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Abstract : In this paper, we prove large deviations principle for the
Nadaraya-Watson estimator and for the semi-recursive ker-
nel estimator of the regression in the multidimensional case.
Under suitable conditions, we show that the rate func-
tion is a good rate function. We thus generalize the re-
sults already obtained in the unidimensional case for the
Nadaraya-Watson estimator. Moreover, we give a moder-
ate deviations principle for these two estimators. It turns
out that the rate function obtained in the moderate devi-
ations principle for the semi-recursive estimator is larger
than the one obtained for the Nadaraya-Watson estimator.
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1 Introduction

Let (X,Y), (X1,Y1),...,(X,,Y;) be a sequence of independent and identically distributed R? x R9-
valued random variables with probability density f(x,y) with E|Y| < co. Moreover, let g(x) be
the marginal density of X and r(z) = E(Y|X = z) = m(z)/g(z) the regression of Y on X. The
purpose of this paper is to establish large and moderate deviations principles for the Nadaraya-
Watson estimator and for the semi-recursive kernel estimator of the regression.

Let us first recall the concept of large and moderate deviations. A speed is a sequence (v,) of
positive numbers going to infinity. A good rate function on R is a lower semicontinuous function
I:R™ — [0,00] such that, for each a < oo, the level set {z € R™, I(x) < a} is a compact set.
If the level sets of I are only closed, then I is said to be a rate function. A sequence (Z,)p>1 of
R™-valued random variables is said to satisfy a large deviations principle (LDP) with speed (v,)
and rate function [ if:

liminf v, 'logP[Z, € U] > — inf I(z) for every open subset U of R™,

n—o00 zcU
limsupv, tlogP[Z, € V] < — inf I(z) for every closed subset V of R™.
n—00 zeV

Moreover, let (v,) be a nonrandom sequence that goes to infinity; if (v,Z,) satisfies a LDP, then
(Z,) is said to satisfy a moderate deviations principle (MDP).

The Nadaraya-Watson estimator ([[L5], [Rd]) of the regression function r(z) is defined by

= i 1 o0 0
0 otherwise,
with
mp(z) = n—;L,‘i ;YZK <x ;an> and gn(z) = nihg ZZ;K (m ;an> ,
where the bandwidth (h,) is a positive sequence such that
lim h, =0 and lim nh? = oo, (2)

n—oo n—oo

and the kernel K a continuous function such that lim, . K(z) = 0 and [, K(x)dz = 1. The
weak and strong consistency of 7, has been widely discussed by many authors; let us cite, among
many others, Collomb [ff], Collomb and Hérdle [{, Devroye [, Mack and Silverman [1J] and
Senoussi [[[9]. For other works on the consistency of 7, the reader is refered to the monographs of
Bosq and Prakasa Rao [[[f]. The large deviations behaviour of r,, has been studied at first by
Louani [LT], and then by Joutard [I(] in the univariate framework. Moderate deviations principles
have been obtained by Worms [R1] in the particular case Y = r(X) + ¢ with € and X independent.
The first aim of this paper is to generalize these large and moderate deviations results.

The approach used by Louani []]] and Joutard [I{] to study the large deviations behaviour of
ry, 18 to note that, if d = ¢ = 1 and if the kernel is positive, then, for all § > 0,

Plry(z) —r(z) >8] = P Lzm—r(w)—ﬂf((x;)(j)ZO



Obviously, their approach can not be extended to the multivariate framework. Thus, to study
the large deviations behaviour of r,, our approach is totally different. We first establish a large
deviations principle for the sequence (my,(z), gn(z)), and then show how the large deviations be-
haviour of r,, can be deduced. More precisely, for € R?, let ¥, be the function defined for any
(u,v) € R? x R by

U, (u,0) = (el toIK G 1) (2, y)dzdy,
R4 x R4

(where (u,y) denotes the scalar product of v and y) and let I, be the Fenchel-Legendre transform
of U,. We give conditions ensuring that the sequence (r,(z)) satisfies a LDP with speed (nhd) and
good rate function J defined, for any s € R?, by
J(s) = inf I, (st,t).
(8) I}Q]R l‘(s Y )
Concerning the moderate deviations behaviour of the Nadaraya-Watson estimator, we prove
that, for any positive sequence (v, ) such that

2
lim v, = oo, lim v—"d =0, and lim v,hf =0, (3)
n—o00 n—oo nhé n—00
(where p denotes the order of the kernel K) the sequence (v, [, (x) — r(x)]) satisfies a LDP with
speed (nhg/v%) and good rate function G, defined for all v € R? by

g(z) Ty—1
$(v) QIRd K2(Z)dzv x v? ( )
where ¥, denotes the ¢ x g covariance matrix V (Y'|X = z). Let us note that, in the case the model
Y =r(X)+e (with X and € independent) is considered, the matrix ¥, is the covariance matrix of
e and does depend on z; we then find the MDP proved in Worms [R]] again.

A semi-recursive version of the Nadaraya-Watson estimator ([l]) is defined as

mn(w) e~
Fu@) =4 Gale) I E0 )
0 otherwise,

where

Y; z—X; B 11 z—X;
h_flK< > > and gn(x):ggh—gl(< 3 )

1
() = —
n i=1

n
1=

1

Weak conditions for various forms of consistency of 7, have been obtained by Ahmad and Lin []
and Devroye and Wagner [§]. Roussas [[§] studied its almost sure convergence rate. The second
aim of this paper is to establish the large and moderate deviations behaviour of 7.

It turns out that the rate function that appears in the LDP is much more complex to explicit in
the case the semi-recursive kernel regression estimator is considered than in the case the Nadaraya-
Watson estimator is used. That is the reason why we only consider bandwidths defined as ~(hn) =

(en™®) with ¢ > 0 and a €]0,1/d[ (instead of bandwidths satisfying (B)). For = € R%, let ¥, be
the function defined for all (u,v) € R? x R by

bou) = [ (RO ) e
[0,1] xR xRa

3



and let I~0L7m be the Fenchel-Legendre transform of \ifmm. We give conditions~ensuring that the
sequence (7,(z)) satisfies a LDP with speed (nh?) and good rate function .J, defined, for any
s € RY by

Ja(s) = inf Io.(st,t).
To establish the moderate deviations behaviour of 7, we consider bandwidths (h,,) which vary
regularly with exponent (—a), a €]0,1/d][. We prove that, for any positive sequence (v,,) satisfying

(B), the sequence (vy, [Fn(z) — r(z)]) satisfies a LDP with speed (nh /v2) and good rate function
defined for all v € RY by

~ _ (1+ ad)g(x)

Ga,x(v) QIRd KQ(z)dzUTE;IU' (6)

Let us underline that, because of the factor (1 + ad) which is present in (§) but not in (), the rate
function obtained in the MDP in the case the semi-recursive estimator is used is larger than the
one which appears in the case the Nadaraya-Watson kernel estimator is considered; this means that
the semi-recursive estimator 7, (z) is more concentrated around r(z) than the Nadaraya-Watson
estimator.

Our main results are stated in Section 2, whereas Section 3 is devoted to the proofs.

