N

N

The small-slope approximation method applied to a
three-dimensional slab with rough boundaries
Gérard Berginc, Claude Bourrely

» To cite this version:

Gérard Berginc, Claude Bourrely. The small-slope approximation method applied to a three-
dimensional slab with rough boundaries. Progress In Electromagnetics Research, 2007, 73, pp.131-211.
hal-00136117

HAL Id: hal-00136117
https://hal.science/hal-00136117
Submitted on 12 Mar 2007

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.


https://hal.science/hal-00136117
https://hal.archives-ouvertes.fr

THE SMALL-SLOPE APPROXIMATION METHOD APPLIED TO
A THREE-DIMENSIONAL SLAB WITH ROUGH BOUNDARIES

Gérard Berginc! and Claude Bourrely?

IThales Optronique, BP 55, 78233 Guyancourt Cedex, France.
gerard.berginc@fr.thalesgroup.com

2Centre de Physique Théorique®, CNRS-Luminy Case 907
13288 Marseille Cedex 9, France.
claude.bourrely@cpt.univ-mrs.fr

Abstract

In this paper we present new results on the small-slope approximation method. We consider
different three-dimensional structures like a randomly rough surface separating two different
media and a slab delimited by one or two rough surfaces. We extend the small-slope approxi-
mation to the fourth order terms of the perturbative development, and give the expression
of the cross-sections for the different polarization states. Numerical examples are treated for
the studied structures and a comparison with the small-perturbation is discussed.
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subject of intensive research in recent decades [1]-[4]. Theoretical and numerical approaches
have received a wide interest, we mention : the small-perturbation method (SPM) [5]-[8], the
Kirchhoff (or tangent plane) approximation method [1][9]-[10]. However, some restrictions

limit the domain of their applicability, the perturbation method is only valid for surfaces

INTRODUCTION

The analysis of the electromagnetic field scattering by random rough surfaces has been a
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with small roughness and the Kirchhoff approximation is applicable to surfaces with long
correlation length. Their combination gives the two-scale model, which is inacurate for grazing
angles [11]-[12]. Besides these methods, new approaches were suggested, like: the full-wave
method analysis [13], the surface-field phase-perturbation technique [14]-[15], the quasislope
approximation [16].

In the mid-1980s, Voronovich [17]-[22] proposed a new method called the small-slope
approximation (SSA) which is valid for arbitrary roughness provided that the slopes of the
surface are smaller than the angles of incidence and scattering, and irrespective of the wa-
velength of the incident radiation. The SSA is in fact making a bridge between two classical
approaches, namely : the Kirchhoff approximation and the small-perturbation method. An ex-
tension to situations in which multiple scattering from points situated at significant distance
becomes important is known as the non-local small-slope [21].

In this paper we will focused on the SSA method in view to study different rough struc-
tures like a slab or a film, considering the effects of higher orders in a perturbative expansion.
The problem of one rough surface up to the order 3 is treated in Ref [23], [29]. The Ref [23]
and Ref [29] consider the second order of the SSA and the one that includes the next-order
correction to it. The Ref [23] proposed simplified forms for the first three SSA terms in the
case of penetrable surfaces under the assumption of a Gaussian random process with an iso-
tropic Gaussian correlation function. In Ref [29] we find results up to the third SSA term for
incoherent scattering from dielectric and metallic surfaces with Gaussian and non-Gaussian
correlation functions. The main point is to investigate the case where a dielectric slab is
bounded by two rough surfaces [27]. Since the SSA method involves components of the SPM
in the calculations, we have used results of our previous works [24]-[26] developed under the
Rayleigh hypothesis.

The organization of the paper is as follows. In Section 2, we give a description of a
random rough surface and the notations used for the electromagnetic field in a vectorial
basis. In Section 3, we define the scattering matrix as an expansion in terms of the surface
height. In Section 4, we summarize the main features of the small-perturbation method and
give an example in the case of a single rough surface showing the relation with the operators
of the SPM in the formalism of Ref [24]. Section 5 is devoted to the calculation of the bistatic
cross-section where an explicit example is given. In Section 6, we give several examples of
application of the SSA method in the case of a single rough surface between two semi-infinite
media, and make a comparison with the results obtained by the SPM. Section 7, treats the
scattering by a slab with a rough surface on the bottom side, and applications are given. In
Section 8, we are interested in a slab where the upper boundary is a rough surface, some
applications are considered. Section 9, deals with the general case of a slab with two rough
boundaries. A detailed development of the SSA method is presented up to the order 4 with
respect to the heights. We give an example of application and compare with the results we
have obtained in the SPM case [25]. Appendices collect some formulas derived in [24]-[25]
and needed to make the paper self-contained.



2. PRELIMINARY DEFINITIONS AND NOTATIONS

The structure we consider is shown in Fig. 1, where the two rough surfaces separate three
media. The three media are characterized by an istropic, homegeneous dielectric constant €,
€1 and €9 respectively. The two boundaries of the rough surfaces are located at the height
z =hi(x), 2= —H + ha(x), where & = (z,y). The two rough surfaces are described statisti-
cally, more precisely, we assume that hi(x) and he(x) are stationary, isotropic uncorrelated
Gaussian random processes defined by their moments :

< hi(x) >=0, (1)
< hl(m) hl(m') > = WZ(ZE — ac') , (2)
< hl(.’B) hg(:l?/) > = 0, (3)

where i = 1,2, and the angle brackets denote an average over the ensemble of realizations of
the function hi(x) and he(x). In this work we will use a Gaussian form for the surface-height
correlation functions Wi (x) and Wa(x):

Wi(z) = of exp(~z?/I7), (4)

where o; is the rms height of the surface h;(x), and [; is the transverse correlation length.

The corresponding expressions in momentum space are given by :

< hi(p) >=0, (5)
< hi(p) hi(p') > = (2m)* d(p + p') Wi(p) (6)
< hi(p) ha(p') > =0, (7)
where 2
Wilp) = [ P2 Wile) exp(-ip ). ®)
=m0l I} exp(—p?I}/4). 9)

For the electromagmetic field we consider that each wave propagates with a pulsation w
and the time dependence is assumed to be exp(—iwt). The electric fields E° satisfy in the
different media an Helmholtz equation

(V2 + ¢K3)E'(r)=0. (10)
In the medium 0, E° can be written as a superposition of an incident and scattered fields:

2
E°(z,z) = E'(py) exp(ipy - @ — iag(py) 2) + / ((2171;2 E°(p) exp(ip - ¢ + ia(p) 2), (11)

2. We use the same symbol for a function and its Fourier transform, they are differentiated by their argu-

ments.



Fia. 1. An incident wave coming from medium 0 and scattered by a slab with two rough

surfaces.

where (see Fig. 2)

ao(p) = (e K3 —p°)?, (12)
Ko = w/e, (13)
E'(py) = Ei/(po) &) (Po) + Ef(po) €n(po) (14)
E*(p) = E}(p) &y (p) + Ej;(p) éu(p). (15)

The subscript H refers to the horizontal polarization (T'E), and V to the vertical polarization
(TM), they are defined by the two vectors:

en(p) = . xp, (16)
é(‘)/i(p) -4 CVO(p) A HpH & (17)

p )
Vake" ~ Valk

where the minus sign corresponds to incident wave and the plus sign to the scattered wave. It

has to be noticed that the vector E*(p) and E(p,) are expressed in a different basis due the

~1+

fact that €% (p) and &1 (p) depend on p. In medium 1, we get a similar expression namely:

2 2
Br) = [ 2 B p)ewlip-e—iap)a)+ [ 51 B ) eslp-+iaip)e). (19

4



Fia. 2. Definition of the scattering vectors.

where
1
a1 (p) E(elKg — p2)2 . (19)

The field E'~ is decomposed in the basis (é%/_ (p), éx(p)), and E'T in the basis (é%;“ (p),én(p))
with

én(p) =é. xp, (20)
Sl a(p) . _lpll
=+ - . 21

3. THE SCATTERING MATRIX

We define the scattering matrix connecting the incident field to the scattered field by
the following expression

E*(p) = R(plpy) - E'(py) , (22)



where R(p|p,) is a two-dimensional matrix where the components depend on the polariza-
tions V and H

Ryv(plpy) Rvu(p|po)

R(plp,) =
R R

We will consider a perturbative development of R in powers of the height h of the form

- (0 (1 (2 (3
R(plpy) = R (plpo) + B (plpo) + B (plp) + B (plpo) + - - (23)
We have proven [24] in the case of the small-perturbation method that the development takes
the form
B )
Rplpy) = (2m)%(p —p) X" (po) + ao(po) X (plpy) h(p — py)
d?p, —
+ao(Po) / (%)12 X (p|p,|po) h(p — p1)h(py — po) (24)

d’p d p
+ao(po) // L 2 X (plp1|palpo) h(p — p1)A(D1 — P2)h(Ps — o),

where h(p) is the Fourier transform of h(a:):

h(p) = / 2 exp(—ip - @) h(z) . (25)

The expression of the scattered field represents the general solution of the Maxwell equations

which satisfy the radiation condition. For instance, in medium 0, the scattered field reads
s i -7.0— &*p — i 7.0+
E*(r) = E'(po) exp(ikp, - T) + 2n)? R(p|py) - E'(py) exp(ik," - 7). (26)

where k%i =p+ag(p)é.

In order to determine the scattering matrix we have to satisfy the boundary conditions
on the rough surfaces by writting the continuity of the tangential components of the electric
and magnetic fields, in the case of the upper surface we obtain

n(z) x [E°(z, hi(z)) — E'(z,h(z))] =0, (27)
n(z) - [eE(z,hi(z)) — et B (z, hi(x))] =0, (28)
n(x) x [Bo(ac,hl(ar:)) — Bl(m,hl(m))] =0, (29)

n(x) =eé, — Vhi(x) .

For the lower surface we can write equivalent conditions by making the replacements, 0 — 1,
1 — 2, and Ay by ho.

4. THE SMALL-SLOPE APPROXIMATION FOR A ROUGH SURFACE

In his approach Voronovich [19] remarks that the unitary of the scattering matrix implies
a reciprocity theorem leading to the following properties:

E(p7p0) = R(Z’O? _p) ) (30)



for an horizontal translation of the rough boundary h(r) — h(r — a)
R(p,po) — R(p,py) exp [—i(p — po) - al, (31)
and for a vertical translation h(r) — h(r) + H
R(p.py) — R(p,po) exp [—i(a(p) + a(po)) H]. (32)

Using these results Voronovich proposes the following expression of the scattering matrix

R(p,p,) :/(;ZT;eXp [—i(p — po) - —i(a(p) + a(pp))h(r)]® [P, po; 75 [M],  (33)

in the case of a rough surface located between media 0 and 1. The functional ® which depends
on h has to be determined. The translation conditions (31) and (32), lead to some properties
on @ (here it is more convenient to work with the Fourier transform ® [p,pg; r; [h]] with
respect to the variable r). The first condition (31) reads:

2 .
R(p,p,) :/ WE A2 7 exp ™ P~Po=&)r=i(co(P)Fa0P) h(r) F(p, g, ¢), (34)

and the second (32)

6:zzﬂh(:lcfa,) (p, Po, 5) = expiﬁ-a 6:zzﬂh(:n) (p, Do, 5) ) (35)

for all vector a. In the framework of a perturbative development, ® is expanded as an

integral-power series of A namely:

d’¢,
(2m)?

// ¢ “2 5(E— & — €) 8 (b po. €1, 62) h(E) MEs) + ... (36)

(p.p0.6) = 56) 8" (p.p0) + [ 55506~ €08 bpy 1) (E)

The condition (32) imposes :

(I’a:eh(:v)-i-H (pa Do, 5) = 5:z:—>h(a:) (p, Po; E) . (37)

In the Fourier space, the transformation & — h(x)+H corresponds to & — h(p)-+(27)%6(p) H.
So for the order 1 in H, the condition (37) reads

(2m)25(p) H ®" (p,py, €) =0, (38)

= (1
or <I>( )(p,po, & = 0) = 0. In the same way, one can prove that

= (n)
@ (p,po, &1, € =0,...,§,) =0 Vke[ln]. (39)
Now, using a finite expansion with respect to the variables &4,...,§,, it follows that:

z(n)

@ (p7p07£1""?€n): Z 51&1"'gnané(n)al‘“n(p7p0’£l’"'751’],)7 (40)

A1y A =T,Y



where §; = (&4,&y). This expansion justifies the name of small-slope approximation when

the effects due to the frontiers are neglected in the integration

oh -
i&u h(§) = /de %exp_lg'“73 . (41)
The coefficients " (p,po,&1,---,&,) are not unique and independent. However, Vorono-

vich [19, 21] showed that 3™ can be expanded as:

= (n)

&M _ 5™ (n)

5 (1)
|£n:P—P0—£1—“'—§n71 T [(I) -2 ‘ﬁn:P—Po—&—“'—ﬁnfl] ’ (42)
the first term in the right handside can be transformed into a term of order n — 1 which is
7 (n=1)

analogous to ® , and the term between brackets is transformed into a term of order n+1.

