f_{1}, \ldots, f_{n} are Laurent polynomials in $t=\left(t_{1}, \ldots, t_{n}\right)$ with Newton polytopes P, P_{1}, \ldots, P_{n}, the toric Abel-Jacobi theorem [14] asserts that

$$
\operatorname{Res}\left[\begin{array}{l}
h \frac{d t_{1} \cdots \wedge d t_{n}}{t_{1} \cdots t_{n}} \\
f_{1}, \ldots, f_{n}
\end{array}\right]=0
$$

[^1]as soon as P is contained in the interior of the Minkowski sum $P_{1}+\cdots+P_{n}$. Since L_{k} is very ample, the support of the polynomial P_{k} is n-dimensional and it is not difficult to check that the Newton polytope of the Jacobian of the map $\left(f, q_{1}, \ldots, q_{n-1}\right)$ translated via the vector $(1, \ldots, 2, \ldots, 1)$ (corresponding to multiplication by $x_{1} \cdots x_{i}^{2} \cdots x_{n}$) is stricly contained in the Minkowski sum of the Newton polytopes of polynomials $f, a_{10}-q_{1}, \ldots, a_{n-1,0}-$ q_{n-1} for $l \geq 2$. This shows the direct part of Theorem 1 .

Remark 1 If R_{k} is the unique divisor in $\left|L_{k}\right|$ supported outside U, the previous argument yields the implication

$$
h \in H^{0}\left(X, \mathcal{O}_{X}\left(d R_{k}\right)\right) \Rightarrow d e g_{a_{k 0}} \operatorname{Tr}_{V}(h) \leq d
$$

with equality if the zero set of h has a proper intersection with $X \backslash U$ (which is generically the case since L_{k} is globally generated). See [18], Corollary 3.6 p 127. In particular, the trace of the coordinate function x_{i} is affine in $a_{k 0}$ if the vector $e_{i}:=(0, \ldots, 1, \ldots, 0)$ is a vertice of P_{k}, and does not depend on $a_{k 0}$ otherwise.

2.2 Converse implication

Let us show that $\operatorname{Tr}_{V}\left(x_{i}\right)$ being affine in a_{0} implies that $\operatorname{Tr}_{V}\left(x_{i}^{l}\right)$ is polynomial of degree at most l in a_{0} for any $l \geq 1$. We need an auxiliary lemma generalizing to the toric case the "Wave-shock equation" used in [13] to show the Abel-inverse theorem. We give a weak version of this lemma, which will be sufficient for our purpose. See [18], Proposition 3.8 p 128, for a stronger version.
For a near a^{0}, we use affine coordinates $\left(x_{1}^{(j)}(a), \ldots, x_{n}^{(j)}(a)\right)$ for the unique point of intersection $p_{j}(a)$ of V_{j} with C_{a}. Since L_{k} is very ample, the monomial x_{i} occurs in the polynomial q_{k} with a generically non zero coefficient denoted by $a_{k i}$, for $i=1, \ldots, n$.

Lemma 1 For any $i \in\{1, \ldots, n\}$, and any $j \in\{1, \ldots, N\}$, the function $a \mapsto x_{i}^{(j)}(a)$ (holomorphic at a^{0}) satisfies the following P.D.E:

$$
\partial_{a_{k i}} x_{i}^{(j)}(a)=-x_{i}^{(j)} \partial_{a_{k 0}} x_{i}^{(j)}(a)
$$

for any $k=1, \ldots, n-1$ and any a close to a^{0}.
Proof. Let us fix $i=1$ for simplicity. Trivially, the equality $a_{k 0}=q_{k}\left(a_{k}^{\prime}, x\right)$ holds for all $k=1, \ldots, n-1$ if and only if $x \in C_{a} \cap U$, and the complex number

$$
x_{1}^{(j)}\left(\left(q_{1}\left(a_{1}^{\prime}, x\right), a_{1}^{\prime}\right), \ldots,\left(q_{n-1}\left(a_{n-1}^{\prime}, x\right), a_{n-1}^{\prime}\right)\right)
$$