2 Assumptions and Main Results

We shall use the following notations.

e D(F) ={z, F(r) < oo} denotes the domain of a function F and D(F) is the interior domain
of F.

e ||z|| is the euclidean norm of z.
e ) is the Lebesgue measure.

e a Ab=min{a,b}.

e 0=1(0,...,0) € RY.

The large and moderate deviations behaviours of the Nadaraya-Watson estimator r,, are given
in Section 2.1, whereas the ones of the semi-recursive kernel estimator 7, are stated in Section 2.2.

2.1 Large and moderate deviations principles for the Nadaraya-Watson estima-
tor

The assumptions required for the LDP of the Nadaraya-Watson estimator are the following.

(A1) K : RY - R is a bounded and integrable function, [p, K(z)dz =1 and lim ;oo K(2) = 0.

(A2) For any u € R?, t +— e f(t,4)dy is continuous at 2 and bounded.
Ra



Comments

e Notice that (A2) implies that the density g is continuous at = and bounded.

e In the model Y = r(X) + ¢ with € and X independent, let h be the probability density of .
Then

ft,y) = gt)h(y—r(t))
/ Wi oy = o) / Iy + (&) 1)y
R4 Ra

/R eI f(ty)dy = g(t)e ™) / "W h(y)dy.
q

Ra

Thus, (A2) can be translated as assumptions on g and r and on the moments of e.

e As it can be seen from the proofs, the boundness assumption in (A2) is useless if K has a
compact support.

e The boundness of the function ¢ — elwy) f (t,y)dy for any u € R implies that
RY

Ym > 0,Vp >0 the function ¢+~ / lyl|™e? 1l £ (¢, 4)dy  is bounded. (7)
Ra

Proof It suffices to prove that the function ¢ — e"”y”f(t, y)dy is bounded for any p > 0.
Ra
Set y = (y1,...,yq), we first note that

/eqpyjlf(t7y)dy < / eqpyff(t,y)dy—l—/ e” P f(t,y)dy
RY {y; >0}

{y;<0}

/e‘”’yff(t,y)der/ e PV f(t,y)dy.
Rae Rge

IN

Now, we have

/ eIl £ (2, y)dy
Ra

< /eply1|+---+plyqf(t’y)dy
Ra

IN

1
(/ eq"‘yl‘f(t, y)dy . .. / eqplyq‘f(t, y)dy> ! by the generalized Holder inequality.
R4 R4

IN

which is bounded.

Before stating our results, we need to introduce the rate function for the LDP of the Nadaraya-
Watson estimator. Let ¥, : RI xR — R and I, I, : RI x R — R be the functions defined as
follows:

Waw) = [ (0 OKE) 1) fa,g)dady, (®)
Rax R4

L(t1,t2) = sup  {(u,t1) + vty — Yy (u,v)}, 9)
(u,v)ERIXR

In(s,t) = I(st,t). (10)

1 —qpy1 apYq —qpPYq ¢
((/Rqeqpyf(t,y)dw /Rqe f(t,y>dy>...(/Rqe F(ty)dy + /Rqe f(t,y)dy>>



Moreover, for any s € R?, set

T(s) = inf Lst.t)

= inf I,(s,t
B 1 (:0),

J(s) = J*(s) AI,(0,0)
= ;glf& I.(s,1).
To prove that J is a rate function, we need to assume that the following condition (C) is fulfilled.
(C) infsera I(s,0) = Ix(670)-
Before stating the properties of the function J, let us give some cases when Condition (C) is satisfied

(under Assumptions (A1) and (A2)).

Example 1: Nonnegative kernel
Condition (C) is satisfied when K is nonnegative since, in this case, I,(s,0) = +oo for any s # 0,
(this is stated in Proposition ] of Section 3).

Example 2: Model with symmetry
Condition (C) holds when f is symmetric in each coordinate of the second variable y € R?. As a
matter of fact, for a diagonal ¢ x ¢ matrix A such that A;; = £1, observe that

Vo) = [ (A IRE) 1) f(a,y)dzdy
X

_ / (el A0 OKE 1Y (e, y)dady
R4 xRY

= / <e(<u,y/>+v)K(2) _ 1) flz, A" ) dzdy'
R4xR
= Uy(u,v).
For any given s € RY, set
U, = {ueRY, (u,5)>0}.
We have,

sup (=, (u,v)) = sup  (=Uu(u,v)).
u,v U/EZ/IS7 UER

Now, for any v € Us and v € R,
<u7 S> - \I/x(u,v) Z —\le(u,v),
so that

sup {(u,s) — Va(u,v)} > sup (=¥y(u,v)),
u,v u€Us, vER

and thus,
1,(0,0) < I.(s,0) Vs e RY,

so that Condition (C) follows.



Example 3: A negative kernel without symmetry assumption on f, and ford =g =1
If the kernel K can be written as K = 1p — 1 where D and D’ are two subsets of R such that
DND' =0 and A\(D) — A\(D') =1, then Condition (C) holds. As a matter of fact, we then have

Vowo) = [ (RO 1) pa ey
X

= / (e“yﬂ) - 1) flz,y)dzdy + / (efuyfv — 1) fz,y)dzdy
DxR D’'xR

— &A(D) /R e f(z,y)dy — [M(D) + A(D')] g(x) + e A(D') /R e f (2, y)dy.

Now, let M, denote the Laplace transform of f(z,-), then
Ua(u,v) = e"A(D)My(u) + e " AND")My(—u) — [AN(D) + A(D")] g(z).
For any given u, it can easily be seen that the infimum of ¥, (u,-) is reached at

AD") My (—u)

v =108\ [ XDV My ()

and

Uy(u,00) = 2y ADIND) Mo ()M () — [AD) + (D)) g(2).
Observe that

\Ilm(u7 UO) - \Dx(_uv U0)7

and thus
sup (=¥, (u,vg)) = sg%(—\llw(u,vo))
= sup (—V;(u,vo))
u<0
= 1,(0,0).

Now, if s > 0, we have for any u > 0
us — Wy (u,v9) > =¥, (u,vp),
and thus
I.(s,0) > 1,(0,0)Vs>D0.

Proceeding in the same way for s < 0, we obtain Condition (C).
Such an example of a four order kernel is K = 1[_, o) — 1[4 _q[uja,p, With

a = %%—F%(%)Q—F
b= é€/§+é<€’/§)2+

1
3
1

G

Let us now give the properties of the function J.



Proposition 1 Assume that (A1), (A2) and (C) hold. Then,

(i) J is a rate function on R1. More precisely, for o € R,

° Z.fa < Ix(ﬁa 0)7 then {J(S) < Oé} 18 compact.
o if > 1,(0,0), then {J(s) < a} = RY.

(i) If I,(0,0) = oo, then J is a good rate function on R and J = J*.
(ii3) If J*(s) < oo, then J(s) = J*(s).
() If a < I,(0,0), then {J*(s) < a} = {J(s) < a}.
Remark 1 In view of the definition of J and J*, and of Proposition [1 (iii), we have:

{ JH(s) if J*(s) < o0

I(s) I,(0,0) if J*(s) = .

Let us now state the LDP for the Nadaraya-Watson estimator.