This important relation will be called a reduction formula in the following.
Taking as an example the first terms in an expansion of Eq. (36), and using Eq. (42) the
(0) 1 (0)

computation of the term &~ should involve @’ but its coefficient can be related to ®

and 6(2) and then replaced, we obtain the formula

R(p.po) = / L expi (P=Po)T=ie0(@)+a0(20)) h(r) O (y )y

2 . .
/((217T£)2 d?r exp ! (PPo)ri(c0@)Feo(Po)) h(r) (97)2 5(¢— €, —£,) B (P Po:&1,€2) h(&1) h(€y) -

(43)

In this expression, if we take the term of order 1 in h, we get

R(p,po) = " (p,po) [(27)?6(p — po) — i (co(P) + ao(po)) h(p — po)] - (44)

Voronovich [19]-[18] has proposed to identify the expression (43) with the small perturbation
method (see Ref [24] Eq. (53)) we obtain 3

(1)

R (plpo) = (2m)75(p — po) X2 (po) + o (po) X4 (pIpo) h(p — Po)

+a0(po) / éﬁ)Q X7 (plpyIpo) h(p — py)h(P1L — Po) , (45)

it results the equations:

3% (pg, o) = X (py), (46)

~i(ao(p) + a0(po)) B (b, py) = a0(py) X\ (pP0) , (47)
—(0) B ao(Po) (1)

& (P.p0) = 7o +°a0(p0)) X, (plpy) (48)

_217(0) (Po) = Ygl)(po‘po) . (49)

3. The upper indices 10 in (45) must be read from right to left, indicating the order of the successive media.

The same notation will be used in the following.



The first equation gives the coeflicient 5(0) (p,py) whose the corresponding scattering matrix
becomes

-10 iao(po) (1) 2 i (p—p)-r—i(ao(p)+a0(py)) h(r)
R (plpy) = X. (p|lp /drexp P~Po olp)Ta0{Po , (50

] ( ’ 0) (ao(p) +a0(p0)) s ( ’ 0) ( )
where Ygl)(p|p0) is given by A.2, (see also Ref [24] Eq. (61)). Following the same procedure,
the order two approximation ® ?) can be written in term of a order 1 and 3, leading to the

expression :

—10 ao(pg) / ¢ —i (p—py—&)-r—i(ao(p)+ao(py)) h(r)
R _ . d P—Dp o(p)+ao(pgy
» (PIP0) = ) +aotpo)) ) @m 47O

x {(%)25(5)79)@!%)
+% X (plp — €lpo) + X (plpy + €lpy) + i (a0(p) + aO(po))YS)(p’pO)] h(ﬁ)} - (5

where Yf) is given by A.3, (see also Eq. (62) Ref [24]). We immediately deduce

1
&' )(p,po,ﬁ) =

ig(pg) 1152 ()
- |X - + X, +
ao(P) + ao(py) 2 [ (plp — €lpo) (plPo + €lpo)
~ (1)

+i(ao(p) + ao(p)) X s (Plpo)| - (52)

The small-slope approximation method contains following the construction procedure a
perturbative term of order 1: Eq. (50), and of order two: Eq. (52). It contains also a phase
factor coming from the tangent plane approximation. In addition, Voronovich has shown in the
scalar case with boundary Diriclet conditions that the Kirchhoff tangent plane approximation
was included in the small-slope method for the order 2 (Eq. (52)).

5. COMPUTATION OF THE CROSS-SECTION

The scattered field is related to the incident field by :

with
Folpy) = "2  Riplpy). (54)
i
P = KO W ) (55)

where 6 is the angle between e, and the scattering direction. Introducing the Muller matrix
M (p|p,), the bistatic matrix is defined by the relations

¥(plpo) = ﬁswo) M(plp,), (56)
= m F(plpo) © F(p|Py), (57)
_ KZcos*() — —
= m R(p.py) © R(p,py) - (58)



where the product ® of two matrices f and g is defined by

fvv fve 5 agvv  9gvH

fog= (59)
fuav  fum gV  9HH
vy g u Re(fvvay ) —Im(fvvayy)
_ favaiy faundsy Re(fuvdsy) —Im(favgyy)
2Re(fvveryy) 2Re(fvugiy) Re(fvvgyy + favevy) —Im(fvveig — fvadiy)

2Im(fvvayy) 2Im(fvagiy) Im(fvveyy + fuveyy)  Re(fvvghgy — fvadiy)

The scattering from a randomly rough surface is a stochastic process, so the computations
of radar or laser cross-section for the coherent and incoherent parts involve an average over
the surfaces realizations. The definition of the coherent bistatic matrix reads
Kg cos® 6

~coh _ 1
A (27)? cos by

7= cos gy < R(p,py) > © < R(p,py) >,

< f(plpo) > © < f(plpy) >=
(60)
and the incoherent bistatic matrix

—incoh

" (plpy) = Toosto [< F(plpo) © F(pIPy) > — < f(PIPy) > © < F(PIPO) >],

Kgcos? 0 — — — —
~ A(2m)2 cos b, [< R(plpo) © R(plpy) > — < R(plpy) > © < R(plpy) >] -

(61)

If we consider the case of a single rough surface Eq. (51) where we set

= (plpole) = X (plp — £lpo) + X2 (p1Po + €lpo) + i (00(p) + co(pe) XL (BIpy) , (62)

this matrix does not comply with the reciprocity condition, so we will define a reciprocal

matrix by the relation

S.(plpolé) = 5Z)plpole) + Z2pol — |~ €7 (63)

where a1’ means the anti-transpose of a matrix, with the definition
aT

= : (64)

Taking the statistical average of the matrix Rio(p|p0) one obtains for the coherent part

iag(po) —(ao(p)+ao(py))? o2 /2
ex 0 :
(ao(p) + ao(py)) ¥

(% « 2 -
[ et X pipy + 2P [ s pipe) | L (65)

—10
< R, (p|py) >=

10



and for the incoherent part the expression

—incoh

K?2cos?6
7" Plpo) = o

—10 —=10 —10 —10
A (2m)2 cos Oy [< R, (plpo) © R, (plpo) > — < R, (plpo) > © < R, (plpo) >|

(66)
where

: @?(I;Olao(ﬂé’) = exp—(@0(P)+a0(p0)) /2
—(&o(pP @o(Po

/dQT/ 21 exep@0(P)00(Po))2 W(r—=r") =i (p—po)-(r—r")

i(a « 2 . , _
{[ X0 wpy) - M0 [ ) expi ) 1) plpole)| o

—10 —10
< R, (plpy) © R, (plpy) >=

2 2)
i(a o 2 . , — *
X0 p.p) - LB [P (g et ) 1) (o)

2
+1 [ e WO wlnale) © Butrpile) | - (07)

6. A ROUGH SURFACE BETWEEN TWO SEMI-ININITE MEDIA

In this section we apply the above derivation to the simple case of a rough surface
between two semi-infinite media. It will serve as test of the small-slope method described in
our formalism by making a comparison with well-know examples. We take as first (incident)
medium the vacuum followed by a dielectric medium (nq = 1.62 +10.001), the frontier being
a rough surface with a rms height ¢ = 0.223 um and a correlation length | = 1.42 um
(structure no 1). The incident wave length A = 632.8 nm, the angle of incidence 6; = 20",
and the azimuthal plane ¢; =0°.

The incoherent components y"(;) are shown in Figs. (3-4) as a function of the
scattering angle 6, in the order 2 approximation?. The scattering intensity for the coherent
part with 4 polarization components is presented in Fig. 5. The results agree well with those
obtained in Ref [28], [29]. As a second example (structure no 2), we consider a rough surface
made of aluminium with relative permittivity e; = —40—i1.1. The rough surface is supposed
to be homogeneous and isotrope with rms height (o0 = 0.3/K() of Gaussian nature, and
with a correlation length (I = 3/Ky). The incident wave length A = 632.8 nm. The angle of
incidence 8; = 20 °, and the azimuthal plane of incidence ¢; = 0. The incoherent components
ymeoh(9,) are drawn in Figs. (6-7) as a function of the scattering angle 64, calculated to
the second order approximation. The scattered intensity for the coherent part including 4
polarization components is shown in Fig. 8.

Starting from the previous structure (no 2) we modify the statistical parameters in such
a way that neither the Kirchoff method nor the small-perturbation method are valid, taking
for instance o = 1/ Ky, et [ = 1/Kj (structure no 3). In this case we obtain the results shown
in Figs. (9-11), and we observe a very different behavior for the incoherent components, there
exists for VV and V H two maxima around 65 = +70° , while for HV a maximum occurs for

Ay =0° and the order of magnitude of the cross-section is reduced by a factor 2.

4. All the calculations are performed with MATLAB, The MathWorks, Inc.
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FI1G. 3. Incoherent components " (04) to the second order approzimation as a function of
the scattering angle 04 V'V (black curve), HH (red curve). Medium characteristics : height
o = 0.223 um, correlation length | = 1.42 um, index ng = 1, n; = 1.62 +10.001. Incident
angles: 0; =20°, ¢; =0°, wavelength A = 632.8 nm.

12 x107° Incoherent component
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F1a. 4. Same characteristics as the previous figure, components VH (green curve), HV (blue

curve).
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FIG. 5. Same medium characteristics as in Fig. 3. Coherent components y°°"(04) as a func-

tion of the scattering angle 04, V'V (black curve), HH (red), VH (green) and HV (blue).

In a last example (structure no 4) we take the case of a calculation made with small-
perturbation method we have published in Ref [24], see Fig. 8. For this structure, Koo = 0.068
and 1/Kol = 0.73. The results with the SSA method are shown in Figs. (12-14). For the four
polarization components we agree with the order of magnitude and the shape of the intensity,
however, small oscillations are present, their origin is certainly due to the FFT integration
method we have used.
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FIG. 6. Incoherent components v (04) in the order 2 approzimation as a function of the
scattering angle 04. VV (black curve), HH (red curve). Incident wavelength A = 632.8 nm,
height o = 0.3/ Ky, correlation length | = 3/Ky. Angles: 0; =20°, ¢; = 0°, permittivity :
€e0=1,¢6 =—-40—-11.1
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F1a. 7. Same characteristics as the previous figure, components VH (green curve), HV (blue

curve).
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FIG. 8. Medium characteristics of Fig. 6. Coherent components v*°"(04) as a function of the
scattering angle 04, V'V (black curve), HH (red curve), VH (green curve) and HV (blue

curve).
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F1G. 9. Incoherent components """ (04) in the order 2 approxzimation as a function of the
scattering angle 04. VV (black curve), HH (red curve), Incident wavelength A = 632.8 nm,
surface height o = 1/Ky, correlation length: 1 = 1/Ky. Angles: 6, =20°, ¢; = ¢ =0".
Permittivity: g =1, e = —40—-11.1
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Fia. 10. Medium characteristics identical to the previous figure. Incoherent components VH

(green curve), HV (blue curve).
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F1Gc. 11. Medium characteristics identical to Fig. 9. Coherent components v°"(04), V'V
(black curve), HH (red), VH (green) and HV (blue).
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FIG. 12. Incoherent components v"°"(6,) with SSA to the order 2. VV (black curve), HH

(red curve). Incident wavelength A = 457.9 nm, surface height o = 5nm, correlation length :

Incoherent component

Il

-90

0
thetad (deg)

30

60

90

1 =100nm. Angles: 0; =0°, ¢; =0°, permittivity: ¢g =1, e = —7.5—10.24

25

Siglz,u

0.5

F1a. 13. Same characteristics as the previous figure. Components VH (green curve), HV
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FIG. 14. Same characteristics as Fig. 12. Coherent components y°°"(6;), V'V (black curve),
HH (red curve), VH (green curve) and HV (blue curve).
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FiG. 15. A slab with a rough surface at the lower boundary and planar surface on the upper

side.

7. A SLAB WITH A ROUGH SURFACE ON THE BOTTOM SIDE

In this section we start with main object of the paper namely to compute a scattering
process generated by a slab. Here, we consider a slab whose lower boundary is a two dimen-
sional rough surface and the upper boundary is a planar surface. A schematic view of the
geometry and the different waves propagating in the structure is given in Fig. 15. Making
the observation that in medium 2 no wave is coming in the upward direction, the scattering
matrices obtained in the previous section are still valid.

In Ref [24] section B. we have shown in the case of the small-perturbation method that
the scattering matrix is given up to the order 2 in h by the expression

R(plpo) = (2m)%(p —po) Xy (po) + a0(po) X3 (p|po) hp — py)
2
+aolpo) [ g 2 X (o po) hp — 2Py~ po). (63)

where the matrices Yg) are given in the appendix B. Following the method proposed by
Voronovich and applied in the previous section, we identify the terms obtained by the small-

perturbation method with those of the SSA method, this procedure leads to the expression
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of the scattering matrix

10 iao(po) / ¢ ~i (p—po—€)7—i(ao(p)+ao(po)) h(r)
R _ ) d P—Do 0(P)Ta0{Po
PO = o) + ool G TP

x {(2m)?5(6) Xy (ppo)
+ L XD (plp — < , < ;
5 [ X 0lp — €lpo) + X7 (plpy + €lpy) + i (a0(p) + 0 (pe)) X (Plpo) | H(E) - (69)

7.1. Applications

We begin with the structure (structure no 5) taken from Ref [24] see Fig. 14. The slab
is characterized by the parameters: rms height ¢ = 5nm, correlation length [ = 500 nm,
and a slab thickness H = 500nm. The permittivities of the successive media are: €y = 1,
€1 = 2.6896 +10.0075, e = —18.3 4+ i10.55. The incident wavelength A = 632.8 nm, and the
angle of incidence §; = 0 ° . The intensity curves are shown in Figs. (16-18). We observe for the
incoherent components that the magnitude is the same as in the small-perturbation method
(SPM), with a maximum of intensity for #; = 0. We notice the presence of small oscillations
for the polarization V'V, and for the polarization HV the appearance of a structure around
0y = 50" which does not show up in the former method, and the absence of satellite peaks
for the V'V component.