thus represents the x_{1}-coordinate of the unique point of intersection of V_{j} with the curve C_{a} passing through x. If $x=\left(x_{1}, \ldots, x_{n}\right)$ belongs to V_{j}, this
complex number, seen as a function of $a^{\prime}=\left(a_{1}^{\prime}, \ldots, a_{n-1}^{\prime}\right)$ is thus constant, equal to x_{1}. Differentiating according to the x_{1}-coefficient $a_{k 1}$ of q_{k} gives

$$
\begin{aligned}
0= & \partial_{a_{k 1}} x_{1}^{(j)}\left(\left(q_{1}\left(a_{1}^{\prime}, x\right), a_{1}^{\prime}\right), \ldots,\left(q_{n-1}\left(a_{n-1}^{\prime}, x\right), a_{n-1}^{\prime}\right)\right) \\
& +x_{1}^{(j)}\left(\left(q_{1}\left(a_{1}^{\prime}, x\right), a_{1}^{\prime}\right), \ldots,\left(q_{n-1}\left(a_{n-1}^{\prime}, x\right), a_{n-1}^{\prime}\right)\right) \\
\times & \partial_{a_{k 0}} x_{1}^{(j)}\left(\left(q_{1}\left(a_{1}^{\prime}, x\right), a_{1}^{\prime}\right), \ldots,\left(q_{n-1}\left(a_{n-1}^{\prime}, x\right), a_{n-1}^{\prime}\right)\right) .
\end{aligned}
$$

We can replace $x \in V_{j}$ with $\left(x_{1}^{(j)}(a), \ldots, x_{n}^{(j)}(a)\right) \in V_{j}$, and the desired relation follows from the equality $q_{k}\left(a_{k}^{\prime},\left(x_{1}^{(j)}(a), \ldots, x_{n}^{(j)}(a)\right)\right)=a_{k 0}$.
In particular, Lemma 1 implies that

$$
(l+1) \partial_{a_{k i}} \operatorname{Tr}\left(x_{i}^{l}\right)=-l \partial_{a_{k 0}} \operatorname{Tr}\left(x_{i}^{l+1}\right)
$$

for any $i=1, \ldots, n$, any $k=1, \ldots, n-1$, and all integers $l \in \mathbb{N}$, from which we easily deduce

$$
\operatorname{deg}_{a_{k 0}} \operatorname{Tr}\left(x_{i}^{l}\right) \leq l .
$$

More generally, let

$$
\left(y_{1}, \ldots, y_{n}\right)^{t}=C\left(x_{1}, \ldots, x_{n}\right)^{t}, \quad C \in G L_{n}(\mathbb{C})
$$

be any linear change of coordinates in U. Then, we have equality

$$
a_{k 1} x_{1}+\cdots+a_{k n} x_{n}=\alpha_{k 1} y_{1}+\cdots+\alpha_{k n} y_{n}
$$

where $\alpha_{k}=\left(\alpha_{k 1}, \ldots, \alpha_{k n}\right)^{t}=\left(C^{t}\right)^{-1}\left(a_{k 1}, \ldots, a_{k n}\right)^{t}$, so that

$$
q_{k}\left(a_{k}^{\prime}, x\right)=\alpha_{k 1} y_{1}+\cdots+\alpha_{k n} y_{n}+Q_{k}\left(a_{k}^{\prime \prime}, x\right)
$$

where $a_{k}^{\prime}=\left(a_{k 1}, \ldots, a_{k n}, a_{k}^{\prime \prime}\right)$ and the polynomial

$$
Q_{k}\left(a_{k}^{\prime \prime}, x\right):=q_{k}\left(a_{k}^{\prime}, x\right)-\left(a_{k 1} x_{1}+\cdots+a_{k n} x_{n}\right)
$$

does not depend on $\left(a_{k 1}, \ldots, a_{k n}\right)$. The proof of the previous lemma can be obviously adapted when differentiating with respect to the new parameter $\alpha_{k i}$ (linear combination of $a_{k 1}, \ldots, a_{k n}$, coding for the new variable y_{i}) instead of $a_{k i}$, and we obtain equality

