Hamiltonian pseudo-representations

The question studied here is the behavior of the Poisson bracket under C 0 -perturbations. In this purpose, we introduce the notion of pseudo-representation and prove that the limit of a converging pseudorepresentation of any normed Lie algebra is a representation.

An unexpected consequence of this result is that for many nonclosed symplectic manifolds (including cotangent bundles), the group of Hamiltonian diffeomorphisms (with no assumptions on supports) has no C -1 bi-invariant metric. Our methods also provide a new proof of Gromov-Eliashberg Theorem, it is to say that the group of symplectic diffeomorphisms is C 0 -closed in the group of all diffeomorphisms.

1 Statement of results

Poisson Brackets and C 0 -convergence

We consider a symplectic manifold (M, ω). A function H on M will be said normalized if M Hω n = 0 for M closed or if H has compact support otherwise. We will denote C ∞ 0 (M) the set of normalized smooth functions. Endowed with the Poisson brackets {•, •}, it has the structure of a Lie algebra.

In the whole paper, we will denote X H the symplectic gradient of a smooth function H, i.e., the only vector field satisfying dH = ι X H ω. Then, the Poisson brackets are given by {H, K} = dH(X K ).

Let g be a normed Lie algebra, i.e., a Lie algebra endowed with a norm • such that for some constant C,

[f, g] C f • g ,
and consider the following definition.

Definition 1. A sequence of linear maps

ρ n : (g, • ) → (C ∞ 0 (M), • C 0 ),
will be called a pseudo-representation if the sequence of bilinear maps

B n : (f, g) → {ρ n (f ), ρ n (g)} -ρ n ([f, g])
converges to 0.

If it has a limit, we may ask whether this limit is a representation. If so, we would have {ρ n (f ), ρ n (g)} → {ρ(f ), ρ(g)}, for all f, g ∈ g.

This has been proved in [START_REF] Cardin | Commuting Hamiltonians and Hamilton-Jacobi multi-time equations[END_REF] for abelian Lie algebras. The main result of this paper is that it holds for all normed Lie algebras.

Theorem 2. For any normed Lie algebra (in particular for finite dimensional Lie algebras), the limit of a converging pseudo-representation is a representation.

Remark 1. This result generalizes Gromov-Eliashberg's Theorem of C 0 closure of the symplectomorphisms group in the group of diffeomorphisms.

Indeed, a diffeomorphism of R 2n is symplectic if and only if its coordinate functions (f i ), (g i ) satisfy

{f i , g j } = δ ij , {f i , f j } = {g i , g j } = 0.
Thus we can easily see that a sequence of symplectomorphisms gives a pseudo-representation of a 2-nilpotent Lie algebra. If the support of the coordinate functions were compact, we could immediately apply Theorem 2. In fact, for compactly supported symplectomorphisms, these functions are affine at infinity, and we have to adapt the proof to this case (See Appendix A for details).

Remark 2. Consider the following question: If F n , G n and {F n , G n } respectively converge to F , G and H (all function being smooth and normalized, and all convergence being in the C 0 sense), is it true that {F, G} = H ? Theorem 2 states that the answer is positive when there is some Lie algebra structure. Nevertheless, in general, the answer is negative, as shows the following example, which is derived from Polterovich's example presented in Section 2.3. Let χ be a compactly supported smooth function on R, and set the following functions on R 2 :

F n (q, p) = χ(p) √ n cos(nq), G n (q, p) = χ(p) √ n sin(nq).
It is easy to see that F n and G n converge to 0, but that their Poisson brackets equal χ(p)χ ′ (p) = 0. This example shows that when the Poisson brackets C 0 -converge, then its limit is not necessarily the brackets of the respective limits. But in that case, we can see that the Hamiltonians F n and G n do not generate a pseudorepresentation.

Remark 3. The theorem holds if we replace the symplectic manifold with a general Poisson manifold. Indeed, Poisson manifolds are foliated by Poisson submanifolds that are symplectic, and we just have to apply theorem 2 to each leaf. Remark 4. The theorem leads us to the following Definition 3. A continuous Hamiltonian representation of a normed Lie algebra g is a continuous linear map g → C 0 (M) which is the C 0 -limit of some pseudo-representation of g.