At this point we can make two remarks: the order 2 approximation of the SSA method
is a linear combination of the order 1 and 2 of the SPM, see Eqs. (62-63), it implies that
the fine structure observed for the order 2 in SPM is probably masked by the global effect
due to the SSA order 2. Moreover, our numerical experience in the SPM case, shows that
the functions to be integrated contain very narrow peaks needing a special treatment (see
Ref [26] for a discussion), in the case of the SSA method where we integrate by a FFT, even
an increase of the number of points is not sufficient to recover the peaks. In the next example,
we take the parameters of structure no 1, where we introduce above the rough surface a slab
of thickness H = 500 nm and permittivity e; = 2.6896 + i0.0075 (structure no 6). The effect
of the absorbing dielectric slab shows (as expected) a decrease of the reflected intensities
for all the polarization states, however, the shape of the curves remains the same for the
polarizations VV and HH, the results are shown in Figs. (19-21). In a last example, we take
a rough surface made of aluminium, the parameters are the same as in structure no 2, and
we add above the surface an absorbing dielectric slab of permittivity eo = 2.6896 — 10.0075
(structure no 7). The results are presented in Figs. (22-24). The addition of an absorbing slab
decreases the intensity for the polarizations V'V and HH while the shape remains the same,

but for the polarisation V H we observe two maxima instead of one in structure no 1.
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FIG. 16. Incoherent components v""(04) to the order 2, VV (black curve), HH (red
curve), Surface height o = 5nm, correlation length | = 500nm, slab thickness 500 nm.
Permittivities eg = 1, €3 = 2.6896 + 10.0075, e = —18.3 +10.55. Incident angles: 8; =0°,
¢; =07, wavelength A = 632.8 nm.
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Fra. 17. Same characteristics as the previous figure. Incoherent component VH (green

curve), HV (blue curve).
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F1G. 18. Characteristics of Fig. 16. Coherent components v*°"(04), VV (black curve), HH
(red curve), VH (green curve) and HV (blue curve).
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F1G. 19. Incoherent components v""(04) to the order 2. VV (black curve), HH (red
curve), Surface height o = 0.223 um, correlation length | = 1.42 um, slab thickness 500 nm.
Permittivities eg = 1, €1 = 2.6896 +10.0075, €2 = 1.62 +10.001. Incident angles: 6; =0°,
¢; =07, wavelength A = 632.8 nm.
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F1a. 20. Same characteristics as the previous figure. Incoherent component VH (green

curve), HV (blue curve).



Coherent component
T

-100

—200 -

=300

(dB)
1

Sig

-400

-500

-600 Il Il Il Il Il Il Il
-90 -60 -30 0 30 60 90
thetad (deg)

F1G. 21. Characteristics of Fig. 19. Coherent components v*°"(04), VV (black curve), HH
(red curve), VH (green curve) and HV (blue curve).
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FIG. 22. Incoherent components v""(04) to the order 2. VV (black curve), HH (red
curve), Surface height o = 0.3/Ky, correlation length | = 3/Ky, slab thickness 500 nm.
Permittivities g = 1, €1 = 2.6896 +10.0075, e = —40 —i1.1. Incident angles: 6; = 20,
¢; =07, wavelength A = 632.8 nm.

15 X107 Incoherent component
. T . :

Sig12,21

0 I I I I I
-90 -60 -30 0 30 60 90

thetad (deg)

Fr1a. 23. Same characteristics as the previous figure. Incoherent component VH (green

curve), HV (blue curve).
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F1G. 24. Characteristics of Fig. 22. Coherent components v*°"(04), VV (black curve), HH
(red curve), VH (green curve) and HV (blue curve).
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€2

Fia. 25. A slab of permittivity €1 and thickness H between two semi-infinite media of per-

mattivity €o and €s.

8. A SLAB WITH A ROUGH SURFACE ON THE UPPER SIDE

We consider a dielectric slab of permittivity €; inserted between two semi-infinite media
of permittivity €y and es. The upper part of slab is a rough surface, the lower part is a
planar one, see Fig. 25. In order to compute the scattering matrix Ru(p\po), we need first
to determine the scattering matrix in the small-perturbation method that we summarized.
We will start from the two reduced Rayleigh equations obtained in Ref [24] Egs. (100-101),

namely :

24— — : - — . €0 € %a
[ ST ) Retulpy) - B ) + B (o) - B) = 20 i,
(70)
24— — } —1-0— : €€ %a
[ S BT ) Ruulp) - B o) + T () By) = 2P o),
(71)
where the marices M, are given by :
——1b,0a (bOzl (u) — aao(p)|u — p)—lb,Oa
M, (ulp) = bory (1) — aco (D) M 7 (ulp), (72)
700, 1a I(bag(u) — aoy (p)|u — P) <=0b1a
Mh ( | ) = bO[(](’lL) _ aa1(p) M (U|p), (73>

28



with

—1b,0a l|u|l||p]| + abai(uw) ag(p) @ - p —bel Kopon(u) (X P),
M (ulp) = 1 o o Fo AP )
aei Koao(p) (@ x p), (epe1)2 Kgu-p
1
——0b,1a [ull|[p|| + abao(u) ar(p)w-p —bef Koao(u) (@ x p).
M (ulp) = \ o RSl IR (O
aeg Koon(p) (i xp), (eoer)2 Kfu-p
and
I(alp) = /d%: exp(—ip - © — ia h(z)). (76)

Inside the slab the scattered field by the planar surface is related to the incident field by the
relation

EY(u) =712 (u)  E'"(u), (77)
where 72! is a diagonal matrix
712 (p) = exp? i1 @) H 721 (p) (78)
€2 o1 (p)—e1 az(p) 0
)= | C”(”)g“ 7 e | (79)
a1(p)+az(p)
this matrix contains the reflection coefficients for a planar surface located at z = —H which

separates two media of permittivity €; and €. The phase factor exp(2iay(p) H) describes the
extra path of the scattered wave due to the planar surface. Collecting the integral equations
(70) and (71), the matrix R, is a solution of the equation

2u _ ATL >3
/ ST> M (plu) + 7172 (p) - M, (plu)| - R (ulpy) =

71+.0- —H?21 A7l—0-
- [Mh (plpo) +77 7 (p) - M, (p\po)] : (80)
In order to construct a perturbative development, the method consists to expand in Taylor

series I(a|p) with respect to h. We obtain for the matrix R, an expansion analogous to
Eq. (24)

Ru(plpy) = (27)26(p — po) X\ (po) + a0(po) X (ppo) h(p — po)
2
+ao(po) / gf)é X2 (plpy|po) h(p — p1)h(py — Po) (81)

with the following expressions for the matrices X,
—1+,0+ ——1—,0+ -1
5 | M (PolPo) _ —H21 M (Polpo)
w (Po) = r (Po) -
a1(pg) — a0 (Po) a1(py) + ao(po)

——=1+,0— ——1—,0—
M M~
. [ (Polpo) + FH21( (PolPo) ]

a1(pg) + ao(po) Po): —a1(pg) + ao(p)

= (7" (po) +772(py)) - [T+7"(py) ‘?Hzl(po)]_l ; (82)
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719(p,) is given by (C.13).

X (ulpy) =20 Q " (ulpy). (83)
X, (ulpa|po) = a1(w) @~ (ulpy) + a0(po) @ (ulpo) — 2P (ulpy) - @ (pilpo) s (84)

Q@ and P are given in appendix C.

In order to obtain the scattering matrix for a slab with a rough surface at the upper
boundary in the SSA approximation, we follow the same method of identification between
the SSA and SPM described in section 7, and we get

10 iao(po) / ¢ ~i (p—po—€)7—i(ao(p)+ao(py)) h(r)
B _ . d?r exp 1P Po 0iP)Ta0iPo
U (p‘pO) (ao(p) + Oéo(Po)) (271')2 P

x{(2m)?56) X, (plpo)

1 [%@ <@ . el
+5 [ Xu (PP — €lpo) + X (plpo + €[Po) +1(an(p) + ao(po)) X, (plpo)] h(S)} . (85)
The last step is to introduce in Eq. (85) the X, reciprocal matrices to complete the expression
of the scattering matrix Rio (plPo)-

8.1. Applications

We take as a first example a slab of thickness H = 500 nm, with an upper rough surface
o = 15nm, I = 100nm, and a lower planar surface made of a perfect conductor (structure
no 8). The successive media have a permittivity : ¢g = 1, 3 = 2.6896 +10.0075. The incident
field is normal to the slab, and the wavelength A = 632.8 nm. The scattered intensities for the
polarizations V'V and HH are presented in Fig. 26, a comparison with the SPM (see Ref [24]
Fig. 10) shows that the magnitude are the same, but the difference between the maxima for
f; = £30° and the minimum for ;5 = 0° is more pronounced in the SPM case. For the
crossed polarizations VH and HV shown in Fig. 27 the shape of the intensities is identical
but the magnitudes are half of the SPM case. Taking the same structure, with an angle of
incidence #; = 20 °, the results are shown in Figs. (29-31). The intensities are concentrated in
the backscattering region for the polarizations V'V and H H, while for the VH and V H the
intensities are maximum in a region opposite the incident scattering angle. In order to show
the influence of the slab thickness, we take the structure no 7, and we double the thickness
H (H = 1000nm), the other parameters being the same, this case corresponds to Fig. 12
in Ref [24]. The results presented in Fig. 32 confirm the dominance of the polarization HH
over the polarization V'V, and the polarizations V H and HV show the same variation of the
intensities as a function of the scattering angle.

An other structure (no 10) is obtained from structure no 8 where the infinite conducting
planar surface is replaced by a silver planar surface of permittivity eo = —18.3 +10.55. In
Fig. 35 is shown the intensities for the polarizations V'V and H H, the HH component has the
same maxima for §; = £40 " as in the SPM case (see Fig. 13 in Ref [24]), but the difference
between the maxima and the minimum (f; = 0°) is less important. For the polarizations
HV and V H, the intensities behavior with the scattering angle are similar but reduced by
approximately a half compared to the SPM case.
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FIG. 26. Incoherent components v""(04) to the order 2, VV (black curve), HH (red
curve), Surface height o = 15nm, correlation length | = 100nm, slab thickness 500 nm.
Permittivities g = 1, €1 = 2.6896 +10.0075, €2 = +ico. Incident angles: 6, =0°, ¢; =0",
wavelength A = 632.8 nm.
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F1a. 27. Same characteristics as the previous figure. Incoherent component VH (green

curve), HV (blue curve).
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FIG. 28. Characteristics of Fig. 26. Coherent components v°"(04), V'V (black curve), HH
(red curve), VH (green curve) and HV (blue curve).

The fact to add a slab under a rough surface has a significant influence on the scattered
intensity. To illustrate this point we take the structure no 1 (a rough surface between two
semi-infinite media) and introduce a slab of thickness H = 500 nm with an infinite conducting
lower planar surface (structure no 11). The results are presented in Figs. (38-40), we observe
the same maximum around the backscattering direction for the polarizations V'V and HH
but an increase of the scattered intensity by a factor 100. We notice for the polarizations HV
and V H the presence of small oscillations for 8; > 60 ° due to the integration method.
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FIG. 29. Incoherent components v""(04) to the order 2, VV (black curve), HH (red
curve), Surface height o = 15nm, correlation length | = 100nm, slab thickness 500 nm.
Permittivities eg = 1, €1 = 2.6896+10.0075, €2 = +ioco. Incident angles: 0; =20°, ¢; =0",
wavelength A = 632.8 nm.
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F1a. 30. Same characteristics as the previous figure. Incoherent component VH (green

curve), HV (blue curve).
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F1G. 31. Characteristics of Fig. 29. Coherent components v*°"(04), VV (black curve), HH
(red curve), VH (green curve) and HV (blue curve).
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FIG. 32. Incoherent components v""(04) to the order 2, VV (black curve), HH (red
curve), Surface height o = 15nm, correlation length | = 100mnm, slab thickness 1000 nm.
Permittivities g = 1, €1 = 2.6896 +10.0075, €2 = +ico. Incident angles: 6, =0°, ¢; =0",
wavelength A = 632.8 nm.
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F1a. 33. Same characteristics as the previous figure. Incoherent component VH (green

curve), HV (blue curve).
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F1G. 34. Characteristics of Fig. 32. Coherent components v*°"(04), VV (black curve), HH
(red curve), VH (green curve) and HV (blue curve).
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F1G. 35. Incoherent components v""(04) to the order 2, VV (black curve), HH (red
curve), Surface height o = 15nm, correlation length | = 100nm, slab thickness 500 nm.
Permittivities eg = 1, €3 = 2.6896 + 10.0075, e = —18.3 +10.55. Incident angles: 6; =0°,
¢; =07, wavelength A = 632.8 nm.
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F1a. 36. Same characteristics as the previous figure. Incoherent component VH (green

curve), HV (blue curve).
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F1G. 37. Characteristics of Fig. 35. Coherent components v*°"(04), VV (black curve), HH
(red curve), VH (green curve) and HV (blue curve).

