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Abstract

The question studied here is the behavior of the Poisson bracket
under C0-perturbations. In this purpose, we introduce the notion of
pseudo-representation and prove that the limit of a converging pseudo-
representation of any normed Lie algebra is a representation.

An unexpected consequence of this result is that for many non-
closed symplectic manifolds (including cotangent bundles), the group
of Hamiltonian diffeomorphisms (with no assumptions on supports)
has no C−1 bi-invariant metric. Our methods also provide a new
proof of Gromov-Eliashberg Theorem, it is to say that the group of
symplectic diffeomorphisms is C0-closed in the group of all diffeomor-
phisms.

1 Statement of results

1.1 Poisson Brackets and C0-convergence

We consider a symplectic manifold (M,ω). A function H on M will be
said normalized if

∫

M
Hωn = 0 for M closed or if H has compact support

otherwise. We will denote C∞

0 (M) the set of normalized smooth functions.
Endowed with the Poisson brackets {·, ·}, it has the structure of a Lie algebra.

In the whole paper, we will denote XH the symplectic gradient of a smooth
function H , i.e., the only vector field satisfying dH = ιXH

ω. Then, the
Poisson brackets are given by {H,K} = dH(XK).
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Let g be a normed Lie algebra, i.e., a Lie algebra endowed with a norm
‖ · ‖ such that for some constant C,

‖[f, g]‖ 6 C‖f‖ · ‖g‖,

and consider the following definition.

Definition 1. A sequence of linear maps

ρn : (g, ‖ · ‖) → (C∞

0 (M), ‖ · ‖C0),

will be called a pseudo-representation if the sequence of bilinear maps

Bn : (f, g) 7→ {ρn(f), ρn(g)} − ρn([f, g])

converges to 0.

If it has a limit, we may ask whether this limit is a representation. If so,
we would have

{ρn(f), ρn(g)} → {ρ(f), ρ(g)}, for all f, g ∈ g.

This has been proved in [1] for abelian Lie algebras. The main result of this
paper is that it holds for all normed Lie algebras.

Theorem 2. For any normed Lie algebra (in particular for finite dimensional
Lie algebras), the limit of a converging pseudo-representation is a represen-
tation.

Remark 1. This result generalizes Gromov-Eliashberg’s Theorem of C0 clo-
sure of the symplectomorphisms group in the group of diffeomorphisms.

Indeed, a diffeomorphism of R
2n is symplectic if and only if its coordinate

functions (fi), (gi) satisfy

{fi, gj} = δij , {fi, fj} = {gi, gj} = 0.

Thus we can easily see that a sequence of symplectomorphisms gives a
pseudo-representation of a 2-nilpotent Lie algebra. If the support of the
coordinate functions were compact, we could immediately apply Theorem 2.
In fact, for compactly supported symplectomorphisms, these functions are
affine at infinity, and we have to adapt the proof to this case (See Appendix
A for details).

Remark 2. Consider the following question: If Fn, Gn and {Fn, Gn} respec-
tively converge to F , G and H (all function being smooth and normalized,
and all convergence being in the C0 sense), is it true that {F,G} = H ?
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Theorem 2 states that the answer is positive when there is some Lie algebra
structure. Nevertheless, in general, the answer is negative, as shows the
following example, which is derived from Polterovich’s example presented in
Section 2.3. Let χ be a compactly supported smooth function on R, and set
the following functions on R

2:

Fn(q, p) =
χ(p)√
n

cos(nq),

Gn(q, p) =
χ(p)√
n

sin(nq).

It is easy to see that Fn and Gn converge to 0, but that their Poisson brackets
equal χ(p)χ′(p) 6= 0.

This example shows that when the Poisson brackets C0-converge, then
its limit is not necessarily the brackets of the respective limits. But in that
case, we can see that the Hamiltonians Fn and Gn do not generate a pseudo-
representation.

Remark 3. The theorem holds if we replace the symplectic manifold with a
general Poisson manifold. Indeed, Poisson manifolds are foliated by Poisson
submanifolds that are symplectic, and we just have to apply theorem 2 to
each leaf.