We will not study this notion further in this paper. Nevertheless let us give some example: Example: Let ρ : g → C ∞ 0 (M) be a smooth Hamiltonian representation in the usual sense, and let ϕ be a homeomorphism of M which is the C 0 -limit of a sequence of symplectomorphisms. Then, ρ ′ : g → C 0 (M), given by ρ ′ (g) = ρ(g) • ϕ, is clearly a continuous Hamiltonian representation.

Question 1: Given two sequences of Hamiltonians (F n ), (G n ) that C 0 -converge to smooth F and G, is there some sufficient condition for the bracket {F, G} not to be the limit of the brackets {F n , G n }? Propositions 12 and 13 give restrictions on the possible counter-examples.

Question 2: Let us consider the following number introduced by Entov, Polterovich and Zapolsky in [START_REF] Entov | Quasi-morphisms and the Poisson bracket[END_REF]:

Υ(F, G) = lim inf ε→0 { {F ′ , G ′ } | F -F ′ C 0 < ε, G -G ′ C 0 < ε}
The result of Cardin and Viterbo mentioned above which is exactly Theorem 2 in the abelian case can be restated as follows:

Υ(F, G) > 0 if and only if {F, G} = 0.

Entov, Polterovich and Zapolsky have improved this result by giving explicit lower bounds on Υ(F, G), in terms of quasi-states (see [START_REF] Entov | Quasi-morphisms and the Poisson bracket[END_REF] and [START_REF] Zapolsky | Quasi-states and the Poisson bracket on surfaces[END_REF]). We may wonder whether there exist similar inequalities in the non abelian case.

Bi-invariant Metrics

Here we consider a subgroup G of the group H(M) of Hamiltonian diffeomorphisms on M. If we denote φ t H the flow generated by X H (when it exists), and φ H = φ 1 H the time-1 map, H(M) is the set of all diffeomorphisms φ for which it exists a path of Hamiltonian functions

H t ∈ C ∞ (M) such that φ = φ H . Definition 4. A bi-invariant metric on G is a distance d on G such that for any φ, ψ, χ in G, d(φ, ψ) = d(φχ, ψχ) = d(χφ, χψ).
It will be said C -1 if its composition with the map Φ :

H → φ 1 H is a continuous map Φ -1 (G) × Φ -1 (G) → R, where Φ -1 (G) ⊂ Ham is endowed with the compact-open topology.
There are several well known examples of C -1 bi-invariant metrics, as, for example, Hofer's metric defined on the subgroup Hamiltonian diffeomorphisms generated by compactly supported functions H c (M) (see [START_REF] Hofer | On the topological properties of symplectic maps[END_REF] or [START_REF] Hofer | Symplectic invariants and Hamiltonian dynamics[END_REF]), Viterbo's metric defined on H c (R 2n ) (see [START_REF] Viterbo | Symplectic topology as the geometry of generating functions[END_REF]), and its analogous version defined by Schwarz in [START_REF] Schwarz | On the action spectrum for closed symplectically aspherical manifolds[END_REF] for symplectically aspherical closed symplectic manifolds.

As far as we know, if we remove the assumption of compactness of the support, the question whether there exists such metrics is still open. Here we prove that the answer is negative for a large class of symplectic manifolds.

Let (N, ξ) be a contact manifold with contact form α (i.e., a smooth manifold N with a smooth hyperplane section ξ which is locally the kernel of a 1-form α whose differential dα is non-degenerate on ξ). Its symplectization is by definition the symplectic manifold SN = R × N endowed with the symplectic form ω = d(e s α), where s denotes the R-coordinate in R × N. For any contact form α, one can define the Reeb vector field X R by the identities ι X R dα and α(X R ) = 1. The trajectories of X R are called characteristics. The question of the existence of a closed characteristic constitutes the famous Weinstein's conjecture. It has now been proved for large classes of contact manifolds (see e.g. [START_REF] Hofer | The Weinstein conjecture in P ×C l[END_REF][START_REF] Hofer | The Weinstein conjecture in cotangent bundles and related results[END_REF][START_REF] Hofer | The Weinstein conjecture in the presence of holomorphic spheres[END_REF][START_REF] Lu | The weinstein conjecture in the uniruled manifolds[END_REF][START_REF] Liu | Weinstein conjecture and GW invariants[END_REF][START_REF] Viterbo | A proof of Weinstein conjecture in R 2n[END_REF][START_REF] Taubes | The Seiberg-Witten equations and the Weinstein conjecture[END_REF]...).

Let us now state our result that will be proved in section 2.3

Theorem 5. If M is the symplectization of a contact manifold whose dimension is at least 3 and that admits a closed characteristic, then there is no C -1 bi-invariant metric on H(M).