38



Incoherent component
60 T T T T T T

50

10

L L L L L L L L L L Il Il 1 1 - L
-90 -80 -70 -60 -50 -40 -30 -20 -10 0 10 20 30 40 50 60 70 80 90
thetad (deg)

FIG. 38. Incoherent components v""(04) to the order 2. VV (black curve), HH (red
curve), Surface height o = 0.223 um, correlation length | = 1.42 um, slab thickness 500 nm.
Permittivities ¢g = 1, e = 1.62 +10.001, €5 = +ico. Incident angles: 6; =20°, ¢; = 0",
wavelength A = 632.8 nm.
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F1a. 39. Same characteristics as the previous figure. Incoherent component VH (green

curve), HV (blue curve).
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F1G. 40. Characteristics of Fig. 38. Coherent components v*°"(04), VV (black curve), HH
(red curve), VH (green curve) and HV (blue curve).
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9. A SLAB WITH TWO ROUGH BOUNDARIES

In the previous sections we have examined the cases where only on rough surface parti-
ciped to the scattering process, in the present section our purpose is to show how light can
interact with a slab delimited by two rough surfaces. This configuration is shown in Fig. 1,
where three regions are characterized by different permittivities homegeous and isotropic, €g,
€1 and eg. A slab is delimited by two rough surfaces located at z = hy(x) and z = —H +hso(x),
x = (z,y).

Since the SSA method involves a knowledge of the scattering matrices calculated in the
small-perturbation method, we summarize the results already obtained in Ref [25] and needed
in the following. For a system with two rough surfaces the perturbative development of the
scattering matrix R can be expanded as:

}—2:R(OO)+}—2(10)_i_E(Ol)+§(11)_i_}—z(?O)+§(21)+§(12)+E(22)+}—2(30)+§(03)+.”, (86)

where the terms associated with the products of the heights of the two surfaces h} h3" are
labelled B

Concerning the bistatic incoherent cross-sections we decompose their expressions into
three terms corresponding to the contributions of the upper and lower surfaces alone plus a

contribution due to the interference

—incoh —incoh —incoh —incoh

¥ (Plpo) = Fu " (PIPo) + 7 (PIP0) + Fud ' (PIPo) 5 (87)
as an example

—incoh (10)

o' " (PPo) = "

K2 cos? 6 [ —(10)
(2m)2 cos Oy

<RO0RY s 4 c R oR™ > 4 < ROV o RWY >]

(88)

corresponds to the contribution of the upper surface (ha(x) = 0), where the perturbative
expansion is limited to the order 3 as a function of mean height o;. In a similar way the
contribution due to the lower surface can be written by permuting the upper indices. The
interference term 73})00”’, contains the contributions of the field interacting with the two rough

surfaces, and the dominant parts are given by

—incoh

K?2cos?6
Vui " (PIP0) = 7750

e 7[RIV SR S L c R oRY S
(2m)? cos Oy

+<RYoR® s 4 <R oRO >

+<RWeRM s ¢ ], (89)

these contributions contain all the terms with ot O'% (1 <i+4j <4).If the values o; and
o9 are close their contributions will be equivalent to fourth order terms in (88, 89). So we
have supposed in Eq. (89) that the terms corresponding to of 03, 03 03, of o5 are negligible
compared to the terms kept in Eq. (89), moreover, due to their complexity these terms of

sixth order are not calculated.
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In the case of the small-slope method we will study a perturbative development of the
scattered field which depends on the slope of the surfaces hi, ho. The scattering matrix we
have used in sections 4, 7 and 8, must be generalized to the case with two surfaces. It is clear
that several generalizations can be proposed, we choose the simplest one by making an ansatz
similar to the functional form proposed by Voronovich, namely

R(p.p,) = /erer’eXp [—i(p —po) - (r +7) —i(a(p) + a(pg)) (b (1) + ha(r'))]
x® [p,po; 75 '3 [ha(r)]; [ha(r)]] (90)

Introducing the Fourier transform of the functional ®, we have

D _ 2,721 d2£ d2£/

R(p,py) = /d rd°r (2m)2 (21)2
exp [~i(p —py — &) -7 —i(p —po — &) 7' —i(a(p) + a(py)) (ha(r) + ha(r"))]
x® [p,po; & &5 [m(&)]; [ha(€N)]] - (91)

In this expression the functional @ is expanded in a Taylor series in powers of hy and ho
taking into account the translational invariance.

In order to simplify the formulas in the following

i) we omit the dependance on hj, hy in the & argument

o
(nm)ig where n refers to the dependance on the number of

ii) We introduce the notations &
heights of the upper surface, m the number for the lower surface

iii) 4,7,k represent the order according to which the field interacts successively with the
surfaces h; and hy

iv) the differential elements d2£ have to be divided by (27)?2, and each function &() multiplied

by (27)2.
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We then obtain the following expansion :

(0) (0)

®(p,py, & &)=, (p,p,&)0(&) + 24 (P, Py, €)5(¢") (92)
4 / d2€,5( — €)™ (p, po. €)1 (1) (93)
+/d2§25(§/—52)‘i’(01)(17,p07€2)h2(§2) (94)
26 12 I e 5 (11)12
+ [ PedPedE+E — &~ &) |9 (D, po &1 )M (ED(E)  (95)
+6" (b, py, &1, €0 (€1 (£)] (96)
+/d2§1d2£25(§ —51 —52)&’(20)(17,?075175275)h1(51)h1(52) (97)
4 / €, 2E,0(8 — & — £)8" (. po. &, &1, ) ha(€1)ha(Ey) (98)
4 / P 2L PES(E+ € — & — & — &) [
@(21)112(1)71)0751752’53)h1(£1)h1(€2)h2(£3) (99)
+@' (p, py, €1, €5, €5)n (€1 o (€5)ha (&) (100)
+8 M (p py, €3,61, €0)ha(€5) (€) (€2)] (101)

+ | d?& d%E,d%E5(E + €& — €& — €&y — &3)

| —

@(12)221(177170751752753)h2(51)h2(€2)h1(£3) 12
+&’(12)212(P3P0,£1a§3a§2)h2(51)h1(’$3)h2(£2) o)
+&’(12)122 (pa Do, £3a 515 52)h1 (E3)h2 (51)h2(£2)] (104)
+/d251d2§2d2§35(5 4 -6-8)

3 (P, P0,&1,62.€3)h1(&1)h1(€2)h1(&3) o)
+ [ Perderieie - ¢ - & - &)
3 (P, Po,&1,82,63)h2(&1)h2(€2)h2(€3) o)
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+ / PP e, PE5(E + & — &) — &y — E5— £1)

‘i’(22)1122(1’ p07517527537E4)h1(51)h1(€2)h2(53)h2(54) (107)
+&P (5 po, €1, €y, €5, €0)h1(€1)ha (€)1 (€5)ha(€y) (108)
+P () po €1 €y, Ex, £0)h1(€1)ha(Ex)ha(€5)ha (€4) (109)
<I>(”)2”2<p Do €1, Ea, €, €N (€1 R (E2) D1 (E4)ha(£2) (110)
+&P22 (p po, €1, €y, €5, €0)ha(€1) 1 (€2)ha(€5)ha (€4) (111)
+8 P (b, py, €1, €0, €5, €0)ha(€0) ha (€0 (€)n (€))] (112)

+ / 6P, PE5(E + & — &) — &y — E5— &)

(i)(31)1112(p p07517527537E4)h1(51)h1(€2)h1(53)h2(54) (113)
+@PY (D po, €1, €y, Ex, €0)h1 (€)1 (€2)ha(€4)ha (€5) (114)
+CV (b py, €1, €5, €5, €0)h1 (€ ha(E) R (Ex)h1 (€5) (115)

+ @ (b, pg, €1, 6,65, €)h2(E) I (€0 (€2)n (€)] (116)
T / P, E e, P E5 (€ + & — &) — &5 — &5 — &)

3" () po, €1, €0y €y €)1 (E) D2 () ha(E5) o () (117)

+U 2 (p Dy, €1, €9, €5, €0)ha(€1) P (E)ha(Ex)ha(E) (118)

+3U (b po, €1, €9, €5, €0)ha(€1)ha(Ex) M1 (E1)ha(E5) (119)

q)(13)2221(p p07517527537E4)h2(51)h2(€2)h2(53)h1(54)] (120)
T / P61 E L€ 10(E — & — &y — &g — £1)
xi’(w)(p,po,51,52,53,54)h1(51)h1(£2)h1(£3)h1(§4) (121)
T / P62 E e, E,5 (€ — € — € — €5 — £4)
x® " (D, Dy, €1, €5, €5, €0)ha (€1 ha(€x)ha(€5)ha(€y) - (122)

The computation of é(n ™

follows the method proposed by Voronovich, we consider succes-
sively the terms of order n +m = 1,2, 3,4 in the previous expansion, and identify them with
the equivalent order of the small-perturbation method. The expansion to the 4th order is

required to take into account the interactions between the two surfaces.
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9.1. Expansion of the scattering matrix according to the order

9.1.1. Orderm+m=1

We get for this order the expression :

2
/ r- L5 1~ i(ao(p) + ao(po) i ()] 8 (9. po. £)5(€)

G2r)?
2 ¢!
+ [ = i) + aolpoa(r)] 5 (poon€05(€). (129

after some calculations we obtain :

2m)%6(p = o) [, (p.po) + By (p.Py)| — ila0() + o(py) [, (P Po) s (P — P)
+ &, (p.po)h2(p — po)] (124)

a comparison with the SPM leads to the expressions @io)

)

and @Elo) in term of the known

operators Y(l

8" (p,py) = ao(;?ifﬁ)j(po)fg)(p\po), (125)
= (0) - iap(Py) (1)
®,'(p,py) = ozo(p)+c50(p0)Xd (pIPo) - (126)

Making use of the relation (42) we also obtain the following contributions to the order

n+m=2

~ (20 ~ (0

3 = —(ao(py)ao(p))2® by b, (127)
~ (02 ~ (0

3% = _(ao(py)ao(p))2® hy by, (128)
& = —(ag(po)ao(p))? (&, + &) b ha. (129)
~(11)21 ~ (0 ~ (0

" = —(ao(po)ao(p))? (&, + ") ha by (130)

9.1.2. Ordernm+m=2

The computation of the order 2 involves a power of h1 and ho such that n +m = 2,
moreover, the terms of order 1 in h Egs. (93,94) must be replaced by terms of order 0 and 2,
we then obtain

d2 d2 /
/d2rd2r'(27§2 ﬁ exp [—i(P —po—&) r—i(p—py— 5/) ) ""/] .

exp [—i(ao(p) + ao(py)) (b1 (r) + ha(r'))] x [Eq. (92) + Egs. (95-98)] . (131)
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After integration and introducing Eqs. (127-130), we obtain the result

/ d’p, {_(ozo(p)+ozo(po))2 " - (0)

v (PyPo) + B4 (P, Po))

(2m)2 2
~ (11)12
+® (P, Po:P — P1,P1 — po)] hi(p — py)ha(pP1 — Po) (132)
*p; [ (o0(p) + ao(py))?  x(0) - (0)
+/ (27’[’)2 |:_ 9 ((I,u (p’p0)+q’d (papO))
~ (11)21
+® (P, Py, P — P11 — po)] ha(p — p1)h1(pP1 — Po) (133)
*p; [ (ao(p) + ao(py))? x(0)
+/ (27T)2 __ 9 ‘I’u (papO)
~ (20
+3' )(p,pmp —P1,P1 — po)} hi(p — p1)h1(pP1 — Po) (134)
&*p; [ (ao(p) + ao(py))? = (0)
+/ (27()2 __ 9 (I)d (pva)
~ (02
+3' )(p,po,p — PP — Po)} ha(p — p1)h2(pPy — Do) - (135)

(nm)

From this expansion we can derive the expressions of ® in terms of the matrices X

obtained in SPM. In the above expression the last two terms Eqs. (134,135) must be identified

with B and E(OQ), see Egs. (35,36) in Ref [25], we deduce
=~ (20 « + « 20 <7(20
8 (p.pypy) = CPLECPI G0, 1) 4g(p) X plpalpy). (136)
~ (02) ag(p) + ao(py))? = (0) —(02
& ppypy) = PP G0 0 1) 1o)X D plpilpy). (137

We know with the reduction formula (42) that a term of order 20 can be decomposed into a

term of order 1 and a term of order 3, for example

= (10) i = (20)
L3 = L3} - — 138
(p’p(]?pl) OCO(p) +a0(p0) (papOap D1, Py p0)7 ( )

and from Eqgs. (125,126) the first order terms give for 3" and " an expression in terms

of the known operators _S), Y&l), Y(QO), Y(OZ)

& (p, py, p1) = ao(;?ﬁ’;fo)(po) [7(20) (Plpy Ipo)+i%(ao(p) +ozo(po))fff)(plpo)} , (139)
& (p, p, py) = ao(;?giﬁ)g(po) [7(02) (PIp: Ipo)+i%(ao(p) +a0(po))fg)(p|l’o)} - (140)
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Extra terms of order 3 can be deduced ®

~ (30)

& = —i(ao(p) + ao(po) @ b 1, (141)
&Y = —i(ao(p) + ao(po)) @ ha hy b, (142)
870 = i(ag(p) + ao(po)® i by by, (143)
S — i(ag(p) + ao(p0)) 8™ ha b by (144)
&7 = i(ao(p) + ao(pe) @ hi by o, (145)
&P = i(ao(p) + ao(po) B ha by by (146)

For the first two terms in Egs. (132,133) we can make an identification with 1_%(11), (see Eq.
(34) in Ref [25]), they give

~(11)12 -
3! P, p0,p1) = @)X (pp1|po)
1 - (0) - (0)
+5(@0(p) + a0(po))* (@, (Plpo) + @4 (PIPy)) (147)
~ (11)21 e
3" (ppop) = aolpo) XV (plpyIpo)
1 = (0) = (0)
+§(040(P)+040(p0))2(‘1’u (plpo) + @4 (PlD0)) - (148)

Here, we notice that the relation (42) linking the orders n — 1,n,n + 1, and the formula
(138) for one surface can be extended to the case of 2 surfaces, for example

= (10) i = (11)12
® " (p,po,P1) = ao(p)+a0(p0)<1> (P.Po:P — P1,P1 — Po) » (149)
where in the calculations we keep all the terms of <i>(11) giving a contribution to @(10) and

3.