Theorem 1 (Pointwise LDP for the Nadaraya- Watson estimator)
Assume that (A1), (A2) and (C) hold, and that (hy,) satisfies the conditions in (B). Then, for any
open subset U of RY,

1
linrriigfn—wllog]?[rn(x) elU] > —Sig[f]J*(s),
and for any closed subset V of R4,
. 1 .
IITILII_)Solcl)p ol logP[rp(z) € V] < — ;g‘f/ J(s).
Comments.
1) Set E = {J*(s) < oo}. For any open subset U of R? such that U N E # (), we have
| .
hnrr_l)gfmlog?’[rn(x) eU] > —;g{f] J(s).

n

2) If I, is finite in a neighbourhood of (0,0), then J* is finite everywhere and by Proposition
(i), J(s) = J*(s) < oo Vs ; thus (r,) satisfies a LDP with speed (nh?) and rate function .J.
Of course, this does not hold for nonnegative kernel since in this case I,(s,0) = oo for any s
(see Proposition [J in Section 3). However, it can hold for kernels which take negative values.
For example, consider the previous Example 3, and assume f(x,y) is symmetric in y ; in this
case M, (u) = M,(—u). The equation

ov
3 (u,v) = [A(D)e” = A(D")e "] My(u) =0
v
. AD) . ;. .
has solution vy = log D) independent from u. Moreover, M’ is continuous and has range
R, thus, there exists ug such that M’(ug) = 0. This implies that the equation
oV,

5 (u,v) = [A(D)e” + A(D")e™ "] M (u) =0

has a solution ug independent from v. Thus (0,0) is in the range of VW,. It follows from
Proposition ] Section 3 that I, is finite in a neighbourhood of (0, 0).



3) When 1,,(0,0) = oo, it follows from Proposition [l and Theorem [[] that (r,) satisfies a LDP with
speed (nh?) and good rate function .J.

In the case K is a nonnegative kernel whose support has an infinity measure, we will show in
Proposition [ that I,(0,0) = co. We have thus the following corollary.

Corollary 1 Let the assumptions of Theorem [| hold. If K is a nonnegative kernel such that
A({z e RY, K(z) > 0}) = oo, then the sequence (ry,) satisfies a LDP with speed (nhl) and good
rate function J.

This corollary is an extension of the results of Louani [[]] and Joutard [[[0] to the multivariate
framework (and to the case the kernel K may vanish). Moreover, it proves that the rate function
that appears in their large deviations results is in fact a good rate function.

To establish pointwise MDP for the Nadaraya-Watson estimator, we need the following addi-
tionnal assumptions.

(A3) For any u € R?, t +— (u,y)? f(t,y)dy and t (u,y) f(t,y)dy are continuous at = and
R4 R4
g(x) # 0.

d

nh?
2

Un

(A5) i) There exists an integer p > 2 such that Vs € {1,...,p — 1},Vj € {1,...,d},
[ Ky =0,and [ /K (w)|dy < o
R4 R4

ii) lim,,_ 00 vohh = 0.
iii) m and g are p-times differentiable on R?, and their differentials of order p are bounded
and continuous at x.

(A4) limy,— 00 vy, = 00 and limy, o0 = 0.

We can now state the MDP for the Nadaraya-Watson estimator.

Theorem 2 (Pointwise MDP for the Nadaraya- Watson kernel estimator of the regression)
Assume that (A1)-(A5) hold. Then, the sequence (v, (rn(x) —r(x))) satisfies a LDP with speed

d
(n—};"> and good rate function G, defined in ().
Un

2.2 Large and moderate deviations principles for the semi-recursive estimator

For a €]0,1/d], let \i’a,x ‘R? xR — R and IN%m :R? x R — R be the functions defined as follows:

ﬁ,a’x(uw) _ / g—ad <es”d(<u,y>+v)K(2) _ 1) f(x,y)dsdzdy, (11)
[0,1] x R4 x R4
I~a7m(t1, ty) = sup {(u, t1) + vty — i’a,x(u, v)} . (12)
(u,v)ERIXR

Moreover, let J, and j; be defined as follows: for any s € RY,
Ji(s) = inf I, 1
Jai(s) Jnf To(st,t) (13)
Ju(s) = J(s) A.(0,0). (14)

Let us give the following additionnal hypotheses.



(A’1) For any u € R%, t — ea<“’y>f(t,y)dy is continuous at z uniformly with respect to
R4
a € [0,1].
Condition (C) above is substituted by the following one,
(C’) infsE]Rq fa,m(sa 0) = ja,m(ﬁa 0)

Examples for which Condition (C’) holds are Examples 1 and 2 given for (C). The following propo-
sition gives the properties of the function J,.

Proposition 2 Assume that (A1), (A2), (A’1) and (C’) hold. Then,

(i) Jo is a rate function on RY. More precisely, for a € R,
o if a < I,.(0,0), then {ja(s) < a} is compact.
o if a>1,.(0,0), then {ja(s) < a} = RY.

(ii) If fa,x(ﬁ,O) = o0, then J, is a good rate function on R and J, = J*.
(iii) If J*(s) < oo, then Jo(s) = J*(s).

(iv) If & < I,.+(D,0), then {j;(s) < a} - {ja(s) < a}.
Notice that, like for J and J*, we have
= B J5(s) if Ji(s 5) < 00
Tals) = { 2(0,0) if J¥(s) = oo.
We can now state the LDP for the semi-recursive kernel estimator of the regression.

Theorem 3 (Pointwise LDP for the semi-recursive estimator of the regression)
Set (hy) = (en™®) with ¢ > 0 and 0 < a < 1/d, and let (A1), (A2), (A’1) and (C’) hold. Then, for
any open subset U of RY,

liminf — h log P [7n(z) € U] > — inf J*(s),

n—oo n nhd seU

and for any closed subset V of R4,

lim sup — h - log P [, (z) € V] < — inf Ja(s).

n—oo Ty seV

The comments made for Theorem [I] are valid for Theorem f|. In particular, we have the following
corollary.

Corollary 2 Let the assumptions of Theorem [} hold. If K is a nonnegative kernel such that
A({z eRY K(z) >0}) = oo, then the sequence (i) satisfies a LDP with speed (nhe) and good
rate function J,.

Before stating pointwise MDP for the semi-recursive estimator of the regression, let us recall
that a sequence (u,) is said to vary regularly with exponent « if there exists a function u which
varies regularly with exponent a and such that u, = u(n) for all n (see, for example, Feller [[] page

10



275). We will use in the sequel the following property (see Bingham et al. [} page 26). If (h,)
varies regularly with exponent (—a) and if Sa < 1, then

1 1
lim — > hf = : 15
nl»n;onhﬁ < i 1—af (15)
We also consider the following condition.

b
sup —— < oo. (16)

i<n hz
(For example, this condition holds when h,, is nonincreasing).

Theorem 4 (Pointwise MDP for the semi-recursive kernel estimator of the regression)
Assume that (hy,) varies regularly with exponent (—a) with a €]0,1/d[, and satisfies ([[6). Let (A1)-
d

(A5) hold. Then, the sequence (vy, (7 (x) — 7(x))) satisfies a LDP with speed (n—};"> and good rate
v
function G defined in ().

n

3 Proofs

The proofs of the results for the Nadaraya-Watson kernel estimator are in many cases similar to
those of the semi-recursive kernel estimator of the regression, so we omit some details of the proofs
for this last one.