Corollary 6. If N is a smooth manifold whose dimension is at least 2 and if T * N is its cotangent bundle, then there is no C -1 bi-invariant metric on H(T * N).

Remark. At least in the case of manifolds of finite volume, there probably exists non closed manifolds with such distances. Indeed, it follows from our previous work [START_REF] Humilire | On some completions of the space of Hamiltonian maps[END_REF] 

ρ n (f ) • φ s ρn(g) - +∞ j=0 ρ n (ad(g) j f ) s j j!
converges to zero for the C 0 -norm on M. Moreover, the convergence is uniform over the s's in any compact interval.

Remark: For a representation equality holds. It recalls the Baker-Campbell-Haussdorf formula.

Proof: First remark that the considered sum converges. Indeed, the C 0 -norm of its remainder can be bounded by the remainder of a converging sum, as follows:

+∞ j=N ρ n (ad(g) j f ) s j j! +∞ j=N R f (sC g ) j j! .
where R is an n-independent upper bound for the sequence

ρ n = sup{ ρ n (h) C 0 | h = 1}.
Now, let us prove our lemma. Poisson equation gives

d ds (ρ n (f ) • φ s ρn(g) ) = {ρ n (f ), ρ n (g)} • φ s ρn(g)
and hence

ρ n (f ) • φ s 0 ρn(g) = ρ n (f ) + s 0 0 {ρ n (f ), ρ n (g)} • φ s 1 ρn(g) ds 1 = ρ n (f ) + s 0 0 ρ n ([f, g]) • φ s 1 ρn(g) ds 1 + s 0 0 B n (f, g) • φ s 1 ρn(g) ds 1 .
Then, by a simple induction, we get for all integer N:

ρ n (f ) • φ s 0 ρn(g) = N j=0 ρ n (ad(g) j f ) s 0 j j! + R N,n (s 0 ) + S N,n (s 0 ),
where,

R N,n (s 0 ) = s 0 0 s 1 0 • • • s N 0 ρ n (ad(g) N +1 f ) • φ s N+1 ρn(g) ds N +1 • • • ds 1 S N,n (s 0 ) = N j=0 s 0 0 s 1 0 • • • s j 0 B n (ad(g) j f, g)) • φ s j+1 ρn(g) ds j+1 • • • ds 1
Let us now denote

B n = sup{ {ρ n (f ), ρ n (g)} -ρ n ([f, g]) C 0 | f = g = 1}.
By assumptions B n converges to 0.

Then,

R N,n (s 0 ) C 0 s 0 0 s 1 0 • • • s N-1 0 R g N C N f ds N • • • ds 1 , R f g N C N s N 0 N! ,
which proves that R N,n (s 0 ) converges to 0 with N, uniformly in n.

In addition,

S N,n (s 0 ) N -2 j=0 s 0 0 s 1 0 • • • s j 0 B n f g j ds j+1 • • • ds 1
We thus have S N,n (s 0 ) B n f exp(s o g ) for any N. As a consequence, letting N converge to +∞, we get

ρ n (f ) • φ s ρn(g) - +∞ j=0 ρ n (ad(g) j f ) s j j! B n f exp(s o g ).
This achieves the proof because the right hand side converges to 0.

Proof of theorem 2

Let f, g ∈ g. We want to prove that {ρ(f ), ρ(g)} = ρ([f, g]). We can assume without loss of generality that g < 1.

By Lemma 7,

ρ n (f ) • φ s ρn(g) - +∞ j=0 ρ n (ad(g) j f ) s j j! C 0 → 0.
Each term of the sum converges with n. Since the sum converges uniformly in n, we get that for any s,

ρ n (f ) • φ s ρn(g) C 0 → +∞ j=0 ρ(ad(g) j f ) s j j! .
As a consequence, the flow generated by ρ n (f ) • φ s ρn(g) γ-converges to the flow generated by +∞ j=0 ρ(ad(g) j f ) s j j! . But on the other hand, the flow of

ρ n (f ) • φ s ρn(g) is t → φ -s ρn(g) φ t ρn(f ) φ s ρn(g) , which γ-converges to φ -s ρ(g) φ t ρ(f ) φ s ρ(g) . Indeed, ρ n (g) C 0 → ρ(g) and ρ n (f ) C 0 → ρ(f ) which implies that there respective flow γ-converges. Therefore, t → φ -s ρ(g) φ t ρ(f ) φ s ρ(g) is the flow of +∞ j=0 ρ(ad(g) j f ) s j j! . The func- tions being normalized, ρ(f ) • φ s ρ(g) = +∞ j=0 ρ(ad(g) j f ) s j j! .
Now, first taking derivative with respect to s, we get {ρ(f ), ρ(g)} = ρ([f, g]).