Remark 4. The theorem leads us to the following

Definition 3. A continuous Hamiltonian representation of a normed Lie
algebra g is a continuous linear map g → C0(M) which is the C0-limit of
some pseudo-representation of g.

We will not study this notion further in this paper. Nevertheless let us
give some example:
Example: Let ρ : g → C∞

0 (M) be a smooth Hamiltonian representation in
the usual sense, and let ϕ be a homeomorphism of M which is the C0-limit
of a sequence of symplectomorphisms. Then, ρ′ : g → C0(M), given by
ρ′(g) = ρ(g) ◦ ϕ, is clearly a continuous Hamiltonian representation.

Question 1: Given two sequences of Hamiltonians (Fn), (Gn) that C0-converge
to smooth F and G, is there some sufficient condition for the bracket {F,G}
not to be the limit of the brackets {Fn, Gn}? Propositions 12 and 13 give
restrictions on the possible counter- examples.

Question 2: Let us consider the following number introduced by Entov,
Polterovich and Zapolsky in [2]:

Υ(F,G) = lim inf
ε→0

{‖{F ′, G′}‖ | ‖F − F ′‖C0 < ε, ‖G−G′‖C0 < ε}
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The result of Cardin and Viterbo mentioned above which is exactly Theorem
2 in the abelian case can be restated as follows:

Υ(F,G) > 0 if and only if {F,G} 6= 0.

Entov, Polterovich and Zapolsky have improved this result by giving explicit
lower bounds on Υ(F,G), in terms of quasi-states (see [2] and [16]). We may
wonder whether there exist similar inequalities in the non abelian case.

1.2 Bi-invariant Metrics

Here we consider a subgroup G of the group H(M) of Hamiltonian diffeomor-
phisms on M . If we denote φtH the flow generated by XH (when it exists),
and φH = φ1

H the time-1 map, H(M) is the set of all diffeomorphisms φ
for which it exists a path of Hamiltonian functions Ht ∈ C∞(M) such that
φ = φH .

Definition 4. A bi-invariant metric on G is a distance d on G such that for
any φ, ψ, χ in G,

d(φ, ψ) = d(φχ, ψχ) = d(χφ, χψ).

It will be said C−1 if its composition with the map Φ : H 7→ φ1
H is a continuous

map Φ−1(G) × Φ−1(G) → R, where Φ−1(G) ⊂ Ham is endowed with the
compact-open topology.

There are several well known examples of C−1 bi-invariant metrics, as,
for example, Hofer’s metric defined on the subgroup Hamiltonian diffeomor-
phisms generated by compactly supported functions Hc(M) (see [4] or [7]),
Viterbo’s metric defined on Hc(R

2n) (see [15]), and its analogous version
defined by Schwarz in [12] for symplectically aspherical closed symplectic
manifolds.

As far as we know, if we remove the assumption of compactness of the
support, the question whether there exists such metrics is still open. Here
we prove that the answer is negative for a large class of symplectic manifolds.

Let (N, ξ) be a contact manifold with contact form α (i.e., a smooth
manifold N with a smooth hyperplane section ξ which is locally the kernel of
a 1-form α whose differential dα is non-degenerate on ξ). Its symplectization
is by definition the symplectic manifold SN = R × N endowed with the
symplectic form ω = d(esα), where s denotes the R-coordinate in R×N . For
any contact form α, one can define the Reeb vector field XR by the identities
ιXR

dα and α(XR) = 1. The trajectories of XR are called characteristics. The
question of the existence of a closed characteristic constitutes the famous
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Weinstein’s conjecture. It has now been proved for large classes of contact
manifolds (see e.g. [3, 5, 6, 11, 10, 14, 13]...).

Let us now state our result that will be proved in section 2.3

Theorem 5. If M is the symplectization of a contact manifold whose di-
mension is at least 3 and that admits a closed characteristic, then there is no
C−1 bi-invariant metric on H(M).

Corollary 6. If N is a smooth manifold whose dimension is at least 2 and
if T ∗N is its cotangent bundle, then there is no C−1 bi-invariant metric on
H(T ∗N).