$$
\partial_{\alpha_{k i}} y_{i}\left(p_{j}(a)\right)=-y_{i}\left(p_{j}(a)\right) \times \partial_{a_{k 0}} y_{i}\left(p_{j}(a)\right)=-\frac{1}{2} \partial_{a_{k 0}}\left[y_{i}\left(p_{j}(a)\right)\right]^{2}
$$

for $k=1, \ldots, n-1, i=1, \ldots, n$ and $j=1, \ldots, N$.
Now, if $y=c_{1} x_{1}+\cdots+c_{n} x_{n}$ is any linear combination of the affine coordinates x_{i}, its trace $\operatorname{Tr} y=\sum_{i=1}^{n} c_{i} \operatorname{Tr} x_{i}$ is affine in a_{0}, and the previous equality implies that

$$
\begin{equation*}
\operatorname{deg}_{a_{k 0}} \operatorname{Tr}\left(y^{l}\right) \leq l \tag{*}
\end{equation*}
$$

for any $l \in \mathbb{N}$.
To any such holomorphic function $y=y(x)$, we can associate its caracteristic polynomial

$$
P_{y}(X, a):=\prod_{j=1}^{N}\left(X-y\left(p_{j}(a)\right)\right),
$$

whose coefficients are holomorphic functions near a^{0}. Using Newton's formulas relating coefficients of P_{y} to the trace of the powers of y, we deduce from (*) that P_{y} is polynomial in $a_{0}=\left(a_{01}, \ldots, a_{0, n-1}\right)$. For any a near a^{0}, the function

$$
Q_{y, a^{\prime}}(x):=P_{y}\left(y(x),\left(q_{1}\left(x, a_{1}^{\prime}\right), a_{1}^{\prime}\right), \ldots,\left(q_{n-1}\left(x, a_{n-1}^{\prime}\right), a_{n-1}^{\prime}\right)\right)
$$

is thus a polynomial in $\left(x_{1}, \ldots, x_{n}\right)$, which, by construction, vanishes on V independently of a^{\prime} and y. Let us consider the algebraic set

$$
W_{a^{\prime}}:=\bigcap_{y=c_{1} x_{1}+\cdots+c_{n} x_{n}}\left\{x \in U, Q_{y, a^{\prime}}(x)=0\right\} .
$$

Then $V \subset W_{a^{\prime}}$ and $x \in W_{a^{\prime}} \cap C_{a}$ if and only if

$$
y \in\left\{y\left(p_{1}(a), \ldots, y\left(p_{N}(a)\right)\right\}\right.
$$

for any linear combination y of the affine coordinates x_{i}. This implies that $x \in\left\{p_{1}(a), \ldots, p_{N}(a)\right\}$ by duality so that $W_{a^{\prime}} \cap C_{a}=V \cap C_{a}$ for any a near a^{0}. Consider now

$$
\widetilde{V}:=\bigcap_{a \text { near } a^{0}} \bar{W}_{a^{\prime}},
$$

where $\bar{W}_{a^{\prime}}$ denotes the Zariski closure in X of the affine algebraic hypersurface $W_{a^{\prime}}$. Then

$$
\operatorname{codim}_{X} \widetilde{V} \cap(X \backslash U) \geq 2,
$$

so that the intersection $\widetilde{V} \cap C_{a}$ is generically contained in U. For a near a^{0}, there is thus equality $\widetilde{V} \cap C_{a}=V \cap C_{a}$, so that $[\widetilde{V}] \cap \prod_{k=1}^{n-1} c_{1}\left(L_{k}\right)=N$.

3 Proof of Theorem 2

We can associate to any codimension 2 closed subvariety $W \subset X$ its dual set $W^{*} \subset X^{*}$ associated to the line bundles $\left(L_{1}, \ldots, L_{n-1}\right)$, defined by

$$
W^{*}:=\left\{a \in X^{*}, C_{a} \cap V \neq \emptyset\right\} .
$$

From [10], this is an hypersurface in the product of projective spaces X^{*}, irreducible if W is, whose multidegree $\left(d_{1}, \ldots, d_{n-1}\right)$ in X^{*} is given by the intersection numbers

$$
d_{i}=[W] \frown \prod_{i=1, i \neq j}^{n-1} c_{1}\left(L_{i}\right), j=1, \ldots, n-1 .
$$