We see that Eqs. (147,148) give new contributions to the order n 4+ m = 3, they have to
be included in the next approximation otherwise these contributions will be missing in the
calculations of the coupling between the two surfaces at higher order.

21)112

3! — —i(ao(p) + ao(py)) @ R by ho (150)
21)121 . 11)12 11)21

by = i(ao(p) +ao(o)) [8 4 @ o, (151)
~ (21)211 11)21
7 = Li(ap(p) + ao(e) @ iy iy by (152)
~ (12)221 . 11)21
Y7 = i(ao(p) + ao(py) @ hy by by (153)
~(12)212 . 11)12 11)21
&, 7" = —iao(p) + ao(po)) [8" + & [ hy by ha, (154)
12)122 . 11)12

é ) = —1(a0(p) (po))q)( ) h1 hl hQ, (155

5. We introduce in € a lower index to make reference to the origin of their order when a confusion is

possible.
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next we add Eqs. (143-146), and we get the following terms to be included in the next order.

a7 = i(ao(p) + ao(py)) [ + 8" by by, (156)
B~ ifan(p) + aolpo) |87 + 8 o (157)
~§21)211 —  —i(ao(p) + ao(py)) '&)(20) +(i>(11)21' ho by hy (158)
By = —i(ao(p) + ao(py)) [8 + @V haha i (159)
~§12)212 _ —i(ao(p) +a0(p0)) '&,(11)12 n (i,(ll)m] ho hy hy | (160)
5512)122 = —i(ao(p) + ao(po)) ‘&,(02) + (i,(11)12' hihyhy. (161)

9.1.3. Ordernm+m=3

We have to collect in Eqgs. (92-122) all the terms up to the order 3 in h, excepted those
of power 2, and add Eqs. (141,142), Eqs. (156-161) obtained from the order 2, we get the
contributions

2 2 ¢/
[ Prin G S e [itp—po =€) -7~ o~ 2y~ €)1 (162)

xexp [—i(ao(p) + ao(py))(h1(r) + ha(r’))] x [Egs. (92-94) + Egs. (99-106)]
after some calculations (162) gives:
[ Peete o -p -6 - & - &) |

— too®) + 00 [ 0. p0) + 8 (p.1y)]
(€)halEy)

{h1(&1)h1(&2)h2(&3) + ha(&1)h2(€2)h1(€3) + ha(€1)h1(§2)ha (€3)

+h1(&1)h2(82)h2(&3) + h2(§1)h1(£2)h2(53) + h2(51)h2(£2)h1(53)}

+h1<sl>h1<£2>h1<sg> (0, po) + ha€1)ha (€2)h2(€5) 85 (P, 1) (163)
(ao(P) +a0(py))* " (9, Py, €1) {1 (€1) 11 (€)1 (€5) + M (€1)ha(€2)a (€5)

+h2(£2)h2(€3)h1( &1) + hi(€1)h2(&2)h2(€3)

+h1(£1)h1(€2)h2( 3)+h (Ez)hl(ﬁg)hl(&)} (164)
(aO(P) + aO(Po))z‘i’ (p Po: &1) {h2(€1)h2(€2)ha(€3) + h1(82)h1(€3)h2(€1)
2(51)h1(§3)h2( 2) + ha(§1)h1(€2)h1(€3)

+h2(£1)h2(€2)h1(€3) + hi(€3)ha(&1)h2(€2)} (165)
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(21)112

e

(21)121

Qi

(21)211

Qi

(12)221

o

[~ (12)212

(12)122

Qi

+ + + + 4+ 4+ + 4
Iredzll K

where the operators @é 2 and ®,

€5(21)211:
€5(12)221:
€E(12)212:

é§(12)122:

n 45521)112_

€E(21)121:

(
(
(
(
(
(

P, Po; 1,82, €3) 11 (€1)h1(§2)ha(€3)
P, Po; 1,82, €3) 11 (€1)h2(83) M (€2)
P, Po; 1,82, €3)h2(€3)h1(§1) 1 (€2)
P, Po; 1,82, €3)h2(€1)h2(82) M1 (€3)
P, Po; 1,82, €3)h2(€1)h1(§3)ha(€2)
) )ha(

PPy, &1,82,83)h1(&3)h2(&1)ha(2)

+<I>2 V] (.0, €1, 2, €)1 (€)M (€2 (€)

85'] (p,p0: €1,€2, €)h2(€1)ha(€2) (€3

% (30)

are given by Eqs. (141-142), @,

(12)ijk

—_
~
)

S—

(
(
(
(
(170)
(
(
(

(21)ijk

and ®, by

Egs. (156-161), "'” and <I>( Y by Egs. (139,140), 8 and 8 by Egs. (125,126).
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Reordering the previous expression with respect to the h; products leads to:

/d2£1d2£2d2£3 dp—py—& —& — &) [

{=55(00(®) + aalpo)*® (p.10) ~ gy(00(p) + a0lpe)*#" . p0.€5)
40 0,20, 60,60,69) + 8" (0,p0 61,60 € [ (€)M EIM(E)  (174)
i {—%(aou») +a0(p0)* 21 (0. p0) — 57 (00(p) + a0(p) @ (0.4, &)
+8 ) (p, po, &1, €0,85) + 85" (9,10, €1, 0, €3) | a(€1)ha(€2)ha(£3) (175)

3!

L (a0(p) + ao(py))? [‘1:’(10) (P, Py, €3) + ‘i’(m)(p,po,ﬁs)]

21
+3C 2 (p po €1 60 6y) + BV (. po, €1, £, Es)} hi(€1)h1(&2)ha(€5)  (176)
(0

+ {—%(ao(p) +ao(po))° [‘i’io) (P, po) + By )(p’pO)]

1 2&)(10)(

—57(a0(p) + ao(py)) P, Po; €3)

+ " p,po, &1, 60,85) + 85 (9, p0, €1, 60, €5) | I (€D)ha (€)1 (&) (177)

+ {_%(0‘0(1’) +ao(po)* [@1 (p.po) + &4 (p.p0)|

+ {_i(ao(p) +ao(py))’ [‘i’io) (0.p0) + &, (v.0)|

L (a0(p) + a0(py))? [‘i’(m) (p, o, €3) + @ (D, py, 53)]

2!
(P.Po-€1:62:€5) | ha(€g) (€)M (&)  (178)

= (21)211

L = (21)211

(P, P0,&1,82,€3) + Py

0

+ {—%(ao(p) +ao(py))’ [‘i’io) (P, po) + @4 )(p’pO)]

_%(QO(P) + 040(1’0))2&’(01)(1”170’ £3)
+0" 2 (p, po, &1, €0,85) + 857 (0,10, €1, 0, €5) | o€ (€n)Ra(En)  (179)
+ {_é(%(p) + ao(po))’ [«if) (p.p0) + 2, (p’pO)]

- (10) - (01)
—_.(040(17) + ao(pg))? {‘I’ (P, Py, &3) + P (1%170753)]
- (12)221 - (12)221

+@® (P, Po; €1,62,€3) + Py (papO’£1’£2’£3)} ha(&1)h2(&2)h1(&3)  (180)
{510 + 0w (8090 + 2 (0.0

i (00(®) + ao(p))? [0 (0, p. &) + 2

2!
~ (12)122 ~ (12)122
+¢( (p7p07£17£27£3)+¢; )

(Papo,fs)]
(P, Pos €1:€:€5) | b (€)ha(€1)ha(&5)] - (181)
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In order to identify the different terms with the operators R"™ (see Eqs. (34-40) in Ref [25])
of the perturbative development we make the variable substitutions £&; = p—p;, &, = P — Do

and integrate the delta functions. Next, following the Voronovich method, we identify &’(30)
with E(SO) obtained in the SPM method and then deduce @(20), similarly for &’(03). The
terms of @(21) have to be identified to R(Zl) and according to their heights values contribute
to @(20) or &)(11), similarly for <i>(12).
So in a first step we obtain :
=~ (30 <=(30 ~ (30 1 = (10
&% = a(p)X™ = 8, + S (ao(p) + ao(py)) "
i = (0
+55(00(p) + ao(py)) @ (182)
= (03 ~~(03 ~ (03 1 = (01
& = o)X~ 857 + S (ao(p) + ao(py)? @
i = (0
+51(00(p) + ao(py)) @y (183)
= (21)112 (D112 = eniz 1 = (10 = (01
S = ag(p) XM = @+ S(ao(p) +ao(py)? [ + @
i (0 | 500
+57(00(p) + ao(po))* | @, + &y (184)
~ (21)121 (D121 =(2n121 1 = (10
U~ ag(p) X - 85 4 (o) + ao(py)) @
i (0 | 500
+57(00(p) + ao(py))* | @, + By (185)
= (21)211 (1211 = (2n211 1 = (10 =~ (01
S~ ag(p) X @ 1 Z(ao(p) + co(po))? @ + 9
i (50 | &)
+§(040(p)+ao(1’0))3 20+ @, (186)
= (12)212 —(12)212 = (12)212 1 = (01
S~ ag(py) XM - 8y 4 (a0 (p) + ao(py)) @
i (&© . &O]
2 (ao(p) + aolpy))? (21 + 8] | (187)
~ (12)221 —(12)221 = (12)221 1 = (10) = = (01
1~ ag(p) X - 8y 4 (ao(p) + aolpo))? @1 + 8]
i (&0 | £(0)]
+3(00(p) + ao(py))* [ + 8] | (15%)
=~ (12)122 (12122 =(12)122 | 1 = (10 = (01
1~ ag(p) X - 8y 1 (ao(p) + aolpo))? @1 + 8]
i 0 | 500
+5;(00(p) + ao(py))* | @, + &, (189)
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A second step consists to solve the above equations, giving the order 2 terms:

&’(11)12(17,170,51,52) - (1?1(1;00)(170) {i {Y(21)112(p|51|52|170) + x (P|€11€21Po)

12)212
X! (pl&11€2|Po) + X

+i(ao(p) +aolpo)) |3 (X wlatpo) + X pleslpo))

12)122
()(

+X p‘fl‘fzfpo)}

+X(11 12(p|§1|p0) Y(H 21(p|£1|p0)}
59 ~ ~
—15(@0(P) + ao(py))” X, (plpo) + Xél)(plpo)> } : (190)
&% (p,py. €1.6,) = <i(>11(€fo)<po> {i X iy alpo) + XV (pley €alpo)
X g [eolpo) + X (ple, I lpo)]

#i(ao(p) +aomn) [§ (X wlatoo) + X pleslpy))

o X(Um( €1lpo) + X 21(p|§1|p0)}
—%ao(p) +ao(p))? (X lpo) + X (wlp)) o (9
3 (P, po, €1, €2) = ao(;;l(—]i—(lz)o)(po) {7(30) (p[&11€2lPo) + ig(ao(p) + 0‘0(170))7(20) (P[€1]Po)
2 (a0(p) + an(pe) X (plpo) } (192)

iao(py) ~=(03)
o) T o] X

= (e0(p) + a0(p) "X (plpy) } (198)

(PIE11Ealpo) + 15 (a0(p) + 00(po)) X (l€, o)

= (02
q’( )(p,p0551,£2) =

The expressions (190-193) contain the operators X already calculated.
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In addition, Eqs. (182-189) will contribute also to the 4th order through the terms:

<I>é22)1122 — ilao(p) + ao(py)) 2012 n §(12122] 7 (194)
(i)g22)1221 — iao(p) + a0(py)) (12221 n §(12122] 7 (195)
Z()’22)1212 — iao(p) + ao(py)) 20121 n §(12212] 7 (196)
Z()’22)2112 — iao(p) + ao(py)) 2021 i 2H112] , (197)
‘I,g22)2211 — iao(p) + ao(py)) 2021 i §(12)221] , (198)
é22)2121 — ilao(p) + ao(py)) 20121 i §(12212] , (199)
by~ iao(p) + ao(py)) [87 + 8] | (200)
‘i,é13)2122 — i(ao(p) + ao(py)) (12212 n §(12122] , (201)
(i)é13)2212 —  i(ao(p) + ao(py)) (12212 n §(12)221] 7 (202)
§513)2221 — iao(p) + a0(py)) (12221 n &)(03)} ’ (203)
:(’,31)1112 — iao(p) + ao(py)) 2012 n G0 ’ (204)
q)§31)1121 — iao(p) + ao(py)) 20121 n @(21)112} 7 (205)
:(’,31)1211 — iao(p) + ao(py)) 20121 n (i,(21)211} , (206)
b5 = —i(a0(p) + a0 (o)) é“”“ + o] (207)
5" = —i(ao(p) +ao(py)) @ (208)
&5 = —i(ao(p) +an(py) @ (209)
we recall that the lower index 3 refers to the original order of the terms.
9.1.4. Ordern+m=4
This order will produce the expression of the operators to the order 3, namely, ® (21), &’(12)

In the ® expansion Egs. (92-122) we have to retain the terms with n +m = 0,1,2,4, and in
Eq. (91) make a development in powers h; ho up to 4, and also take into account contributions
Egs. (194-209) obtained from the previous order.
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All together, we derive the expression :

[ PerPedeieso—po -6 - & - & - €
1 = (0) = (0)

1 (ao(P) +ao(po))4[<¢>u (P, o) + @4 (p,po)>

|1 (61)h1 (€)1 (€)ha(€4) + P (61)h1 (€2)ha(€5) I (€4)

>
no
823
o

P (€)ha (€4) + ha(€1)ha(€2)ha(€5) (€4)]
)

8" (p, py) + ha(€))ha(€2)ha(€3)ha(€) S (b, Do

+—(ao(p) + ao(py))*®" " (p, Py, &,

)
[hl(ﬁl)hl(ﬁz)hl (&3)P1(&a) + h1(§1)h1(§2)R1(€3)h2(8s) + ha(€1)R1(€2)h2(§3)h1(€4)
(€4) + h1(&1)h1(&2)h2(€3)h2(E4)
(€4) + h1(§1)h2(&2)h2(85)h1(€y)
) ) )

(211)
+ar(a0(p) + 00(p0)) '™ (p,p0, €1)

[hQ(El)h2(52)h2(€3)h2(54) + h2(&1)h2(&2)h2(€3)h1(84) + h1(€1)h1(€2)h1(€3)h2(€q)
+ho(&1)h1(§2)h1(€3)h1(€a) + h1(§1)h1(€2)h2(€3)h2(8s) + ha(§1)h2(€2)h1(§3)h2(Es)
+h2(&1)h1(§2)h1(§3)h2(€4) + ha(€1)ha(€2)h1(€3)ha(€q) + h2(&1)h1(€2)h2(€3)h1(Ey)
-+ ho(&1)ha(€2)h1(€§3)h1(€a) + ha(§1)h2(§2)ha(€3)ha(8s) + h2(§1)h1(£2)h2(53)h2(£4)]

(212)

1 (11)12

—5(040(1?) + ao(py))*®

|:h1(51)h1(£2)h1(£3)h2(£4) + ha(€1)h1(§2)h2(&3)h1(€a) + h1(§1)h2(€2)R
+h1(§1)h1(€2)h2(€3)h2(&4) + ha(§1) (€)1 (€3)h2(Es) + ha(€1)h1 (&) R (
+h1(&1)h2(82)h2(€3)h1(&4) + h1(€1)ha(€2)ha(€3)ha(€q) + h2(&1)h2(E2)h1(€3)h2(E,y

(papO, El, 52)

—
—

o4



1 11)21

—5(040(1?) + ao(Po))Z‘i’(

h1(§1)h1(§2)h2(€3)h1(€a) + ha(§1)h2(€2)R

+h1(€1)h2(82)h1(€3)ha(€q) + ha(€1)h1(€2)h1(€3)h2(E4) + hi(€1)ha(€2)ha(€3) N (
(
(

(P, Po: €1, €2) (214)

)
~—
ey
w
N—
>
=
—
e
N
S~—
+
>
)
—
e
—_
S~—
>
=
~—~
e
N
N—
>
=
—
e
w
N—
>
=
~—
e
B
S~—

+ha(€1)h1(§2)h2(€3)h1(€q) + ha(&1)h2(&2)h1(€3)h1(Es) + h2(&1)h1(€2)h2(E3)h2(E4)

b (papO, Ela 52)

h1(§1)h1(§2)h1(€3)h1 (&) + h1(&3)h2(€4)h1(§1)h1(&2) + ha(€3)ha(§4)h1(§1)R1(€2)

+h2(&3)h2(&4)h1(§1)h1(&2) + hi(§1)h1(€2)ha(€3)ha(€y) + h1(&1)R1(€2)h2(E5)R1(&y)
+h1(§1)h1(§2)h2(€3)h2(€4) (215)
(

~5(00(p) + 0(2)*®™ (b, py. €1, )
ha(&1)h2(&2)h2(€3)h2(84) + hi(€4)h2(&1)h2(€2)h2(€3) + h2(§1)h2(€2)h2(€3)h1(€4)
ha(&1)h2(§2)h1 (€3)h2(&€4) + h2(§1)h2(€2)h1(§3)h1(€4) + ha(€3)h1(£4)h2(&1)h2 (&)
B (€) (€)h2(€1)ha(€2) (216)
- }i>(22)“22 + 5] (p, po, €1, €2, €5, €00 (€)M (Eo)ha(E€)a (1) (217)
L[ G () b6 € (€€ (€ €) (218)
+ [@E2 4 SN (pp, €1, 6,85, €01 (612l (€3)Da(E1) (219)
+ @ 4 ST (pp, €1, 6,65, £0)a(E)) 1 (€)1 (63)Da(E1) (220)
+ [ IV (pp, €1, 60,65, £0)h (€00 (€2) (€5 (64) (221)
+ [ L T (ppy, €1, 60,65, €0)ha (€0 ha(€0) I (€5 (64) (222)
+ [ L &IV (pp, £y, 60,85, €0)h (€0 ha(€1) ha (€2) B (65) (223)
+ [0 1 & (ppo £, 6,85, £0)h (€)M (€0 (€0 (Es) (224)
+ @172 4 @0V (pp, 1, 6,85, 60)a(6))a(Ea) (€4)ha(Es) (225)
+ @174 @0V (pp, €1, 6,8, 60)a(61)a(Ea)ha () (64) (226)
+ [0 L STV (p,py, €1, 6,65, €M (€)M (€ (Ea)ha(Es)  (227)
+ [+ @ (b, py, €1, 60,65 )M (€D (E)ha (€I (E5)  (228)
+ [+ BTV (b, py, £, 60,65, €)M (€D (€M (€0 (E5)  (229)
+ [ S (ppo, €1, 6,60, £0B2 (€)M (ED I ()1 (€5)  (230)
+ [ + @57 (.10, €160, €5, £ (€)1 (E)n (€)n (£2) (231)
+ [+ 8] (9,9, &1, €2, €5, £)2(E)ha€)ha(€)ha(€4) | (232)
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In the previous formula we collect the terms according to the ordered appearance of h and

ha, they are 16 such combinations. For the purpose to make the formulas shorter, we introduce

the notations:

Qo(p,Po) = Qg(p,p0)+(22(p,p0)
= %(040(17) +ao(py))* [@uo)(p,po) + é&o)(p,po)] ,

Q(lo)(p7p0=€1) = %(OZO(P) + ao(Po))g‘i’(m)(p,pm&)’

(01)(

QO (p, py, €1) = = (a0(p) + a0(y))* @ (. o, &),

3!

1 ~ (11)12
9(11)12(1)72)0’51’52) = 5(0[0(1)) + ao(po))qu( (p,p0,£1,£2)7

1 = (11)21
Q<”)21(p,po,£1,£2):5(a0(p)+ao(Po))2‘I’( " p.po.61.62).

9(20) (p7p05 51, 52) = %(O‘O(p) + Oéo(po))z‘i’(%)

(p’pOa£1’£2) ’

L (00(0) + a0(00))*8" ™ (b, p.£1.£5)

9(02) (p7p07 El? 52) = 9

o6

(233)

(234)
(235)
(236)
(237)
(238)

(239)



and we omit the dependance upon the variables in Eqgs. (210-232)

d’g, d°¢, d*¢; d*¢,

/

in SPM. In the same way

@n)? (@n)? ()2 (2m)2 P~

p0—51—52—€3—€4)[

{@(22)1122+&,§22)1122 _ 20 _(02) _ (D12 _(01) _(10) | Q(O)} hi hy ha ho(240)
N { 221221 _|_(i,§)22)1221_Q(11)21_Q(11)12_Q(10)+Q(0)} hi hy hy by (241)
n {&:(22)1212+<i>§22)1212 _21 _ (1112 _ )(01) _Q(10)+Q(0)} hi hs hi hs (242)
4 (B G0 _ g1z _q00 0O by by s (243)
N {&’(22)2121+<i>§22)2121 _ D21 _qniz_ 1) _Q(10)+Q(0)} ho hy ho hy (244)
N {~<22>22n +‘i)é22)2211_9(20)_9(02)_Q(ll)Ql_Q(Ol)—Q(lo)—i-ﬂ(o)}hz ha hi hy (245)
N { U2 | U2 02) _ g1z _ (o) _ g(10) 4 Q<O>} hihohohy  (246)
N {@(13)2122 4 Q(oz)_9(11)21_9(11)12_Q<01)+Q<0)} ho hyhahy  (247)
N { U2 | I 02) _ iz _ gon) Q<0>} ha hahy hy (248)
N { HUIL | B2 g02) _ gz _ g1 _ (o) Q<0>} hayhyhahy  (249)
N {&,(31)1112 4 BBV _ge0) _ iz _ 01 _ o) 4 Q(o)} hihi hy by (250)
N {&’(31)1121 . §31)1121 B Q(go)_9(11)21_9(10)+Q(0)} hy by ho hy (251)
N {&,(31)1211 4O _ ge0) _9(11)21_9(11)12_Q<10>+Q<0)} hihahihy  (252)
N {&,(31)2111 N (I,é31)2111 020) _ 121 _ (01) _ (10) | Q(O)} hohihihi  (253)
N {&)(40) n i)é 0) _ 20) _ (10) + Q&O)} hy h1 hy by (254)
N {(i)(04) N <i>§04) _02) _ o1 QSO)} ho by o h2] _ (255)

In this formula we have to identify the terms @(22)%[ with the corresponding terms Y(QQWM
"V and &PV are identified with XYV ang XEVIH

respectively, also, &’(40), <i’(04) with X (40), X x 6. The terms ®3 are given by Eqs. (194-209).

6. The calculation of the operators X to the fourth order is in progress
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We introduce new definitions

(1 (1
x,) = XVolp,),
(1 (1
X, = XPwlp,),
7(11)13 = 7(11)13 (pl&1lpo) s
~(02),(20 —(02),(20
xE0 — O e py)
——(21)ijk —(21)ijk
X( ok~ X( K (pl€11€21Po) 5
——(12)ijk —(12)ijk
X( ok = X( K (pl€11€21Po) 5
~(03),(30 ~(03),(30
X0 = O e g, 1py),
——(21)ijkl ~(22)ijkl
X = XM i, €51py)
~(13),(31 —(13),(31
xUE = EE e, 1€51py)
~(04),(40 ——(04),(40
X0 = OO gl gy ey lpy) .
After some calculations, ” we find for the operators of order 3, @(12), @(21), @(30) and <i>(03) :
~ (12)221 iag(pg)
@ ) ) b ) =
(p Do 51 £2 53) ( )+a0(p0){
17— — _
: X(22)1221 S (22)2121 . X(22)2211 < (13)2221 . X(13)2212}
1 — _ — —
I = (a0(p) + a0 (py)) [72X(21)211 n o022t . 12012 n 13812212
—|—66X(12)122 . 916312221 . o T30 n 120?(03)}

1 __ __ __ __
515 (@0(P) + ao(po))? [312X(11)12 + 516XV 1 749X 4 380X 0
R 3 (1) )

i (@0(p) + a0(py)) (1445Xu +1837X ) } , (256)
~ (12)212 iao(pg)
® P,Po,€1,82,83) =
(PP 1,60 &) = o

1 r— _ _ _ _
: [X(anl n < (221212 +X(22)2112 n < (13)2122 +X(13)2212]

Hg5 (a0(p) + aolpo)) [12X

+rax 1D e

(21)211 (21)112 21)121 (12)212

+ 78X 1 150X 4 246X

(12)122 n 48Y(03)]

—=—(ao(p) + a0 (py))? [535Y(02) 1 301X 4 5o 2 | 50D

—i—— (ao(p) + ao(po))?* (1735X, ) + 1895X ) }, (257)

7. For all these calculations we have used the MAPLE software, Waterloo Maple Inc..
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iao(pg) {
ao(p) + ao(po)
T2 | a2 | %