Remark. At least in the case of manifolds of finite volume, there proba-
bly exists non closed manifolds with such distances. Indeed, it follows from
our previous work [8] that Viterbo’s metric extends to Hamiltonians func-
tions smooth out of a ”small” compact set. Replacing Viterbo’s metric with
Schwarz’s metric, we can reasonably expect to have: If M2n is a closed sym-
plectically aspherical manifold and K is a closed submanifold of dimension
6 n− 2, then Schwarz’s metric on H(M) extends to H(M −K).

2 Proofs

2.1 Identities for Hamiltonian pseudo-representations

Lemma 7. Let ρn be a bounded (not necessarily converging) pseudo-representation
of a normed Lie algebra g. Let f, g ∈ g, then the sequence of Hamiltonian
functions

ρn(f) ◦ φsρn(g) −
+∞
∑

j=0

ρn(ad(g)
jf)

sj

j!

converges to zero for the C0-norm on M . Moreover, the convergence is uni-
form over the s’s in any compact interval.

Remark: For a representation equality holds. It recalls the Baker-Campbell-
Haussdorf formula.

Proof: First remark that the considered sum converges. Indeed, the C0-norm
of its remainder can be bounded by the remainder of a converging sum, as
follows:

∥

∥

∥

∥

∥

+∞
∑

j=N

ρn(ad(g)
jf)

sj

j!

∥

∥

∥

∥

∥

6

+∞
∑

j=N

R‖f‖(sC‖g‖)j
j!

.
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where R is an n-independent upper bound for the sequence

‖ρn‖ = sup{‖ρn(h)‖C0 | ‖h‖ = 1}.

Now, let us prove our lemma. Poisson equation gives

d

ds
(ρn(f) ◦ φsρn(g)) = {ρn(f), ρn(g)} ◦ φsρn(g)

and hence

ρn(f) ◦ φs0ρn(g) = ρn(f) +

∫ s0

0

{ρn(f), ρn(g)} ◦ φs1ρn(g) ds1

= ρn(f) +

∫ s0

0

ρn([f, g]) ◦ φs1ρn(g) ds1 +

∫ s0

0

Bn(f, g) ◦ φs1ρn(g) ds1.

Then, by a simple induction, we get for all integer N :

ρn(f) ◦ φs0ρn(g) =

N
∑

j=0

ρn(ad(g)
jf)

s0
j

j!
+ RN,n(s0) + SN,n(s0),

where,

RN,n(s0) =

∫ s0

0

∫ s1

0

· · ·
∫ sN

0

ρn(ad(g)
N+1f) ◦ φsN+1

ρn(g)dsN+1 · · · ds1

SN,n(s0) =
N

∑

j=0

∫ s0

0

∫ s1

0

· · ·
∫ sj

0

Bn(ad(g)
jf, g)) ◦ φsj+1

ρn(g)dsj+1 · · · ds1

Let us now denote

‖Bn‖ = sup{‖{ρn(f), ρn(g)} − ρn([f, g])‖C0 | ‖f‖ = ‖g‖ = 1}.

By assumptions ‖Bn‖ converges to 0.

Then,

‖RN,n(s0)‖C0 6

∫ s0

0

∫ s1

0

· · ·
∫ sN−1

0

R‖g‖NCN‖f‖dsN · · · ds1,

6 R‖f‖‖g‖
NCNsN0
N !

,
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which proves that RN,n(s0) converges to 0 with N , uniformly in n.
In addition,

‖SN,n(s0)‖ 6

N−2
∑

j=0

∫ s0

0

∫ s1

0

· · ·
∫ sj

0

‖Bn‖‖f‖‖g‖jdsj+1 · · · ds1

We thus have ‖SN,n(s0)‖ 6 ‖Bn‖ ‖f‖ exp(so‖g‖) for any N . As a conse-
quence, letting N converge to +∞, we get

∥

∥

∥

∥

∥

ρn(f) ◦ φsρn(g) −
+∞
∑

j=0

ρn(ad(g)
jf)

sj

j!

∥

∥

∥

∥

∥

6 ‖Bn‖ ‖f‖ exp(so‖g‖).