We call the $\left(L_{1}, \ldots, L_{n-1}\right)$-resultant of W, noted \mathcal{R}_{W}, the multihomogeneous polynomial of multidegree $\left(d_{1}, \ldots, d_{n-1}\right)$ vanishing on W^{*} (it is defined up to a non zero scalar, but this has no consequence here). By linearity, we generalize this situation to the case of cycles:

$$
\mathcal{R}_{\sum c_{i} W_{i}}:=\prod\left(\mathcal{R}_{W_{i}}\right)^{c_{i}} .
$$

Duality respects rational equivalence so that the degree of the resultant of a cycle W only depends of the class of W in the Chow group of X (see [18], Proposition 7 p 100).
A generic rational function $f_{j} \in H^{0}\left(X, \mathcal{O}_{X}\left(E_{j}\right)\right)$ defines a principal divisor $H_{j}-E_{j}$, where the zero divisor H_{j} intersects properly \widetilde{V} and $X \backslash U$. In that case, the product formula [15] gives rise to the equality :

$$
N_{\tilde{V}}\left(f_{j}\right)=\frac{\mathcal{R}_{\widetilde{V} \cdot H_{j}}}{\mathcal{R}_{\widetilde{V} \cdot E_{j}}} .
$$

Since the constant coefficents $a_{0}=\left(a_{10}, \ldots, a_{n-1,0}\right)$ do not influence the asymptotic behavior of the curves C_{a} outside the affine chart U, the resultant $\mathcal{R}_{\widetilde{V} \cdot E_{j}}(a)$ does not depend on a_{0}. We thus obtain

$$
\operatorname{deg}_{a_{10}} N\left(f_{j}\right)=\operatorname{deg}_{a_{10}} \mathcal{R}_{\widetilde{V} \cdot H_{j}} \leq \operatorname{deg}_{a_{1}} \mathcal{R}_{\widetilde{V} \cdot H_{j}}=\operatorname{deg}_{a_{1}} \mathcal{R}_{\widetilde{V} \cdot E_{j}}
$$

Since we deal with homogeneous polynomials in a_{1}, strict inequality in the previous expression is equivalent to the equality

$$
\mathcal{R}_{\widetilde{V} \cdot E_{j}}\left(\left(a_{10}, 0, \ldots, 0\right), a_{2}, \ldots, a_{n-1}\right) \equiv 0 .
$$

This happens if and only if all subvarieties $C=\{s=0\}$ given by sections $s \in \Gamma\left(X, \oplus_{k=2}^{n-1} L_{k}\right)$ intersect the set $\widetilde{V} \cap H_{j} \cap(X \backslash U)$. By a dimension argument, this would imply that \widetilde{V} has an irreducible branch contained in $X \backslash U$, and this can not occur since $\widetilde{V} \cap C_{a}=V \cap C_{a} \subset U$ for a close to a^{0}. Thus we have proved the equality:

$$
\operatorname{deg}_{a_{10}} N_{\widetilde{V}}\left(f_{j}\right)=[\widetilde{V}] \frown\left[E_{j}\right] \frown \prod_{k=2}^{n-1} c_{1}\left(L_{k}\right)
$$

Since the classes $\left[E_{j}\right], j=1, \ldots, s$ determine a basis for $A_{n-1}(X) \otimes_{\mathbb{Z}} \mathbb{Q}$, the non degenerated natural pairing between the Chow groups $A_{1}(X)$ and $A_{n-1}(X)$ shows that the hypothesis of Theorem 2 is equivalent to

$$
[\widetilde{V}] \frown \prod_{k=2}^{n-1} c_{1}\left(L_{k}\right)=\alpha \frown \prod_{k=2}^{n-1} c_{1}\left(L_{k}\right) .
$$

Since the Strong Lefschetz theorem remains valid for any very ample algebraic vector bundle on a smooth projective variety X (see Prop. 1.1 in [5]), the preceding equality is equivalent to $[\widetilde{V}]=\alpha$.