Proof of theorem 5

Let us consider the following Hamiltonian functions on R 2 (this example is due to Polterovich) with symplectic form written in polar coordinates rdr ∧ dθ.

F n (r, θ) = r √ n cos(nθ), G n (r, θ) = r √ n sin(nθ).
We see that {F n , G n } = 1 and that F n and G n converge to 0. Now, consider g the 3-dimensional Heisenberg Lie algebra (i.e., the Lie algebra with basis {f, g, h}

such that [f, g] = h and [f, h] = [g, h] = 0) and set ρ n (f ) = F n , ρ n (g) = G n and ρ n (h) = 1. Then, ρ n is a pseudo-representation of g in Ham(R 2 ). The limit ρ of ρ n satisfies ρ(f ) = 0, ρ(g) = 0, ρ(h) = 1. Since {ρ(f ), ρ(g)} = ρ(h), ρ is not a representation of g.
Since g has finite dimension, this example shows that Theorem 2 is false in general if we replace C ∞ 0 (M) with C inf ty (M) for a non-compact manifold M, and uniform convergence with the uniform convergence on compact sets (compact-open topology).

If we read carefully the proof of Theorem 2, we see that the whole proof can be repeated in this settings except the three following points where the compactness of supports are needed

• Each time we consider the flows of the Hamiltonians, they must be complete. This is automatic for compactly supported Hamiltonians, but false in general. With the notations of the proof, the flows needed are those of ρ n (f ), ρ(f ), ρ n (g), ρ(g) and +∞ j=0 ρ(ad(g) j f ) s j j! .

• The functions ρ n (f ), ρ(f ), ρ n (g), ρ(g) have to be normalized in some sense.

• We use a C -1 bi-invariant metric. This exists on H c (M), but we do not know whether it exists on H(M).

The following lemma follows from the above discussion.

Lemma 8. Let M be a non-compact symplectic manifold, g a normed Lie algebra, and ρ n a pseudo-representation of g in Ham(M), with limit ρ. Suppose there exists two elements f and g in g, such that:

• all the Hamiltonian functions ρ n (f ), ρ(f ), ρ n (g), ρ(g) and +∞ j=0 ρ(ad(g) j f ) s j j! exist and have complete flows,

• there exists an open set on which all the functions ρ n (f ), ρ(f ), ρ n (g), ρ(g) vanish identically.

• {ρ(f ), ρ(g)} = ρ([f, g]).
Then the group of Hamiltonian diffeomorphisms H(M) admits no C -1 biinvariant metric.

Proof of Theorem 5: We want to apply Lemma 8. We first consider the case of S 1 . In that case we are not able to get the second requirement of Lemma 8, but let us show how we get the others. We just adapt Polterovich's example by setting :

ρ n (f )(s, θ) = e s/2 √ n cos(nθ), ρ n (g)(s, θ) = e s/2 √ n sin(nθ).
The symplectic form being defined on R × S 1 by d(e s dθ) = e s ds ∧ dθ, we get {ρ n (f ), ρ n (g)} = 2. Since ρ(f ) = ρ(g) = 0 we have a pseudo-representation of the 3-dimensional Heisenberg Lie algebra, and its limit is not a representation. We can also verify that all elements ρ n (f ), ρ(f ), ρ n (g), ρ(g) and +∞ j=0 ρ(ad(g) j f ) s j j! exist and have complete flows for f , g generators of the 3-dimensional Heisenberg Lie algebra, and ρ n , ρ as in the example.

Since ρ(f ) = 0, ρ(g) = 0 and +∞ j=0 ρ(ad(g) j f ) s j j! = 2s, this is obvious for them.

The Hamiltonian vector field of ρ n (f ) is

e -s/2 √ n sin(nθ) ∂ ∂θ - 1 2 √ n e -s/2 cos(nθ) ∂ ∂s ,
which is equivalent through the symplectomorphism

(R × S 1 , d(e s dθ)) → (R 2 -{0}, rdr ∧ dθ)), (s, θ) → (e -s/2 , θ)),
to the vector field

r √ n sin(nθ) ∂ ∂θ + 1 √ n cos(nθ) ∂ ∂r .
The norm of this vector field is bounded by a linear function in r. Therefore, it is a consequence of Gronwall's lemma that it is complete.