This achieves the proof because the right hand side converges to 0. �

2.2 Proof of theorem 2

Let f, g ∈ g. We want to prove that {ρ(f), ρ(g)} = ρ([f, g]). We can assume
without loss of generality that ‖g‖ < 1.

By Lemma 7,

ρn(f) ◦ φsρn(g) −
+∞
∑

j=0

ρn(ad(g)
jf)

sj

j!

C0

→ 0.

Each term of the sum converges with n. Since the sum converges uniformly
in n, we get that for any s,

ρn(f) ◦ φsρn(g)
C0

→
+∞
∑

j=0

ρ(ad(g)jf)
sj

j!
.

As a consequence, the flow generated by ρn(f)◦φsρn(g) γ-converges to the flow

generated by
∑+∞

j=0 ρ(ad(g)
jf) s

j

j!
.

But on the other hand, the flow of ρn(f) ◦ φsρn(g) is t 7→ φ−s
ρn(g)φ

t
ρn(f)φ

s
ρn(g),

which γ-converges to φ−s
ρ(g)φ

t
ρ(f)φ

s
ρ(g). Indeed, ρn(g)

C0

→ ρ(g) and ρn(f)
C0

→ ρ(f)
which implies that there respective flow γ-converges.

Therefore, t 7→ φ−s
ρ(g)φ

t
ρ(f)φ

s
ρ(g) is the flow of

∑+∞

j=0 ρ(ad(g)
jf) s

j

j!
. The func-

tions being normalized,

ρ(f) ◦ φsρ(g) =

+∞
∑

j=0

ρ(ad(g)jf)
sj

j!
.

Now, first taking derivative with respect to s, we get {ρ(f), ρ(g)} = ρ([f, g]).
�
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2.3 Proof of theorem 5

Let us consider the following Hamiltonian functions on R
2 (this example

is due to Polterovich) with symplectic form written in polar coordinates
rdr ∧ dθ.

Fn(r, θ) =
r√
n

cos(nθ),

Gn(r, θ) =
r√
n

sin(nθ).

We see that {Fn, Gn} = 1 and that Fn and Gn converge to 0. Now, consider
g the 3-dimensional Heisenberg Lie algebra (i.e., the Lie algebra with basis
{f, g, h} such that [f, g] = h and [f, h] = [g, h] = 0) and set ρn(f) = Fn,
ρn(g) = Gn and ρn(h) = 1. Then, ρn is a pseudo-representation of g in
Ham(R2). The limit ρ of ρn satisfies ρ(f) = 0, ρ(g) = 0, ρ(h) = 1. Since
{ρ(f), ρ(g)} 6= ρ(h), ρ is not a representation of g.

Since g has finite dimension, this example shows that Theorem 2 is false
in general if we replace C∞

0 (M) with Cinfty(M) for a non-compact manifold
M , and uniform convergence with the uniform convergence on compact sets
(compact-open topology).

If we read carefully the proof of Theorem 2, we see that the whole proof
can be repeated in this settings except the three following points where the
compactness of supports are needed

• Each time we consider the flows of the Hamiltonians, they must be
complete. This is automatic for compactly supported Hamiltonians,
but false in general. With the notations of the proof, the flows needed
are those of ρn(f), ρ(f), ρn(g), ρ(g) and

∑+∞

j=0 ρ(ad(g)
jf) s

j

j!
.

• The functions ρn(f), ρ(f), ρn(g), ρ(g) have to be normalized in some
sense.

• We use a C−1 bi-invariant metric. This exists on Hc(M), but we do
not know whether it exists on H(M).

The following lemma follows from the above discussion.

Lemma 8. Let M be a non-compact symplectic manifold, g a normed Lie
algebra, and ρn a pseudo-representation of g in Ham(M), with limit ρ. Sup-
pose there exists two elements f and g in g, such that:

• all the Hamiltonian functions ρn(f), ρ(f), ρn(g), ρ(g) and
∑+∞

j=0 ρ(ad(g)
jf) s

j

j!

exist and have complete flows,
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• there exists an open set on which all the functions ρn(f), ρ(f), ρn(g),
ρ(g) vanish identically.