&,(12)122

(p’pOasl,EQ’E?)) =

1 r—
1 X(22)1221
5

+I%< o(p) + a0(py)) [ 78X

+222X

1 . _ . .
55 (@0(@) + ao(po))’ (540X V" 4 324X 4 764X 4 204X

1 1) (1)
—i 25 (a0(p) + ao(py))* (1504%," + 1896 X ) | (258)

X (221212 X (13)1222}

(21)112 12)212

+ 18Y(21)211 + 96Y(21)121 + 144Y(

—(12)122 n 66Y(12)221 n o430 n 120?(03)}

(21)112

B iag(po)
(P,Po,€1,62,€3) = ap(p) + ao(Po){

1 . _ . _
: [X(ZQ)QHQ n < (221212 +X(22)1122 n < 30121 +X(31)1112]

P

21)211 12)212

(a0 (p) + ao(py)) [2167(21)“2 +138X PV g2 4 90X

o0

118X 192 | o
1

240

I 3 S al ~0
i 5 (00(p) + o (po)) <1445X 1 1837X )} (259)

(12)122 n 1200 n 247(03)}

(ao(p) + ao(py)? [516X V™ 4 312X 1! 1 389X %) 4 749X ")
0

&)(21)121(

D,Po,€1,62,83) =

iao(po) {
ao(p) + ao(po)

1
(22)1221 —(22)2121 X(31)1121 X

— | X
)

Hig o (a0(p) + o (py)) 78X

+150X

X(22)1212 X (31)1211}

21)211 —(12)122

47X VN2 oy x D12 79

—(12)212 (12)221

+ 78X n 487(30)]
1 X 3'd ~ [—
_m(ao( p) + ao(py))? {540X(11)12 L ssoxX (D2 | 591 x¢(0D 535X(20)]
1

1 W ()
i— (ao(p) + ao(pp))’ (1895X 1 1735X )} (260)

&,(21)211

B iao(py)
(P.Po,61,62,83) = ap(p) + Ozo(po){

—(22)2211 31)2111 n Y(31)1211]

[X(22)2112 X Y(anl n b

5

1 — _
+1 510 (ao(p) + ao(py)) [222X(21)211 + 66X

118X U122 | 7o

1 _ _ _ _
~ 315 (@0(@) + an(pg)® [320X 7 4 500X M 4 404X 4 764X
i 3 (1806 <

i (a0(p) + ao(po))* (1896X,” + 1504, ) }. (261)

(21)112 n L2021 n 96Y(12)212

(12)221 + 120y(30) + 24Y(03):|
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~ (30) B iag(pg) —40) .3 ——(30)

P (papO’£1,£2’£3) - ao(p)+a(]0(p0) {X +1§(Oéo(p)+040(p0))X

— 2 0(p) + ao(po)P X — i (a0 () + aopo) XL} (262)
= (03) ~ iag(py) (04) <(03)

P (p7p07£17£27£3) - Oéo(p)+0é0(p0) {X +1 (ao(p)—I—ao(po))X

— 2 (a0(p) + 00X ™ — 12 (a0(p) + aolpe) XL} (263)

We have checked that the numerical coefficients in front of the operators X are equal when

the symetry hy < ho is applied, so we verify through this symetry the correspondence:
U212 &)(21)2117 2221 <i>(21)112, 2212 &)(21)1217 $60 _ 503

9.2. Expressions of the scattering matrices
Once we have calculated the functionals @(1]) up to the order 3, we are in a position to
deduce the expressions of the scattering matrices which are defined in section 3. We define a
new integration operator J ()
2 2 2 2
j(n) _ /dz’f’dz’l"/ d é d E/ d 51 d En
(2m)? (2m)? (2m)*  (2m)?

exp [—i(p —py — &) -1 —i(p —py— &) -’ —i(a(p) + a(py)) (ha(r) + ha(r'))] .

(264)

With this operator E(ij) can be written (we give inside brackets the reference equation of the

formulas obtained for ®)

R"plpy) = TV (p,py. &)h1(E)) [Eq. (139)] , (265)
R(Ol)(plpo) = j(l)‘i)(()l)(papoagl)h?(El) [Eq. (140)] , (266)
RWplpy) = 7 [ (0,90, €1, €)1 (€)h2(€2)

+8" (. py, &1, €0) (€)M (£))] [Eqs. (190,191)] , (267)
B plp) = 7O (p,po.&1, €0, OM(E)m(E)  [Fa (192)],  (268)
B plp) = TP (p.po.€ €1 E)a(E)ha(E,)  [Ea (193)],  (269)
B plpg) = 70 8% (b, py, 1,60, 600 (€0 (€0)halEy)

+<i’(21)121(17’270a51,£2a§3)h1(£1)h2(53)h2(£2) [Eqgs. (259-261)]

+8 ™ (b py, €1,€0. €2 (€5 (€ (€2)] (270)
}_2(12)(pr0) = 7(3) [@(12)221(177170751752=€3)h2(51)h2(£2)h1(£3)

18 p €1, 5, €0)ha(E0) (E)a(€)  [Fas. (256-258)]

+8" (p,py, &1, €0, 850 (€3 o (€1)hal(€) (271)
B plpg) = T8 (p,po,&1, &0, € (€)M (€2 ()  [Fa. (262)] ,  (272)
}_2(03)(1)!170) _ 7(3)@(03)(19,170751752,53)h2(51)h2(£2)h2(£3) [Eq. (263)] . (273)
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Using the same notations as in the SPM case, the average [30] over the surface realizations

are given by :

o 0)(,_10)&(2@3)2 expl (@0 P)Hao(p)? o3/7]
ap(p ap(Po

/ 22r / @20 esepli (P=P0)- (=) oyep [(@0(P) a0 (B0))? Wrs (r—1)

—(10 —(10
< R"(plpo) o R (p|py) >=

i(a Q 2 . , _
{[ X0 p.py - ool 20l20) [ 313, () xpie ™) 1), plpl6)|
ila « 2 ) , — *
Xy - ML) [ €y 1S ol
2
+1 [ e MOl ) o Suplpole) | . 271

(01) ~0(Po)20(P) [~ (au(p)+ao(py)? o3/2]

ao(p) + ao(py))?
/ &2 / @2r expl=i (P=Po) (=) gy [(@0(P)+a0(p0)? Was(r—1)]

1(a o 2 . , —
{[721)(1)71)0)_ (ao(p) + o(Po))/ d°g WQQ(g)(exp‘&(”T)—l)Ed(p\polé)]G

<R plpy) o R

(plpy) >= (

9 (2m)2
i(a o § i ! > *
X p.y) - L0 [ (€ el € 1) Bl

2
+1 [ e Wal©drlnle) © Saplple) . @79

< R (plpg) © B (plpy) >= expl(oo(®)raotm)*/200n 0oz 0)]

/ Py Py s expi(P-PO)@1-23) gy [i((p—po) @2 )]

2 2
expl(00 ()00 (P0) (Wi (1 —2)+ Waa (w23 / d’¢, / A6 pliés@i—2a)] gy pli&s(@a—2a)] o
(2m)? ) (2m)?

d2 — P
/ (275)32 {@(11)12(177170753751 +& — &)+ ‘I’(H)Ql(p’po’sl +& - 53’53)] ©
[5(11)12(17,170753751 +& —&3) + 5(11)21(177170751 +& — 53’53)} * %
Wi1(€3)Wa2(€1 + & — &3) (216)

< B (plpy) © B™ (plpy) >= expl~(o®)reo@)/ 2w 0]

/ A2z dxy exp[—i(P—Po)(wl—m)} exp[(ao(10)+Ct0(100))2 Wi (@1 —a2)]

d2 — d2 — *
{/ & ‘I’(QO)(PJ’Oaﬁla—51)W11(§1)®/ & ‘I’(QO) (P, P> &2, —€2)W11(§2)

(2m)? (2m)?
d? , d2¢.
+2/ (275)12 eXp[lsl(wl_a&)} / (275)22 @(20)(1)71)0’52751 _ 52)@
5(20)*(1732?0,52,51 — &) Whi(§2) Wi (&) — 52)} ) (277)
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<R (plpy) © B (plpy) >= expl-(0®)ao@m)?/2Wwa(0)]

/d2x1d2x2 exp[*l(pfpo)(wlfm)} exp[(040(19)+040(19o))2 Was (z1—22)] %

5 2
{/ - 6(02)(17,17(Ja'$1a—51)VV22(£1) @/d—£26(02)*(l’apo,£2,—52)W22(§2)

on ) (2m)2
2 . 2ty —
+2/ ((;75)12 expliér(@ 2] / ((;75)22 B (p, g, £2,€, — £)0
5(02)*(177170752751 — &)W (&) Waa (€, — 52)} ’ o

< B (plpy) © B (pIpy) >= expl-(opHoot@)?/ 2 (0]
/ B2y A2 expl 1 P—P0) @1 —m2)] g (@0 (PYa0 (Py))? Wi (w1-w2)],

d? : d? % F0*
/ (27T§2 exp[lﬁ(m*m” Wll(g)/ﬁ W11(£2) |:(I,(30)(pap0557€2’_€2) © Q(lo) (p?pO’E)

+6(30) (pa Po> 52, E’ _52) © 6(10) *(p’ Do, E)

13 (0, py. €2, €26 0B (p,p0,€) | (279)

< R (plpy) © BV (plpy) >= expl (Col®Han(m)?/2Wa=(0)]
/d xy d’xy exp[—l(p—Po)(wl—M)} exp[(ao(PHao(Po))2W22($1%2)]X

2 . 2 _ N
[ Gz el W) [ S W) [F (o008 0T (0.0

(03 —(01) *
+(I)( )(papOa£2’£’_€2) ®q)( ) (p’pO’E)
+6(03) (pa Do, 52, _52’ E) © 6(01) *(p’ Do, E):| 9 (280)

< B (plpy) © B"” (plpy) >= expl(co®)teoteo))*/2(Wii (0)+W22(0))]

. 42 .
/ Pz expl i(P—Po)z] / ﬁ expl€ Wy (p — py + €) x

2
/ég)l W22(£1)[ " (p,po,p —py +£,&1,—€,) + B

12)212
3" (P,po: &1, 0 — Py + & &)

12)221 —(10) *

+(I)( ) (papOagl’_gl’p_pO_Fg) G‘I‘( ) (p’pO’p_pO+£)X

/ d’x; exp[_igwll exp[(o‘o(p)+o‘0(p0))2wll(‘”_‘”1)] , (281)
R (plpy) © B (plpo) >= expl- (o +en(®o) 200 01+1W(0)]

—i(p— d2 i D
/ d*z expl (PP / (252 expl€ Wiy (p — py + €8 (p.po.p — o +€) ©

d? i)
/(2 E)1 W22(£1)[ 12)122(17,170,17—170+Ea§1a—£1)+‘I’(12)212(p,170a51’p_p0+’$’_€1)

+3" % (p, py, &y, —€1.p — po + 5)} */ A2y expl=1€%1] expl(@o @)oo (Po)* Wi (@—=1)]  (989)
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< B (plpg) © B (plpy) >= expl-en()+ntpo))?/ 2001 002 0)]

. d2 :
/ d?x expl~i(P—Po)7] / (27T§2 expli€®] Wy, (p—po+§) %

d _ _
/ (275)12‘ Wi (&) [‘I’(Ql)m(p,po,p —po+ €6, —€) + 37 (p.p. €10 — Py + €, —€1)

—(21)211 —(01) %
+(I)( ) (papOagl’_gl’p_pO_Fg) G‘I’( ) (p’pO’p_pO+£)X

/ d?a; expl €] expl(eo®)+ao(po)* Waa(w—a)] (283)

< R (plpg) © B (plpy) >= expl(oo(®)raom)*/200n 0oz 0)]

—i(p— d? i F
/ d*x expl~i(P~Po)a] / (27r§2 expl€ Wy (p — py + 5)‘1’(01)(17,170,17 —po+€ 0O

a2 _ B
/—(275)12 Wll(El) |:q’(21)112(p,p0’p — Do + Eagla _El) + @(21)121(1),1)0’51,1) — Py + 5, _51)

—{—6(21)211(1)’1)0’ €, —€,p — P+ 5)} */ d2x, eXp[*iﬁan] eXp[(ao(P)+ao(P0))2W22(:v—:v1)] . (284)

In these formulas W is given by Eqgs. (4,9).
To compute the coherent cross-sections we need the following averages :

—(10) . ap(pp) [~ (a0(p)-+a0 (Po))2/2W11 (0)] / 2,2 ey [-1(P—P0)7]
<R >=1i ex 0{P)ra0{Po n d*r ex P—Po)T
Plpo) >= 10 o T aotmg) 7 b
(ao(p)+ao(po))/ d%¢
2 (2m)

{Yil)(p’pOH gfu(p\polé)Wn(é)} ; (285)

< R (plpy) >= expl-(eoterrao(eo)*/27n0)]

2
/erexp[_i(p_pO)r]/%5(20)(%?0,5, =W (§), (286)

< B (plpy) >= expl(o®)ra0o)?/ 2w 0]

. d2 d?
/d2rexp[1(ppo)1‘}/(27f)12 Wll(El)/#Wll(Q) X

{6(30)(177170751752,—52)4-5(30)(17,130752,517—52)4'5(30)(1771707527—52751) ,(287)

< B (plpy) >= ~(a0(p) + n(py))” expl (0P reopo) 2O W O]

ool [ d2E d%¢, [=an12
/dQTeXP[ 2{p-ro) }/(2w)12 /(2#)22 [‘I’( : (P.Po,P —Po + &1, —(P — Py + &2))

(P, Py, —(P — Py + &), P — Py + 51)]W11(p—po+€1)W22(p—po+£z) , (288)

L

63



< R (plpy) >= —i(ao(p) + ao(py)) expl~ (0P Te0o)*/2Wu 01w 0)]
2 expl-2ip-po)r) [ L€ [ L&
d*r exp 0 on)? Wii(p — po + &§1)W22(§5) X

(2m)?
—(12)221 —(12)212
|:‘I’( ) (p’pOagl’_Slap_pO_FgQ)_{_@( ) (papOagl,p_pO_Fg%_gl)
—(12)122
+(I)( ) (p7p07p_p0+£27£17_€1):| . (289)

9.3. Applications

As an example of application we take a slab of thickness H = 500 nm, with an upper
rough surface characterized by the parameters: rms height o1 = 15nm, correlation length
Iy = 100mm, and a lower rough surface: oo = 5nm, ls = 100nm. The permittivity of the
successive media is: g = 1, €1 = 2.6896 + :0.0075, and €5 = —18.3 + ¢0.55. Incident angles:
0; =0", ¢; =0", wavelength A = 632.8 nm.