Let us consider now the case d = dim(N) 3. There, we will be able to get all the requirements of Lemma 8. Denote by γ a closed characteristic, parameterized by θ ∈ S 1 . Since the Reeb vector field is transverse to the contact structure ξ, there exists a diffeomorphism that maps a neighborhood V 0 of the zero section in the restricted bundle ξ| γ , onto a neighborhood V 1 of γ in the contact manifold N. Since ξ| γ is a symplectic bundle over S 1 , it is trivial. We thus have a neighborhood U of 0 in R 2n and a diffeomorphism ψ :

S 1 × U → V 1 ⊂ N.
The pull back of ξ by ψ is a contact structure on S 1 × U which is contactomorphic (via Moser's argument) to the standard contact structure dθpdq on S 1 × U. Therefore, the above diffeomorphism ψ can be chosen as a contactomorphism.

Then the symplectization Sγ of the closed characteristic gives a symplectic embedding SS 1 ֒→ SN. This embedding admits S(S 1 × U) as a neighborhood. Moreover, if we denote s, θ and x the coordinates in S(S 1 × U), ψ has been constructed so that s and θ are conjugated variables and the direction of x is symplectically orthogonal to those of s and θ. That will allow the following computations.

Just like in the above example, we have a pseudo-representation of g if we consider

(ρ n (f ))(s, θ, x) = χ(x)e s/2 √ n cos(nθ), (ρ n (g))(s, θ, x) = χ(x)e s/2 √ n sin(nθ), (1) 
and (ρ n (h))(s, θ, x) = 2χ(x) 2 . Indeed, we have again {ρ n (f ), ρ n (g)} = ρ n (h), but its limit ρ satisfies {ρ(f ), ρ(g)} = 0 = 1 = ρ(h) and is not a representation. The fact that the elements ρ n (f ), ρ(f ), ρ n (g), ρ(g) and +∞ j=0 ρ(ad(g) j f ) s j j! exist and have complete flows follows from the case d = 1.

Proof of Corollary 6

Let M be a smooth manifold, and choose a Riemannian metric on it. Then, consider the symplectization SST * M of the sphere cotangent bundle ST * M. The cotangent bundle can be seen as the compactification of SST * M, the set at infinity being the zero section of T * M (or

{-∞} × ST * M if we see SST * M as R × ST * M).
The Reeb flow of ST * M projects itself to the geodesic flow on M, and the closed characteristics are exactly the trajectories that project themselves to closed geodesics. Since any closed manifold carries a closed geodesic(see [START_REF] Klingenberg | Closed geodesics on Riemannian manifolds[END_REF]), we can consider Example [START_REF] Cardin | Commuting Hamiltonians and Hamilton-Jacobi multi-time equations[END_REF]. It clearly extends to the compactification (the Hamiltonian functions involved and all their derivatives converges to 0 when s goes to -∞), and we can achieve the proof as for Theorem 5.

B Few additional remarks using the theory of distributions. By assumption, the integrands C 0 -converge and hence the integrals converge to -G ∂ Proposition 13. If F n C 0 -converges to F , G n C 0 -converges to G and {F p , G q } C 0 -converges to H when p and q go to infinity, then {F, G} = H.

Proof. Take once again a compactly supported smooth function φ. Write {F p , G q } -{F, G}, φ = {F p -F, G q }, φ + {F, G q -G}, φ .

By Proposition 12, the first term converges to 0. Hence for all ε > 0, there exists an integer q 0 such that for any q > q 0 , | {F, G q -G}, φ | ε.

Similarly, for each fixed q, there exists an integer p 0 such that for any p > p 0 , | {F p -F, G q }, φ | ε.

Therefore, for all ε and all integers p 1 , q 1 , we can find p > p 1 , q > q 1 such that | {F p , G q } -{F, G}, φ | 2ε.

Thus we can construct two extractions χ, ψ such that {F χ(n) , G ψ(n) } -{F, G}, φ converges to 0. Since we have {F χ(n) , G ψ(n) } -H, φ → 0, it implies {F, G}, φ = H, φ , and this equality holds for any φ.

  equals {F, G}, φ .