• {ρ(f), ρ(g)} 6= ρ([f, g]).

Then the group of Hamiltonian diffeomorphisms H(M) admits no C−1 bi-
invariant metric. �

Proof of Theorem 5: We want to apply Lemma 8. We first consider the case
of S

1. In that case we are not able to get the second requirement of Lemma
8, but let us show how we get the others.

We just adapt Polterovich’s example by setting :

ρn(f)(s, θ) =
es/2√
n

cos(nθ),

ρn(g)(s, θ) =
es/2√
n

sin(nθ).

The symplectic form being defined on R× S
1 by d(esdθ) = esds∧ dθ, we get

{ρn(f), ρn(g)} = 2. Since ρ(f) = ρ(g) = 0 we have a pseudo-representation
of the 3-dimensional Heisenberg Lie algebra, and its limit is not a represen-
tation. We can also verify that all elements ρn(f), ρ(f), ρn(g), ρ(g) and
∑+∞

j=0 ρ(ad(g)
jf) s

j

j!
exist and have complete flows for f , g generators of the

3-dimensional Heisenberg Lie algebra, and ρn, ρ as in the example.
Since ρ(f) = 0, ρ(g) = 0 and

∑+∞

j=0 ρ(ad(g)
jf) s

j

j!
= 2s, this is obvious for

them.
The Hamiltonian vector field of ρn(f) is

(

e−s/2
√
n sin(nθ)

) ∂

∂θ
−

(

1

2
√
n
e−s/2 cos(nθ)

)

∂

∂s
,

which is equivalent through the symplectomorphism

(R × S
1, d(esdθ)) → (R2 − {0}, rdr ∧ dθ)), (s, θ) 7→ (e−s/2, θ)),

to the vector field

(

r
√
n sin(nθ)

) ∂

∂θ
+

(

1√
n

cos(nθ)

)

∂

∂r
.

The norm of this vector field is bounded by a linear function in r. Therefore,
it is a consequence of Gronwall’s lemma that it is complete.
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Let us consider now the case d = dim(N) > 3. There, we will be able to
get all the requirements of Lemma 8. Denote by γ a closed characteristic,
parameterized by θ ∈ S

1. Since the Reeb vector field is transverse to the
contact structure ξ, there exists a diffeomorphism that maps a neighborhood
V0 of the zero section in the restricted bundle ξ|γ, onto a neighborhood V1

of γ in the contact manifold N . Since ξ|γ is a symplectic bundle over S
1, it

is trivial. We thus have a neighborhood U of 0 in R
2n and a diffeomorphism

ψ : S
1 × U → V1 ⊂ N . The pull back of ξ by ψ is a contact structure on

S
1 × U which is contactomorphic (via Moser’s argument) to the standard

contact structure dθ − pdq on S
1 × U . Therefore, the above diffeomorphism

ψ can be chosen as a contactomorphism.
Then the symplectization Sγ of the closed characteristic gives a symplectic

embedding SS
1 →֒ SN . This embedding admits S(S1 × U) as a neighbor-

hood. Moreover, if we denote s, θ and x the coordinates in S(S1 ×U), ψ has
been constructed so that s and θ are conjugated variables and the direction
of x is symplectically orthogonal to those of s and θ. That will allow the
following computations.

Just like in the above example, we have a pseudo-representation of g if we
consider

(ρn(f))(s, θ, x) =
χ(x)es/2√

n
cos(nθ),

(ρn(g))(s, θ, x) =
χ(x)es/2√

n
sin(nθ), (1)

and (ρn(h))(s, θ, x) = 2χ(x)2. Indeed, we have again {ρn(f), ρn(g)} =
ρn(h), but its limit ρ satisfies {ρ(f), ρ(g)} = 0 6= 1 = ρ(h) and is not
a representation. The fact that the elements ρn(f), ρ(f), ρn(g), ρ(g) and
∑+∞

j=0 ρ(ad(g)
jf) s

j

j!
exist and have complete flows follows from the case d =

1. �

Proof of Corollary 6 Let M be a smooth manifold, and choose a Rieman-
nian metric on it. Then, consider the symplectization SST ∗M of the sphere
cotangent bundle ST ∗M . The cotangent bundle can be seen as the compact-
ification of SST ∗M , the set at infinity being the zero section of T ∗M (or
{−∞} × ST ∗M if we see SST ∗M as R × ST ∗M).