First, let us state the following propositions which give the properties of the functions ¥, \i’a,x,
I, and I, .. Set

Sy = {xeRd, K(x)>0} and S_ :{xeRd, K(x) <0}.

Proposition 3 (Properties of ¥, and I,)
Let Assumptions (A1) and (A2) hold. Then,

i) W, is strictly convez, continuously differentiable on R? x R, and I, is a good rate function on
R? x R.

it) VW, is an open map and the range of V, is D(1,). I, is strictly convex on D(I,) and for any
t e D(I;) CR?I xR,

Ix(t) = <(V\Dx)71(t)7t> -V, ((V\Dx)il(t)) . (17)

ii) If M(S—) = 0, then I,(0,0) = g(2)A(Sy), and for any t; # 0, L(t1,0) = +oo.

Proposition 4 (Properties of ‘ila,m and fa,w)
Let Assumptions (A1) and (A2) hold. Then,

i) \ifmm is strictly convex, continuously differentiable on RY x R, and I~0L7m is a good rate function
on R? x R.

11



~ ~ [¢] ~ - o -
ii) VW, 5 is an open map and the range of Vg 4 is D(1g ). Lo 15 strictly convex on D(I, ), and

for any t € Z())(Ia,x) CR? xR,
Toa(t) = (VW02 7 (1),8) = Ve (TW0) (1)) - (18)

iii) If \(S_) = 0, then I,.(0,0) = g(z)A(S1)/(1 — ad), and for any t; # 0, I, (t1,0) = +oo.
The two following lemmas are used for the proofs of Theorems [] and B}

Lemma 1 (Pointwise LDP for the sequence (myn(x),gn(x)))
Let Assumptions (A1) and (A2) hold. Then, the sequence (my(x), gn(x)) satisfies a LDP with speed
(nhd) and rate function I, defined in (f).

Lemma 2 (Pointwise LDP for the sequence (mn(x),gn(x)))
Set hy, = en™® with ¢ > 0 and a €]0,1/d[, and let Assumptions (A1), (A2) and (A’1) hold. Then,
the sequence (1, (x), gn(x)) satisfies a LDP with speed (nhl) and rate function I, . defined in ([3).

Our proofs are now organized as follows. Lemmas [l and [l are proved in Section 3.1, Theorems
and ] in Section 3.2, Theorem [ in Section 3.3, Theorem [ is proved in Section 3.4. Section 3.5
is devoted to the proof of Propositions | and ] on the rate functions I, and I, . Propositions
and P are proved in Section 3.6.

3.1 Proof of Lemmas fI] and

3.1.1 Proof of Lemma [l

For any w = (u,v) € R? x R, set

\I/n(m) = (mn(x),gn(x)),
1

Apz(w) = ol logE [exp (nhg(w,\lln(x»)} .

Let us at first assume that the following lemma holds.

Lemma 3 (Convergence of Ay, ;)
Assume that (A1) and (A2) hold, then

lim A, (u,v) = Yu(u,v), (19)

where U, is defined in (§).

To prove Lemma [, we apply Proposition ], Lemma ] and the Gértner-Ellis Theorem (see Dembo
and Zeitouni [f]). Proposition f§ ensures that W, is essentially smooth, lower semicontinuous func-
tion so that Lemma [I] follows from the Gértner-Ellis Theorem.

Let us now prove Lemma f|. Set

_ X
Zi= v+ ol K ().
For any (u,v) € R? x R, we have

1
nhd

n

Ay 2 (u,v) log E

12



and, since the random vectors (X;,Y;), ¢ = 1,...,n are independent and identically distributed, we
get

1
Apz(u,v) = i logE [e”"].
A Taylor’s expansion implies that there exists ¢, between 1 and E [ez"] such that
1 Zn 1 Zn 2
Muslr) = B [e% —1] = gy (B[ — 1)
1 u v =3
e e ) ] fsaasay - R0
hn R4 xR ’
= \Iliv(u’ U) - Rgzl,gc(u’ v) + Rn%)x(u’ U),
with
RO (u0) = —a— (B[ —1])
e 2c¢2hd ’

R w0) = [ [l K 1) (1o = hazy) - S dedy,
R4 x R4
Let us prove that

lim R (u,v) = 0. (20)

n—oo

Set A > 0 and € > 0; we then have
R = [ +9KC) 1] f(a — hyzy) — fla,y)] dedy
{llzl<A}xRe

+ [ [ew IR 1] (£ = hizy) - fop)]dedy. (21)
{llzll>A}xRa

Next, since for any ¢ € R, |ef — 1| < [t|el!], we have

/{||z||>A}qu

< [ () + o] |K (2] 00K [z — ) — (o) dedy
{ll=l>A}xRa

uy)+0)K(2) _ 1‘ |f(z = hpz,y) — f(z,y)| dzdy

< [ () + o] K (2] 0PI (0 2, )y
{ll=l>A}xRa

+ [ () + o] [ K (2] 0 I (0, )y
{ll=l>A}xRa

IN

eVl oo 1| K ()] [/ [y ||/ E oellelllivll £ (g — hnZh?/)dy} dz
{ll=l>A} R

el |y 1K (2)] [/ el Klloollulllivll £ — hnz7y)dy:| dz
{llz>A} Ra

el oy K (2) dz/ yl|eVE e lIsl £ (g )ty
{ll=l1>A} R

el |y K (2) dz/ N eellwlll £ (5 )y
{ll=11> 4} Re

IN

B K (2)|dz, 22
/{IIZ”>A}1 (2)| (22)

13



where B is a constant ; this last inequality follows from ([]) and from the fact that K is bounded.
Now, since K is integrable, we can choose A such that

/ {uwy)+v) K (2 1‘ |f(x — hnz,y) — f(z,y)] dzdy < € (23)
{llzll>A}xRe 5
Now, observe that
/{|| [<A}xR {e(wy)ﬂ)K(Z) - 1} [f(x — hpz,y) — f(z,y)] dzdy
X R4
B /{u e [/ eI (f(z = haz,y) — f(3,9)) dy] dz (24)
[ = ez - s ] a .
{]|z]|I<A} L/Re

Assumption (A2) together with (ff), and the dominated convergence theorem ensure that both
integrals in (R4) and (BH) converge to 0. We deduce that for n large enough,

€
‘/{” [<A}xR [e“%y)—’—v)K(Z) - 1] [f(l' — hnz,y) — f(x,y)] dzdy < 57 (26)
xR

so that (20) follows from (R3) and (B6).

. 1 . .
Let us now consider Ry, ; since ¢, is between 1 and E [ez"], we get

1 < 1 1
— m — 5.
n T 1VE (e%n)

1 < 1
E[eZn] = cElZal’

By Jensen’s inequality, we obtain

Observe that

E(Z,)| = ‘E{(@,Y@H)K(””;f”)]‘
/dX |IUH||?/H‘K< S)‘f(s,y)dsdy+|v| " K(m S)'f(s,y)dsdy

hd<||u\|/ 1K (2) [/ Iyl f (= hzy)dy}dz+|v|/ 1K (2) [/f hzydy]dz),

which goes to 0 in view of (ﬂ) and since lim, o hy, = 0. We deduce that there exists ¢ € R% such
that

IN

IN

<ec.