The incoherent bistatic cross-sections for the 4 polarization states as a function of the
scattering angle are shown in Fig. 41. The calculations are performed with 16 Fourier modes.
The results are qualitatively similar to those obtained in the SPM case (see Ref [25] Fig. 4),
we notice for the polarization H — H that the maximum and minimum are larger. The Fig. 42
shows the enhancement of the backscattering for & = 0° due to the order 2 contribution,
this phenomena was also observed in the SPM case [25]. In order to get an estimate of the
magnitude of the different order contributions, we show in Fig. 43 the cross-sections for the
different polarizations states according to the order. We notice that the cross-section values
decrease with increasing order, giving a justification of a perturbative development, although,
no proof of convergence exists. The order 1 polarizations TE-TE, TM-TM are dominant, the
polarizations TE-TM, TM-TE give smaller contributions and the order 1 and 2 are close.
The order 3 polarizations are 40dB lower compared to order 1 or 2.

In the calculations of the cross-sections the number of Fourier modes plays a significant
role on their magnitude. A calculation with 256 modes at the order 1, is given in Fig. 44,
the results show a better agreement with the SPM case. We have studied the contributions
given by the upper and lower surfaces separately. In Fig. 45 are drawn for the 4 states of
polarization the corresponding cross-sections limited to order 1, the lower surface contributes
less than the upper one for the polarizations TE-TE, TM-TM, while for TE-TM, TM-TE we
observe the opposite effect.

10. CONCLUSIONS

In this paper, we have presented very new results on the small-slope approximation. In
the development of the SSA series, we have taken into account the third-order SPM (small-
perturbation method) kernel. We have generalized the Voronovich ansatz to a layer bounded
with two randomly rough surfaces. The functional introduced by Voronovich is expanded
in a Taylor series in powers of the different heights h; and hy of the rough surfaces ta-
king into account the translational invariance. We consider successively the terms of order
n+m =1,2,3,4 where n and m are the powers of hy and respectively ho. We have introduced
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Fia. 41. Incoherent cross-sections to the order 3 for an incident polarized wave N\ =
632.8 nm. Permittivity of the media: ¢g = 1, 1 = 2.6896 + i0.0075, e = —18.3 + 0.554.
Slab thickness H = 500nm. Upper rough surace; height o1 = 15nm, correlation length
l1 = 100 nm, lower rough surface: oo = 5nm, lo = 100nm. Angles: ; = 0°, ¢; = 0" .
Polarizations : VV (green curve), HH (black curve), HV (blue curve), VH (red curve).

Calculations are done with 16 Fourier modes.
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F1G. 42. Incoherent cross-sections contribution to order 2. Polarization TE — TE black

curve, TM — TM green curve
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Fia. 43. Contributions to the polarizations for different orders, 1, 2, 3. Parameters and

notations are the same as in Fig. 41.
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0.015 L e e e e e I H Rt M N

0.01

Slgll.22

0.005

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
-90-80-70-60-50-40-30-20-10 0 10 20 30 40 50 60 70 80 90
thetad (deg)

SI912,21

I R S TR S T SN S S SN SR S S S S S
-90-80-70-60-50-40-30-20-10 0 10 20 30 40 50 60 70 80 90
thetad (deg)

FiG. 44. Contribution of the order 1 with 256 Fourier modes. Parameters and notations are

the same as in Fig. 41.
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Fia. 45. Contribution of the order 1 to different polarizations states due to the upper rough

surface (blue curve), the lower surface (red curve). Same parameters as in Fig. 44.
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new terms in the SSA development to consider the coupling between the two rough surfaces.
We have given the complete expressions of the scattering matrices and the expression of the
needed cross-section for the different polarization states by introducing the Muller matrices.
With this new formulation of the SSA, we have observed the backscattering enhancement
for a slightly rough layer. We also have performed a comparison between our formulation
of the small-slope approximation (SSA) and the formulation of the small-perturbation me-
thod (SPM) we have developed for different dielectric and metallic structures. Four types of
structure are studied : a rough surface separating two infinite media, a slab with upper rough
surface and a lower rough surface, and finally the general case where a slab is delimited by
two rough surfaces. The calculation of the scattering amplitudes involves a knowledge of the
SPM scattering matrices, we have used those obtained in Refs. [24]-[25].

We have calculated the scattered intensity up to the order 2 for the first 3 structures,
and up to the order 3 for the last one. The global form of the intensity spectra for the 4
polarizations states are similar for both methods, however, some differences exist concerning
the maxima and minima obtained, the SSA has a tendency to increase their values. In the case
of a slab delimited by two rough surfaces, it was difficult to put in evidence the satellite peaks
we oberved in the SPM [25]. In fact, the SSA method combines different orders of the SPM,
so the resulting contributions can hidden this effect. Further studies with more appropriate
integration methods are required to address this issue. The numerical calculation of the
intensities is performed by a FFT method and we have noticed a sensitivity of the results on
the number of Fourier modes which are used.

This type of simulation computation can give some experimental conditions and spe-
cifications to realize highly integrated optical devices that use metallic or metallo-dielectric
nano-scale structures.

APPENDIX

In order to make the paper self-contained we give in the appendices a summary of
the formulas derived in Ref [24] in the case of the small-perturbation method. Appendix
A contains the scattering matrices for a rough surface separating two semi-infinite media,
appendix B, for a rough surface on the bottom side of a slab, and appendix C for a rough
surface on the upper side of a slab.

APPENDIX A. DEFINITION OF THE SCATTERING MATRICES
FOR A SINGLE ROUGH SURFACE

J— - _ ___ -1
X0y (po) = Diolpo) - [Dio(po)] (A1)
X0, (ulpo) = 20 Q" (ulpy). (A2)

X2 . (ulpy|po) = a1 (u) Q" (ulpo) + ao(po) @ (ulpy) — 2P(ulpy) - Q (pylpy), (A3)
where

ag(u) — ap(u) [—1+,0+

1 gl — 14,0+
St T G T

ulpo) + M (ulpy) - X (py)],

(A.4)

Q (ulpy)
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or explicitely :

e1 ||[ull||pol] — €0 1 (u) a1 (pg) - Py  —€5 Ko (u) (i x Py

Q" (ulpg) = (1 — o) [Dyo(u )]1-( 1

—€5 Ko ar(pg) (4 x pg)- €0 K§ @ - Py
- [Dio ()] 1, (A.5)
— (a1 —«0) B (-1 .
Q (ulpy) = 0 (Po) [D1p(u)]
(60 01 (po) [ul[pol] = €1 0 (w) 0 (po) &y 65 Ko () e (o) i x mz)
—eg Koe1ad(pg) (& x Py)- €0 K§ a1 (po) @ - Py
- [Do(py) 7! (A.6)
Plulp,) = (a1 (u) — ag(w)) M (ufu)] " M (ulp)) (A7)
ey Dyt [P @ aom) By~ Koan(w) @ x py):
® Ko ao(p) (@ X p)- K3a-p ’
(A.8)
where
D (py) = €1 a0(pg) £ €0 a1(py) 0 ‘ (A.9)
n 0 ao(po) + a1(py)

APPENDIX B. DEFINITION OF THE SCATTERING MATRICES
FOR A SLAB WITH A ROUGH SURFACE ON THE BOTTOM SIDE

0 =10 ~H 21 — =10 ~H 21 -1
X (po) = (V" p0) + V" 2 00)) [T+ V" p0) - V" 0| (B.1)
(1 =10 —(0 H =10
X, (plpo) = T () - U (p) - X, (plpo) - U (o) - T (py) (B.2)
(2 =10 —(0 <H
X (plpilpo) = T (p) - T (p) - [ Xty s (Plp1lP0)
<H(@1 —(0 =10 <H(@1 —(0 =10
—a1(p) X1 plp) T (01) - V' (p1) - Ko, (alpo) | - T (pg) - T (o).
(B.3)
In these formulas X 221 ., are defined in appendix A and
~H(n . ~(n
X0, (Plpo) = exp(i(an(p) + a1(py)) H) X1, ., (Plpo) - (B.4)
where we have replaced the permittivities ¢y by €1, and €; by eo.
The expressions of the other matrices are given by :
=10 —— — _
V " (po) = D1(po)[D1o(Po)] ' (B.5)
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and Dy is defined by (A.9).

V" (py) = exp(2i a1 (po) H) Dis (o) [Di(p0)] (B.6)
D (py) = [ 1P Eer02(P) ! , (8.7
0 a1(pg) £ az2(po)
=10, (coer) 0\ — 1
T <po>a1<po>( ‘ 1) Dio(po)] (B.3)
T wy) = [T+ V"w0) V"™ 00)] - (B.9)

APPENDIX C. DEFINITION OF THE SCATTERING MATRICES
FOR A SLAB WITH A ROUGH SURFACE ON THE UPPER SIDE

—ba g M1+’O+(u”u) —H?21 Ml_’0+(u\u) -
Q " (ulpy) =T a0 0] [al(u)—ao(u) -7 (u)-m
[P wlpo) - X, (p0) + 0 BT (ulpy)
572 w) - (M (ulpg) - X0y, (o) +a ML (ulpg))| ()
_— M W)y M (ufu)
P (ulp)) = (@) —ao(w) (“)‘m
M ulpy) £ 72 () - M (ulpy)| (C:2)

where a = 4+, b = + are the indices related to the direction of propagation of the waves,
- downward, + upward with respect to z > 0 direction. After some calculations :

Q" (ulpg) = (e1 — €0) [Dip ()] -

—++ - 3 ——+
(q vy a(;u)) R ) Brofpol ©3)
—60 a1(Po

Q (ulpg) = (e1 — €0) [Dip ()] -

- — 1 —

aAd T —qar(w)a(p) Ff(w) BT —€a(w)T T\ .

) Po) = .
—€5 a1(pg) G
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Q' (ulpy) = % D (w) -

ao(po)
. - 1 -
60041(170)14Jr —e1a1(u)ag(py) B i —€5 o (w) on(po) J -+ -
—€5 e105(po) G eo K o1 (py) C
5 (€1 = €0) g5+ 1, y1-1
Q (ulpy) = ——[Dyy(u .
( ’ 0) aO(pO) [ 10( )]
wop) A —am@adp) BT~ mwap) T
e P Dol ()
—eg e105(py) G o K a1(pg) C
where
—a,b a
A" = ||ullllpol| F (w) F (po) (C.7)
—a,b a ~ A
B = Iy (u) F\%Po)“ “Po> (C.8)
—a.b a PN
¢ = FH(U)FIZ(I’O) U-Pos (C.9)
—=a,b a . .
T = F(u) Fii(po) (@ X py)- (C.10)
—a,b a ~ ~
G = Ffy(u)F{:(po) (@ X y)- , (C.11)
Fy7 (p) 0 — | 5H21 - —H21 -1
v L=V e) (T4 700 VT ) (C.12)
0 Fi(po)
the matrix 7 0 represents the reflection coefficient of a planar surface located at z = 0 and
separating two media of permittivity eg et €; :8
" €1 CMOEPQ%*&J algpog 0
= — €1 ao(Pg)+€o a1(Pg
) 0 co(pn)—oi(pa) | (C.13)
ao(pg)+o1(po)

V2! is given by Eq. (B.6).
The explicit form of the matrices P is the following :

P (ulpy) = (e1 — eo) [Djg(w)] ™"

HUHHPH{’J(U) + a1(u) ag(p) Fy, (u) @ - py —fé Ko ai(u) Fy (w) (@ x py).
€0 2 Koao(p) Fij (u) (@ x py). K§ Fr(u) @ - py

P (ulpy) = (&1 — €o) Do)~

(upf;wu) +a(w) aolp) Ff (w) i b —j Koou(u) i (w) (@ x mz) |
€0 2 Koao(p) Fiy(u) (@ X py). K§ Fy(u) @ - py

8. In Ref [24] Egs. (150-151) have a misprint.
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