The Reeb flow of ST ∗M projects itself to the geodesic flow on M , and the
closed characteristics are exactly the trajectories that project themselves to
closed geodesics. Since any closed manifold carries a closed geodesic(see [9]),
we can consider Example (1). It clearly extends to the compactification (the
Hamiltonian functions involved and all their derivatives converges to 0 when
s goes to −∞), and we can achieve the proof as for Theorem 5. �
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A A proof of Gromov-Eliashberg theorem.

In this section, we show how our methods allow to recover Gromov-Eliashberg
Theorem.

Theorem 9 (Gromov, Eliashberg). The group of compactly supported
symplectomorphisms Sympc(R

2n) is C0-closed in the group of all diffeomor-
phisms of R

2n.

Proof. Let φn be a sequence of diffeomorphisms that converges uniformly to
a diffeomorphism φ. Denote (fni ), (gni ) (resp. fi, gi) the coordinate functions
of φn (resp. φ). These coordinate functions can be seen has Hamiltonian
functions affine at infinity (i.e., that can be written H + u with H ∈ Hamc

and u affine map). Moreover, for a given sequence (fni ) or (gni ), the linear
part does not depend on n.

Since φn is symplectic, we have:

{fni , gnj } = δij , {fni , fnj } = {gni , gnj } = 0.

Thus the coordinate functions of φn give a pseudo-representation of the 2-
nilpotent Lie algebra g generated by elements ai, bi, c, with the relations

[ai, bj ] = δij , [ai, aj] = [bi, bj ] = 0, and [ai, c] = [bi, c] = 0.

Since φ is symplectic if and only if

{fi, gj} = δij , {fi, fj} = {gi, gj} = 0

the proof will be achieved if we prove that the limit of this pseudo-representation
is a representation. Consequently, we have to adapt the proof of Theorem
2 to the case of Hamiltonian functions affine at infinity, for 2-nilpotent Lie
algebras. Gromov-Eliashberg Theorem then follows from the next two lem-
mas.

Lemma 10. Let u, v be two affine maps R
2n → R and Hn, Kn be compactly

supported Hamiltonians, such that

Hn → H, Kn → K, {Hn + u,Kn + v} → 0.

Then {H + u,K + v} = 0.

Lemma 11. Let u, v, w be linear forms on R
2n, and Hn, Kn, Gn, be com-

pactly supported Hamiltonians such that

Hn → H, Kn → K, Gn → G,

11



{Hn + u,Gn + w} → 0,

{Kn + v,Gn + w} → 0,

{Hn + u,Kn + v} − (Gn + w) → 0.

Then {H+u,G+w} = 0, {K+ v,G+w} = 0 and {H+u,K+ v} = G+w.

Let us consider a C−1 biinvariant distance γ on Hc(R
2n) which is invariant

under the action of affine at infinity Hamiltonians (such a condition is clearly
satisfied by Hofer’s distance). For a sequence of Hamiltonian functions that
are affine at infinity with the same affine part, we can speak of its limit for
γ by setting:

(φHn+u)
γ→ φH+u if and only if γ((φH+u)

−1φHn+u, Id) → 0.

Moreover, if (φHn+u)
γ→ φH+u and (φKn+v)

γ→ φK+v then

(φHn+uφKn+v)
γ→ φH+uφK+v.

Indeed, we have

γ((φHn+uφKn+v)
−1(φH+uφK+v), Id)

= γ(φ−1
K+v(φ

−1
H+uφHn+u)φK+v(φ

−1
K+vφKn+v), Id)

6 γ(φ−1
H+uφHn+u, Id) + γ(φ−1

K+vφKn+v, Id).

Finally notice that if ‖Hn −H‖C0 → 0, then φHn+u
γ→ φH+u.