:ﬁw| =

Noting that by ([),
Rd xRa
< Bhj,

where B is a constant. It follows that

lim Rggg(u,v) =0,

n—oo

which proves Lemma f]. B
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3.1.2 Proof of Lemma [
Similarly as the proof of Lemma [ll, for any w = (u,v) € RY x R, set
Un(z) = (mn(2),dn(@)),

Apo(w) = n—;d logE [exp (nhfl(w,\i/n(x»)} .

n

When h, =cn™®, ¢>0and 0 < a < 1/d, assume for the moment that
lim A, (u,w) = Uu.(u,v), (27)
n—oo

where \f/a,x is defined in ([[1]). The conclusion of Lemma [ follows from Proposition ] and again the
Gartner-Ellis Theorem.

Let us now prove (7). Set

M; = [(u,Y;) +v] K (55 ;LZXZ> ’

then, for (u,v) € R? x R,

n
Ay p(u,v) = hd logE [exp <ZM d)]
i=1 Z
1 hd
= 3 ZlogE [exp <M1—3>]
noi=1 i
By Taylor expansion, there exists b; , between 1 and E [exp <MZ%)} such that

hd hd 1 hd 2
logE [exp <Mlh_fl>] = K [exp <Mlh_fl> - 1] - @ (E [exp <Mlh_fl> - 1]) .

Noting that h, = cn™® with ¢ > 0 and a €]0,1/d[, A, can be rewritten as

. 1 & X pd 2
Rnaluv) = 57 E [eXp <MW> N } 2nhd Zb2 ( [eXp <Miﬁ> _1D

nog=1 "un

n .\ —ad s
= 2 (5) L [ e ] gy - B 0) + R Gw0)
1 R4 xRY

;*‘

>

with

_ hd 2
Rﬁ)m(u,v) = 2nhd Z 72 ( [exp <M2ﬁ> — 1])

n ;=1 4N
~ ((u,y)+v) K (2)
R (u,v) = nhd Z /Rdeq [ - 1] [f(z = hiz,y) — f(z,y)| dzdy.

Since b; ,, is between 1 and E [exp <MZ~Z—§>}, we have




By Jensen’s inequality, we obtain

Observe that

(o)

<

<

ha
;ﬁégmw+m

%(wu
R4 xRa

which goes to 0 in view of ([]) and since lim,, .o hy, = 0. We deduce that the sequence (E [exp <MZ

K(:c—z

) ' 7 (2, y)dzdy

[/ Hnym—hzy)dy]dz—l—]v[/ K (2) [/f i) }d

is bounded, so that there exists ¢ > 0 such that

and thus

Rn{;( < thd Z <

1
3 S

\n

)

Now, in view of ([), and since K is bounded integrable, we have

hd

d
e M

E

IN

<

<

<

nd

.n

‘hd
1

d
2

[ ol (s

AdRKuw+WHK(H<y”““”ﬂw—Maww@
X R4

BhY

n’

(s,y)dsdy

where B is a constant. Thus

and

Let us now consider R,

A2, (u,0)

(2)

n,T -

cB? B

wo)| < o

lim ‘f?g&gg(u, V)| =

n—0o0

Set A > 0 and € > 0 ; we then have

(,i(< ) +0) K (2) | B
— h Z /||z||<A}qu [ - 1] [f(z = hiz,y) — f(z,y)] dzdy

=

1

=1

% ((u,y)+v) K (z)
/{II [>A}xR [ " — 1] [f(x — hiz,y) — f(x,y)] dzdy
zZ||> X R4q

16



Since et — 1| < |t|eftl, it follows that
1 n
D) / [, )+ 0] [ (2) [l O (@ — hiz, y) = f(2, )] dzdy.
{ll=l> A} xRe

Using the same argument as in (P2), it holds that
1) < <.
2

Now, for I, we write

5 () H0)K(2)
) "hd Z / {ll= SA}xRs 2 [f (& = hiz,y) = f(z,y)] dzdy
i=1 Z X

—3 Z h?/ [f(x = hiz,y) — f(2,y)] dzdy.
{llzll<A}xRa
On the one hand, Assumption (A2) with v = 0 ensures that
lim [f(x —hiz,y) — f(z,y)]dzdy = O.
e Hlzll<A}xRe

Moreover, since ad < 1, ([[§) ensures that

n

iy — > ¢ | [z — hizy) — f(o,y))dzdy = 0,

i=1 {llzll<A}xRa

so that for n large enough,

1 n
_ hd _ hz , _ , dzd <
nhi Z; ' /{IIZIISA}qu (@ =hizy) = floy)] dedy) < (28)

>~ o

On the other hand, since for i < n, 0 <
that for any i > ny,

< 1, by Assumption (A’l), there exists ny € N such

< m|:&

nd

1 ((u,y)+v)K(z
/ eh?« " ()[f(x_hlzay)_f(x7y)]dy < Vn > i.
RY 8(2

€
d) [|21<a 9z

Noting that by ([), for any « € [0,1],

/ ey £ (1, y)dy
Ra

Since ad < 1, by ([[5), we get for n sufficiently large

sup
t

< Sup/ I8l £ (1. 4\ dy < oo,
t Ra

d
1 & 5 ((uy)+0) K (2)
TSR F(o - hizyy) — F@y) dyds| <
g 2 (1< A} xR st )= )

n i=ng+1

€
3 .

Now, for n large enough, in view of ([i),

K () +0) K (2)
nhd Z /{n |<A}xRa et [f(z = hiz,y) — f(x,y)] dydz
X

= hgl/ el HEG@ £ — bz, y) — fa,y)| dydz
nh% ; {lz<A} xR £ ) — f(z,y)]
€

g

IN
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It follows that for n large enough,

7 (w,y)+v)K(z) €
hi — h; - < - 2
TSy B o~ hizy) - fe)dyds| < S (29)
The combination of (B§) and (R9) ensures that |I| < %, which ensures that
lim ‘Rg’;(u)‘ = 0.
Hence, (R7) follows from analysis considerations. W
3.2 Proof of Theorems [Il and J
Let us consider the following functions defined as:
Hi :R?xR* — R¢
o'
«, /B = =
(a; B) 3
and
Hy :RIxR — R?
[
’ 0 otherwise.
3.2.1 Proof of Theorem [I
i) Let U be an open subset of R, we have
1 1 _
o Blra(@) €U] = 1 log B [(ma(a), ga(x)) € Hy '(U)] (30)

n n

Observe that H;'(U) € Hy *(U) and H; ' (U) is an open subset on RY x R* which is open, it
follows that H; *(U) is an open subset on RY x R. We deduce from (BQ) that

n—ll"bﬁlzlogIP’[rn(ﬂ:) ev] = nihglllogp [(mn(2), gn(2)) € H '(U)] -

The application of Lemma [l ensures that

liminf%log]P’[rn(x) elU] > hmmf h = log P [(man(x), gn(x)) erl(U)]

> - inf I.(t1,t9 — inf J*
(t1,t2)€HT H(U) ( )= seU (5),

and the first part of Theorem [l| is proved.

ii) Let V be a closed subset of R?, we have

#logﬂl’[rn(aﬂ) ev] = n—;ﬂlogIP’ [(mn(2), gn(x)) € Hy (V)]

n

IN

n;Ld logIP [< n(), gn(7)) € H;l(V)} .
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Now, observe that Hy (V) = H{ ' (V) U A where A C R x {0} and (6, 0) € A (since for any
s € RY, (0,0) € Hy(s)). The application of Lemma [[ again ensures that

1
limsup ——logP[r,(z) € V] < - inf I.(s,t)
n—oo Nh% (s,t)eH; 1 (V)UA
< - inf I,(s,t)

(s,)eH ] (V)U{(0,0)}

< — inf  I,(st,t)
seV, teR

< — inf  I(s,t)
seV, teR

< —inf J(s),

S A

where the second inequality comes from Condition (C); this concludes the proof of Theorem

[ m

3.2.2 Proof of Theorem E

Applying Lemma [, Theorem [ is proved by following the same approach as for the proof of
Theorem [l| with replacing my,, gn, J* and J by my,, gn, J; and J, respectively. B

3.3 Proof of Theorem

Set
Bu(z) = i(mnm—m<x>>—%<gn<w>—g<x>>.