References

[1] N.H. Abel, Mémoire sur une propriété générale d'une classe trés étendue de fonctions trancendantes, note présentée à L'Académie des sciences à Paris le 30 Octobre 1826, Oeuvres complètes de Niels Henrik Abel, Christiania (1881), vol. 1, pp. 145-211.
[2] M. Andersson, Residue currents and ideal of holomorphic functions, Bull. Sci. math. 128 (2004), pp. 481-512.
[3] C.A. Berenstein, A. Yger, Residue calculus and effective Nullstellensatz, in American Journal of Mathematics, Vol. 121, 4 (1999), pp. 723-796.
[4] D. Bernstein, The number of roots of a system of equations, Funct. Anal. Appl. 9 (1975), no. 2, pp. 183-185.
[5] S. Bloch, D. Gieseker, The positivity of the Chern Classes of an ample Vector Bundle, Inventiones math. 12 (1971), pp. 112-117.
[6] E. Cattani, A. Dickenstein, A global view of residues in the torus, Journal of Pure and Applied Algebra 117 \& 118 (1997), pp. 119-144.
[7] V. Danilov, The geometry of toric varieties, Russian Math. Surveys 33 (1978), pp. 97-154.
[8] G. Ewald, Combinatorial convexity and algebraic geometry, Graduate Texts in Mathematics 168, Springer-Verlag, New York (1996).
[9] W. Fulton, Introduction to toric varieties, Princeton U. Press, Princeton, NJ (1993).
[10] I.M. Gelfand, M.M. Kapranov, A.V. Zelevinsky, Discriminants, resultants, and multidimensional determinants, Mathematics: Theory \& Applications, Birkhauser, Boston (1994).
[11] P.A. Griffiths, Variations on a theorem of Abel, Inventiones math. 35 (1976), pp. 321-390.
[12] P.A. Griffiths, J. Harris, Principles of Algebraic Geometry, Pure and applied mathematics, Wiley-Intersciences, 1978.
[13] G. Henkin, M. Passare, Abelian differentials on singular varieties and variation on a theorem of Lie-Griffiths, Inventiones math. 135 (1999), pp. 297-328.
[14] A. Khovanskii, Newton polyedra and the Euler-Jacobi formula, Russian Math. Surveys 33 (1978), pp. 237-238.
[15] P. Pedersen, B. Sturmfels, Product formulas for resultants and Chow forms, Math. Z. 214, no. 3 (1993), pp. 377-396.
[16] A. Shchuplev, Toric varieties and residues, Doctoral thesis, Stockholm University (2007).
[17] A. Vidras, A. Yger, On some generalizations of Jacobi's residue formula, Ann. scient. Ec. Norm. Sup, 4 ème série, 34 (2001), 131-157.
[18] M. Weimann, La trace en géométrie projective et torique, Thesis, Bordeaux, 22 Juin 2006.
[19] M. Weimann, Trace et Calcul résiduel : une nouvelle version du théorème d'Abel-inverse et formes abéliennes, Annales de la faculté des sciences de Toulouse Sér. 6, 16 no. 2 (2007), pp. 397-424.
[20] M. Weimann, Concavity, Abel-transform and the Abel-inverse theorem in smooth complete toric varieties, arXiv ref: math.CV/0705.0247.
[21] J.A. Wood, A simple criterion for an analytic hypersurface to be algebraic, Duke Mathematical Journal 51, 1 (1984), pp. 235-237.

[^0]: ${ }^{1}$ This idea goes back to Abel in his studies of abelian integrals [1].

[^1]: ${ }^{2}$ From a more conceptual point of view, the Grothendieck residue action on the form $x_{i} d f \wedge d q_{1} \cdots \wedge d q_{n-1} /(2 i \pi)^{n}$ coincides with the action of the logarithmic residue

 $$
 d d^{c} \log |f| \wedge \cdots \wedge d d^{c} \log \left|a_{n-1,0}-q_{n-1}\right|
 $$

 on the function x_{i}. It is well known that this logarithmic residue, considered as an (n, n) current, is equal to the sum of the point masses at the points of intersection so that its action on x_{i} produces the trace of x_{i}.