We are now ready for our proofs.

Proof of lemma 10. We just adapt the proof of Cardin and Viterbo [1] to the
”affine at infinity” case.

First remark that the assumptions imply {u, v} = 0. Then, a simple
computation shows that the flow

ψtn = φtHn+uφ
s
Kn+vφ

−t
Hn+uφ

−s
Kn+v

is generated by the Hamiltonian function affine at infinity

∫ s

0

{Hn + u,Kn + v}(φσKn+vφ
t
Hn+u(x))dσ,

which C0-converges to 0 = {u, v} by assumption. Therefore, ψtn converges
for any s and any t to Id. But on the another hand, according to the above
remark, it converges to φtH+uφ

s
K+vφ

−t
H+uφ

−s
K+v. Hence φtH+uφ

s
K+vφ

−t
H+uφ

−s
K+v =

Id which proves {H + u,K + v} = 0. �
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Proof of lemma 11. First notice that the assumptions imply {u, v} = w,
{u, w} = 0 and {v, w} = 0, and that the equalities {H + u,G + w} = 0,
{K + v,G+ w} = 0 follow from lemma 10. Here we consider the flow

ψtn = φ−ts
Gn+wφ

t
Hn+uφ

s
Kn+vφ

−t
Hn+uφ

−s
Kn+v

which is generated by

(

−s(Gn + w) +

∫ s

0

{Hn + u,Kn + v}(φσKn+vφ
t
Hn+u)dσ

)

◦ φtsGn+w.

This expression can be written

(
∫ s

0

(An +Bn)dσ

)

◦ φtsGn+w,

where An = Gn − Gn(φ
σ
Kn+vφ

t
Hn+u) and Bn = ({Hn + u,Kn + v} − (Gn +

w))(φσKn+vφ
t
Hn+u).

By assumption, Bn C
0-converges to 0 and An can be written:

An = (Gn −Gn(φ
t
Hn+u)) + (Gn −Gn(φ

σ
Kn+v)) ◦ φtHn+u

=

∫ t

0

{Gn, Hn + u}dτ +

(
∫ σ

0

{Gn, Kn + v}dτ
)

◦ φtHn+u

=

∫ t

0

{Gn + w,Hn + u}dτ +

(
∫ σ

0

{Gn + w,Kn + v}dτ
)

◦ φtHn+u,

which implies that An C
0-converges to 0 too. It follows that the generating

Hamiltonian of ψtn C
0-converges to 0, and hence that ψtn γ-converges to Id.

Since it also converges to ψt := φ−ts
G+wφ

t
H+uφ

s
K+vφ

−t
H+uφ

−s
K+v, we get ψt = Id

for any s and t. Thus, the generating Hamiltonian of ψt vanishes identically:

(

−s(G+ w) +

∫ s

0

{H + u,K + v}(φσK+vφ
t
H+u)dσ

)

◦ φtsG+w = 0.

But since G+ w commutes with H + U and K + v, we get:

∫ s

0

({H + u,K + v} − (G+ w))(φσK+vφ
t
H+u)dσ = 0.

Taking derivative with respect to s, we obtain {H + u,K + v} − (G+ w) =
0. �
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B Few additional remarks using the theory

of distributions.

The following results on Poisson brackets are obtained with the help of dis-
tributions. No assumptions are made on the Lie algebra generated by the
Hamiltonian functions. They show in a certain way why it is difficult to find
examples of pseudo-representations whose limit is not a representation.

Proposition 12. If Fn C
2-converges to F and Gn C

0-converges to G. Then,
{Fn, Gn} converges to {F,G} in the sense of distributions. As a consequence,
if {Fn, Gn} C0-converges to H, then {F,G} = H.

Proof. For any smooth compactly supported function φ,

〈{Fn, Gn}, φ〉 =

∫

∂Gn

∂q

∂Fn

∂p
φ−

∫

∂Gn

∂p

∂Fn

∂q
φ

= −
∫

Gn
∂

∂q

(

∂Fn

∂p
φ

)

+

∫

Gn
∂

∂p

(

∂Fn

∂q
φ

)

.