Let us at first state the two following lemmas.

Lemma 4 Under the assumptions of Theorem [, the sequence (v, (Bn(x) — E (B, (z)))) satisfies
a LDP with speed (nv—]fl) and good rate function G.

Lemma 5 Under the assumptions of Theorem B,

lim v,E(B,(z)) = 0. (31)

n—0o0

We first show that how Theorem [] can be deduced from the application of Lemmas [] and [,
and then prove Lemmas [ and [ successively.

3.3.1 Proof of Theorem

hd
Lemmas [ and | imply that the sequence (v, B, (7)) satisfies a LDP with speed i 2"> and good
v

n
rate function G,. To prove Theorem B, we show that (v, (r, —r)) and (v,B,) are exponentially
contiguous.
Let us first note that, for x such that g, (z) # 0, we have:

ma(z)  m(z)

ro(z) —r(z) = (@) — o(2)
_ (ma(x) —m(x)) g(x) + (9(2) — gn(x)) m(z)
gn(@)g(2)
_ 9@
= Byl )gn(x)



It follows that, for any § > 0, we have
P[vnll (ra(@) = 7(2)) = Ba(@)] > 4]

< PlulBa) (;(fgj) —1) > 6 and g,(@) # 0] +Plgu(z) =0

< PlVonl[Ba(@)[ > 6] + Py/on |9(2) = gn(x)] > 6 |gn(2)]] + P [!g(x) —gn(x)] > @}

< P[muBn@)u>6]+P{@|g<x>—gn<x>|>6|gn<:c>| and g"<x)>1}

g(xz) = 2
+P {?(%) < ﬂ +P [|9n($) —g(z)| > @]

P [\/ou|| Bu (2)|| > 6] + P {M!g(m) — gnlw)| > 5@} +P [9(@ ~on(@) = @}

IN

+ [ n(0) - g(o] > 2.

Since lim,,_,~ v, = 00, it follows that, for n large enough,
P[vall (ra(@) = 7(2)) = Ba() | > 4]
g(x
< dmax {PVEIB] > 8 P [V lo) - o) > 6757},

and thus

02
n—;;%logp vp|| (rn(z) — 7(x)) — Bp(x)|| > 5]
2

< Uhd log4+maX{ hd log P [\/vn || Bn(2)|| > 4] ; hd log]P’[\/E\g( ) = 9n(2)] >5@]}'

hd
Now, since the sequence (v, B, (x)) satisfies a LDP with speed <n—2"> and good rate function Gy,
v

n

there exists ¢; > 0 such that

hmsup i logIP’[\/EHB (@) >4 < —ca.

n—oo

Moreover, the application of Theorem 1 in Mokkadem et al. [[4] guarantees the existence of c2 > 0
such that

hmsup h log P [m|g( ) — gn(z)| > 6M] < —ca.

n—oo 2

We thus deduce that
7}2
lim 2 1og P v, | (ru (@) () — Ba(w)| > 0] = —o,

n

which means that the sequences (v, (r,(z) —r(z))) and (v,B,(x)) are exponentially contiguous.
Theorem f thus follows. W
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3.3.2 Proof of Lemma

For any u € RY, set

v2 nhd
Fpo(u) = n—hglOgE exp v—n(u, B, (x) —E(Bp(2))) )|,
1
b (u) = 7/ u,y — ()2 K2 (2) f(x,y)dzdy
W = g [ ey @) )

sz

- 2 u/ K?(2)dz.
29(z) Jga

To prove Lemma [, it suffices to show that, for all u € RY,
lim Iy o (u) = Pg(u).

As a matter of fact, since ®, is a quadratic function, Lemma [ then follows from the application
of the Géartner-Ellis Theorem. For u € RY, set

Z = (wYi-r(@)K (x Zf)’

and note that

2

v
Ipo(u) = n—;;dlogE
n

exp (m i {ZZ - IE(ZJ])

i=1

Since (X;,Y;), i = 1,...,n are independent and identically distributed, it holds that

v2 _Zn__ Un, -
Fnﬂ;(u) = h—g IOgE |:€U"g(x):| — mE(Zn)

Now, we follow the same lines as in the proof of Lemma [§. A Taylor’s expansion ensures that there
Zn,
exists ¢, between 1 and E[e ”ng(z)} such that

I 7
evng@ — 1 — n
vng ()

2
Tpolu) = -2E

n,

= [ [N -ty = @)K )] o dedy
R4 x R4 )

Ung(x

—R{(u) + R, (w),

n,

with
R, ()
v,% _Zn 2

- (o)
A~ —— (U, y—r(x z 1
RO(w) = o [evnéw“y (”K”—l——m,y—r(w)mz)] (@ = hazy) = f(@,y)] dzdy,

R4 xRa vng()

and

1 1
Cn E (e—vnzﬂw )
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Noting that

E (vng(x))‘ S (@) /Rd K (2)] [/Rq Iyl f(z — hy ,y)dy} d
hallulllir @)l L ]
vng(z) iy |K(2)] [ - f(xz— hy ,y)dy] dz. (32)

It follows from ([]) that,

Zn
£ <Ung(x)> -0

We deduce that there exists ¢’ € R* such that

and thus, in view of ([f),

; oy b () K (522 2
RN(w) < S.» ( / [6“"9“” Y P/ — 1} f(s,y)dsdy>
7 2 hn R4 x R4
c L u,y—r(x))K(z 2
< 292(33)]1% </Rd y |(u,y — r(z))K(2)] e‘g(w)< y=r(@)K( )‘f(;p — hnz,y)dzdy>
X
2K oo
llullllr ()] 2
cde 9@ 1 oo
= hi, (/ uy — (@)K () e @ MW 2 y)dzd >
S [l G (& bz, y)d=dy
< Bhy,

where B is a constant, so that
lim ‘R(U (u)‘ ~0.
n—oo ’

2 3
On the other hand, since Vz € R, e — 1 —z = % + %d(m), with d(z) < ell, we get

R, (u)
= 5 [ =@ @ = bz = fa)] dedy+ Rosle), (9
with
Resl)]l < gz [y = r@) K3 el 0O (0 hz.g) = (o) dza

It follows from () that R, . converges to 0. Applying then (A2) and (A3), we find

lim ‘f?ggg(u)‘ =0.