  The following results on Poisson brackets are obtained with the help of distributions. No assumptions are made on the Lie algebra generated by the Hamiltonian functions. They show in a certain way why it is difficult to find examples of pseudo-representations whose limit is not a representation.Proposition 12. If F n C 2 -converges to F and G n C 0 -converges to G. Then, {F n , G n } converges to {F, G} in the sense of distributions. As a consequence, if {F n , G n } C 0 -converges to H, then {F, G} = H.Proof. For any smooth compactly supported function φ, {F n , G n }, φ =

	∂G n ∂q	∂F n ∂p	φ -	∂G n ∂p	∂F n ∂q	φ
	= -G n	∂ ∂q	∂F n ∂p	φ + G n	∂ ∂p	∂F n ∂q	φ .
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A A proof of Gromov-Eliashberg theorem.

In this section, we show how our methods allow to recover Gromov-Eliashberg Theorem.

Theorem 9 (Gromov, Eliashberg). The group of compactly supported symplectomorphisms Symp c (R 2n ) is C 0 -closed in the group of all diffeomorphisms of R 2n .

Proof. Let φ n be a sequence of diffeomorphisms that converges uniformly to a diffeomorphism φ. Denote (f n i ), (g n i ) (resp. f i , g i ) the coordinate functions of φ n (resp. φ). These coordinate functions can be seen has Hamiltonian functions affine at infinity (i.e., that can be written H + u with H ∈ Ham c and u affine map). Moreover, for a given sequence (f n i ) or (g n i ), the linear part does not depend on n.

Since φ n is symplectic, we have:

Thus the coordinate functions of φ n give a pseudo-representation of the 2nilpotent Lie algebra g generated by elements a i , b i , c, with the relations

Since φ is symplectic if and only if {f i , g j } = δ ij , {f i , f j } = {g i , g j } = 0 the proof will be achieved if we prove that the limit of this pseudo-representation is a representation. Consequently, we have to adapt the proof of Theorem 2 to the case of Hamiltonian functions affine at infinity, for 2-nilpotent Lie algebras. Gromov-Eliashberg Theorem then follows from the next two lemmas.

Lemma 10. Let u, v be two affine maps R 2n → R and H n , K n be compactly supported Hamiltonians, such that

Then {H + u, K + v} = 0.

Lemma 11. Let u, v, w be linear forms on R 2n , and H n , K n , G n , be compactly supported Hamiltonians such that

Let us consider a C -1 biinvariant distance γ on H c (R 2n ) which is invariant under the action of affine at infinity Hamiltonians (such a condition is clearly satisfied by Hofer's distance). For a sequence of Hamiltonian functions that are affine at infinity with the same affine part, we can speak of its limit for γ by setting:

H+u φ Hn+u , Id) + γ(φ -1 K+v φ Kn+v , Id).

Finally notice that if H n -H C 0 → 0, then φ Hn+u γ → φ H+u . We are now ready for our proofs.

Proof of lemma 10. We just adapt the proof of Cardin and Viterbo [START_REF] Cardin | Commuting Hamiltonians and Hamilton-Jacobi multi-time equations[END_REF] to the "affine at infinity" case.

First remark that the assumptions imply {u, v} = 0. Then, a simple computation shows that the flow

Kn+v is generated by the Hamiltonian function affine at infinity

which C 0 -converges to 0 = {u, v} by assumption. Therefore, ψ t n converges for any s and any t to Id. But on the another hand, according to the above remark, it converges to φ t H+u φ s K+v φ -t H+u φ -s K+v . Hence φ t H+u φ s K+v φ -t H+u φ -s K+v = Id which proves {H + u, K + v} = 0.

Proof of lemma 11. First notice that the assumptions imply {u, v} = w, {u, w} = 0 and {v, w} = 0, and that the equalities {H + u, G + w} = 0, {K + v, G + w} = 0 follow from lemma 10. Here we consider the flow

Kn+v

which is generated by

This expression can be written

where

By assumption, B n C 0 -converges to 0 and A n can be written:

which implies that A n C 0 -converges to 0 too. It follows that the generating Hamiltonian of ψ t n C 0 -converges to 0, and hence that ψ t n γ-converges to Id. Since it also converges to ψ t := φ -ts G+w φ t H+u φ s K+v φ -t H+u φ -s K+v , we get ψ t = Id for any s and t. Thus, the generating Hamiltonian of ψ t vanishes identically:

-s(G + w) + Taking derivative with respect to s, we obtain {H + u, K + v} -(G + w) = 0.