By assumption, the integrands C0-converge and hence the integrals converge

to −
∫

G ∂
∂q

(

∂F
∂p
φ
)

+
∫

G ∂
∂p

(

∂F
∂q
φ
)

which equals 〈{F,G}, φ〉. �

Proposition 13. If Fn C
0-converges to F , Gn C

0-converges to G and {Fp, Gq}
C0-converges to H when p and q go to infinity, then {F,G} = H.

Proof. Take once again a compactly supported smooth function φ. Write

〈{Fp, Gq} − {F,G}, φ〉 = 〈{Fp − F,Gq}, φ〉 + 〈{F,Gq −G}, φ〉.

By Proposition 12, the first term converges to 0. Hence for all ε > 0, there
exists an integer q0 such that for any q > q0, |〈{F,Gq −G}, φ〉| 6 ε.

Similarly, for each fixed q, there exists an integer p0 such that for any
p > p0, |〈{Fp − F,Gq}, φ〉| 6 ε.

Therefore, for all ε and all integers p1, q1, we can find p > p1, q > q1 such
that |〈{Fp, Gq} − {F,G}, φ〉| 6 2ε.

Thus we can construct two extractions χ, ψ such that 〈{Fχ(n), Gψ(n)} −
{F,G}, φ〉 converges to 0. Since we have 〈{Fχ(n), Gψ(n)} − H, φ〉 → 0, it
implies 〈{F,G}, φ〉 = 〈H, φ〉, and this equality holds for any φ. �

Acknowledgments. I warmly thank my supervisor Claude Viterbo
for all his advices and for hours of fruitful discussion. I also thank Nicolas
Roy for innumerable interesting conversations on multiple subjects.

14



References

[1] Cardin F. and Viterbo C. Commuting Hamiltonians and Hamilton-
Jacobi multi-time equations. preprint, math.SG/0507418.

[2] Entov M. Polterovich L. and Zapolsky F. Quasi-morphisms and
the Poisson bracket. preprint, math.SG/0605406, 2006.

[3] Hofer H. Floer A. and Viterbo C. The Weinstein conjecture in
P×Cl. Math Z., (203):469–482, 1990.

[4] Hofer H. On the topological properties of symplectic maps. Proc. Roy.
Soc. Edinburgh Sect. A, 115:25–38, 1990.

[5] Hofer H. and Viterbo C. The Weinstein conjecture in cotangent
bundles and related results. Annali Sc. Norm. Sup. Pisa, 15, 1988.

[6] Hofer H. and Viterbo C. The Weinstein conjecture in the presence
of holomorphic spheres. Comm. Pure Appl. Math., 1992.

[7] Hofer H. and Zehnder E. Symplectic invariants and Hamiltonian
dynamics. Birkhauser, 1994.

[8] Humilire V. On some completions of the space of Hamiltonian maps.
preprint, math.SG/0511418.

[9] Klingenberg W. Closed geodesics on Riemannian manifolds. Num-
ber 53 in CBMS Regional Conference Series in Mathematics. Published
for the Conference Board of the Mathematical Sciences, Washington,
DC; by the American Mathematical Society, Providence, RI, 1983.

[10] Liu G. and Tian G. Weinstein conjecture and GW invariants. Commun.
Contemp. Math., 2, 2000.

[11] Lu G. The weinstein conjecture in the uniruled manifolds. Math. Res.
Lett., 7, 2000.

[12] Schwarz M. On the action spectrum for closed symplectically aspher-
ical manifolds. Pacific J. Math., 193:419–461, 2000.

[13] Taubes C. H. The Seiberg-Witten equations and the Weinstein conjec-
ture. preprint, math.SG/0611007, 2006.

[14] Viterbo C. A proof of Weinstein conjecture in R2n. Ann. Inst. Poincar,
Anal. Non Lineaire,, 4, 1987.

15



[15] Viterbo C. Symplectic topology as the geometry of generating func-
tions. Math. Annalen, 292:685–710, 1992.

[16] Zapolsky F. Quasi-states and the Poisson bracket on surfaces.
preprint, math.SG/0703121, 2007.

16