Finally, we have
Iy z(w)
——(u,y—r(x z 1 -
= [ e RO Lty - @)K )] Sy - R
R4 x R4 Ung(x) ’
+RD,(u)
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R, (u)
_ _ 272
_ U%/ |:e—vngl(x)<u,y—r(ar))K(z) o fwy—r@)K ()  (wy 7“2(562)> K= (2) (o, y)dzdy.
R xR Ung(z) 2059°(x)
By the majoration |e* —1 —x — 362—2 < %d(m) , we get

R, ()|

1

1 _
- WD ()| e [T @K@
= 6upg3(x) /RdXRq ‘(u,y r(@) (Z){ eond f(z,y)dzdy,

and ([f)) ensures that

lim (Rﬁfj;(u)( ~ 0,

n—oo

which concludes the proof of Lemma . B

3.3.3 Proof of Lemma E
Observe that

Since

n

= LK (xh‘n ) [(z,y)dzdy — m(a)
= hi%/Rdm(z)K <m};z> dz —m(x)

= K(y) [m(z — hpy) — m(z)] dy,
Rd

Assumptions (A5)i), (A5)iii) and a Taylor’s expansion of m of order p ensure that
E (mn(x)) —m(z) = O(hy).
Similarly, we have
E(gn(2)) —g(z) = O(hy).
We deduce from (B4), (B3), and (Bg) that
E(Bn(z)) = O(hy),

and thus Lemma [ follows from Assumption (A5)ii). W
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3.4 Proof of Theorem
Set

Balz) = ﬁ(mn@)—m<x>>—g—@<gn<w>—g<x>>,

and, for any u € RY,

Tpalu) = AR [exp ("—Wmu,Bn(x)—E(Bn(x))ﬂ,

nhd Un,
~ 1

Dy p(u) = m/Rdeq@,y—T($)>2K2(Z)f(ﬂf,y)d2d’y

1 W'y,
= “ u/ K?*(2)dz.
1+ad 29(z) Jga

By following the steps of the proof of Lemma [] and by using the property ([L5), we prove that

lim Tpp(u) = ®gul(u). (37)

n—oo

We first show how (B7) implies Theorem [|. The function éa,x being quadratic, the application of
the Gartner-Ellis Theorem then ensures that

the sequence <vn <Bn(x) -E <Bn(x)>)> satisfies a LDP

hd ~
with speed <n—2"> and good rate function G ;. (38)
/Un

Now, following the proof of Lemma [}, we have

)

- 1.1 r—z
Bine) —m@) = 33 g [ i () ey - mo
= 23 [ K@ = hi) = m()] dy.
=1

Here again, Assumptions (A5)i), (A5)iii) and a Taylor’s expansion of m of order p ensure that
E (in(z)) —m(z) = O lf:hf?
! " 1=1 A

and similarly,

E (4u(@)) -~ 9(r) = O (%Zhﬁ’) ,
i=1

thus
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e If ap < 1, since (hy,) varies regularly with exponent (—a), we have, in view of ([[§) and
Assumption (A5)ii),

}:M ( an:ouy

e If ap > 1, we have >, hY < oo and thus, since v, = o(nhd), we get
SR =0 (1) = o(1).
n n

e In the case ap = 1, let L be the slowly varying function such that h, = n=*L(n), and set
e > 0 small enough. Since a(p —¢) < 1, we have hl, = o(hh" %), and in view of ([[J) and (A4),

=1
— 0 (nl—a(d-i-p—a) [ﬁ(n)]d-i-p—a)

:((nﬂﬁﬂmmwﬂf):qu

We thus deduce that

lim v,E(B,(z)) = 0. (39)

n—0o0

To conclude the proof of Theorem [, we follow the same lines as for the proof of Theorem [
(see Section 3.3), except that we apply (Bg) instead of Lemma [, (BY) instead of Lemma [f], and
Theorem 1 in Mokkadem et al. [L[J] instead of Theorem 1 in Mokkadem et al. [[[4]. B

Let us now prove (B7). For u € RY, set

and note that

h;i ~1 . ‘

Since (X;,Y;), i =1,...,n are independent and identically distributed, it holds that

02 rdTy " nq
Tho(u) = 2 logE |evno@ni| - 2 —RE(T;).

haT; pd
By Taylor expansion, there exists ¢; , between 1 and E[e ”ng(@hi} such that

hdTy g hdT; g 1 hdTy g 2
10gE[evng<x)hz} _ E[evnm)hi _ 1] ~ 53 (E [evnm)hi _ 1D 7
A

i\n

and I'y, ; can be rewritten as
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—

T;hd 2 ;hd 2 v nq
— E ona(nd _ 1| = — | E |evmo@nd _q __n —E(T3).
n,m hd Z [ thg ZZ; C?,n ng(:c) Z hgl ( 2)
A Taylor expansion implies again that there exists C;,n between 0 and Tihi  uch that

'Ung(x)hgl
T;hd
E levn!](m)h;’i — 1]

d d 2 d 3
~ a0+ (o) B0 5 (o) e
Therefore
o (u)
e s Zn:i/ (u,y = (@) K*(2) f (2, y)dzdy + R (u) + R (), (40)
29%(«) nhy? = B Jpaxpa (1),
with
n n pd 2
RO ) = é § Z 1 - ;;Zg Zi <E e 1]) |
.. d 1 1
fia(w) = 242 2 o)n —d/ (u,y —r(2)*K*(2) [f (& — hiz,y) — f(z,y)] dzdy.

In view of ([[J), the first term in the right-hand-side of () converges to ®,_.

It remains to prove that R( ) and Rﬁli converge to 0. We have

el < i
Ung(a)hd Ung(x)h¢ Jraxpa

hd |
vng(T) /Rdeq (u,y = 7(@)) K (2)] f(z — hiz, y)dzdy.

In view of ([]), the integral is bounded, thus

(uy ey (4) 1 F(s,y)dsdy

<

heT;
lim supE ["7%] = 0,
n—=00i<n | vpg(2)h;
so that, there exists ¢ > 0 such that
1 <
— <ec.
022 -

Now, on the one hand, since |e! — 1| < [t|e!*l, and in view of () and (If), we have

né T,
nti hd ol -1 7- T z
R |ematond _ 1 i [y = )KL OO iz gyazay
ng(T) JrdxRa
d
S 31L7
vng(z)
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where By and c¢ are constants. We deduce that

. 12 1 Tih%d ?
s () <
On the other hand,
E|ffen] < E|[LPe ]
: hd/ [,y — r(2)) K (2)]* et 0T OE (g iz ) dzdy
< Byh¢

where By is a constant. Thus,

h2d n 1 ,
n Z —E(eci’an’)

6nv,g3(x) P 34
hd
Since lim,, oo —2 = 0, ([[§) ensures that
n
R 1N 1 /
li n___ N (e TP) = 0
nine.lo 6/Ung3($) n = hZQd (6 1 ) bl

which proves that

Finally, using ([[J), (A2) and (A3), we have
lim R (u)

1 Y hd -
= lim =1 i hA_d/ u,y — r(z)) 2 K2 (2 x—h;z,y) — f(x,y)] dzd
fim sy s [ TP [ i) = S ey
= 0,

which proves (7). W

3.5 Proof of Propositions B and 4
3.5.1 Proof of Proposition

e The strict convexity of ¥, follows from its definition, since for any v €]0,1[, and (u,v) #
(u', 0,

0, (fy (u,v) + (1 =) (u',v')) = U, ((’yu + (1 =y, yv + (1 - ’y)v'))
_ / <e[<w+(1*v)u/7y>+wv+(1*7)v/]K(Z) a 1) P, y)dzdy
R4 xRY

- / (6(<u,y>+v>K<z> — 1) F,y)dzdy
R2x R4

=) [ (RO 1) pa,ghazay
R4 xRY
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where the last inequality follows from the fact that = — e” is strictly convex.
Since |t — 1| < |t|e!l Vt € R and K is bounded and integrable, () imply that

/Rdeq <e((u,y>+v)K(z) — 1) f(x,y)‘ dzdy

< / () +0) K (2)] el @NTIEC f (i y)dzdy

R4 xR4
< evllKllooHuH/ |dz/ ||yHQIUIIIIyIIIIKIIoof(x y)dy
+e|v||K||oo|v|/ |dz/ K o £ (02 o)y < oo,
which ensures the existence of V.

Next, set

ha(u, v, y, 2) = [6(<U,y>+v)K(z) _ 1] Fz,y).
Since hy is differentiable with respect to (u,v) and

(un)+) K@) K (2) f (z, y)
. ye z ’y
Vhy(u,v,y,2) = < (W +IKE) K (2) f (2, y) )

using Assumption (A1) and ([§), it can be seen that ¥, is differentiable on R? x R. Since V¥, is
a smooth convex on R? x R, it follows that W, is essentially smooth so that I, is a good rate
function on R? x R (see Dembo and Zeitouni [ﬂ]), which proves the first part of Proposition
g

Now, observe that D(¥,) = R? x R, and since ¥, is strictly convex, it holds that the pair
(D(\Ifx), \le> is a convex function of Legendre type. It follows that <D(Ix), 122 is a convex

function of Legendre type (See Rockafellar [[[7]). Thus, Part 2 of Proposition
Theorem 26.5 of Rockafellar [[L7].

follows from

Let us now assume that A(S_) = 0. Thus
Vou) = [ (eTROCKE S 1)t (). g)dedy.
R xRa

For each u € R?, the function v — (e”TyK(Z)e”K(Z) - 1) 1g, (2)f(x,y) is increasing in v and

goes to —f(z,y) when v — —oo. Thus lim,_o ¥u(u,v) = —g(z)A(Sy) and I,(0,0) =
g(x)A(S+). Now, when ¢; # 0, let us show that

Igg(tl,O) = +00.
Let M >0, € >0 and set u = (M + €)t1/||t1]|*>. Let v € R such that

{ —W,(u,v) > g(z)A\(S4) — € if A(Sy) < o0
U, (u,v) > M if ANS4) =00

Then, on the one hand, when A(Sy) < oo, we have
ulty — Wu(u,v) > M + e+ g(z)\(Sy) —e > M.
On the other hand, when A(S) = oo, we get
ulty — Wp(u,v) > M +e+ M > M.
It follows that sup,,, (u’t; — ¥e(u,v)) = +0c. B
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3.5.2 Proof of Proposition {

Following the same lines of the proof of Proposition fI, we prove Proposition . When A\(S_) = 0,
for each u € R? and s €]0,1], the map v +— s~ <esad“TyK(z)e”K(z) - 1) 1s, (2)f(x,y) is in-

creasing in v and goes to —s % f(z,y) when v — —oco. We deduce that lim, o V. (u,v) =

—g(@)A(S:) [ s = —g(@)A(S+)/(1 — ad) and L,(,0) = g()A(S+)/(1 — ad).

3.6 Proof of Propositions [I] and B
3.6.1 Proof of Proposition

(i) Let us prove the first part of Proposition [I.
o If a < I,(0,0), set
G ={(a,b) eRIx R, I,(a,b)<a} and G ={(s,t) €eRI xR, I.(s,t)<al.

We first show that G is a compact subset of R? x R.
First, observe that since I, is a good rate function, G is a compact subset of R? x R.
Let us define the following function

F:RTxR — RIxR
(s,t) — (st,t).

Observe that F is continuous and G = F ~1(G). We deduce that G is a closed subset of
R? x R.

Now, let (sp,t,) be a sequence of real numbers of G, there exists (z,,yn) € G such that
(TnyYn) = F(sn,tn) = (sSptn,tn) € G.

The compactness of G on R? x R ensures that there exists a sequence of real numbers
(%, Yn,,) € G such that (zy,,yn,) — (z0,%0) as k — oo, where (z9,y0) € G. Therefore,
(Snptng,tn,) — (20,%0) as k — oo. B

Noting that Condition (C) ensures that Vs € R?, I.(s,0) > I,(0,0) > « so that (s,0) ¢
G.

It follows that yo # 0, and thus t,,, — yo and s,, — so as k — oo, where sy = x/yo. We
deduce that (sn,,tn,) — (50,%0) as k — oo, so that (so,y0) € G. Thus G is a compact
set. Now we claim that the set A = {s, J(s) < a} is the image of G by the continuous
map 7 : (s,t) — s, and thus it is a compact.

Indeed, clearly ﬂ(é) C A. For the opposite inclusion, consider o < o < I, (6, O>;
the set G/ = {fx(s,t) < o/} is compact. Let sg € A, since J(sg) < a, we have J(sg) =

(s0.1)EC fx(so, t); by Compacit}j, there exists to such that J(sg) = fx(so, to); (s0,t0) € G
and 7(sg,tg) = so, thus A C 7(G).

o If @ > I,(0,0), let s € RY, we have

inf

J(s)

IAIA IA
&
=
N=/

We deduce that R? C {J(s) < a} and the second part of Proposition [ (i) follows.

(ii) It is an obvious consequence of (i) and the definitions of J and J*.
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(iii) Assume that J*(s) < co.
e If I,(0,0) > inf, I,(st,t), then
iItlf I.(st,t) =infyso I,(st,t),

so that J(s) = J*(s).

e If I,(0,0) = inf; I.(st,t), since J*(s) < oo, there exists tg # 0 such that I,.(stg,t) < oc.
By the convexity of I, we have for any v €]0,1], I,(stov,tor) < oo and

I (stov, tor) < vl (sto,to) + (1 — v)1,,(0,0).
We deduce that
0 < L(stow, tov) — I,(0,0) < v (Ix(sto,to) - Ix(ﬁ,o)) ,
and if we take v — 0, the third part of Proposition [l follows.

(iv) Let us suppose that o < I,(0,0) and let s € {J*(s) < a}, then we have J*(s) < co. We deduce
from (iii) that J(s) = J*(s). It follows that J(s) < «, which ensures that s € {J(s) < a}.
Conversely, if s € {J(s) < a}, then

1,(0,0) > inf I, (st, 1),
so that

inf I.(st.t) = inf I, (st.1).
inf I (st, 1) inf z(st,t)

That is J(s) = J*(s). Therefore, J*(s) < «, which ensures that s € {J*(s) < a}, and thus
Proposition [ is proved. B
3.6.2 Proof of Proposition g

Proposition | is proved by following the same approach as for the proof of Proposition [l with
replacing I, J and J* by I, ., J, and J; respectively. B
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