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Abstract

The question studied here is the behavior of the Poisson bracket
under C0-perturbations. In this purpose, we introduce the notion of
pseudo-representation and prove that for a nilpotent Lie algebra, it
converges to a representation. This question remains open for general
Lie algebras.

An unexpected consequence of this result is that for many non-
closed symplectic manifolds (including cotangent bundles), the group
of Hamiltonian diffeomorphisms (with no assumptions on supports)
has no C−1 bi-invariant metric. Our methods also provide a new
proof of Gromov-Eliashberg Theorem, it is to say that the group of
symplectic diffeomorphisms is C0-closed in the group of all diffeomor-
phisms.

1 Statement of results

1.1 Poisson Brackets and C0-convergence

We consider a symplectic manifold (M,ω) and its set of compactly supported
Hamiltonian functions Hamc(M). Endowed with the Poisson brackets {·, ·},
it has the structure of a Lie algebra.

In the whole paper, we will denote XH the symplectic gradient of an
Hamiltonian function H , i.e., the only vector field satisfying dH = ιXH

ω.
Then, the Poisson brackets are given by {H,K} = dH(XK). Let us consider
the following property.
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Property (P ) : For any sequence of linear maps ρn : g → Hamc(M), such

that for any f ∈ g, there exists a smooth Hamiltonian ρ(f) ∈ Hamc(M),
such that

1. ρn(f) → ρ(g), for all f ∈ g,

2. {ρn(f), ρn(g)} − ρn([f, g]) → 0, for all f, g ∈ g,

then for all f, g ∈ g, {ρ(f), ρ(g)} = ρ([f, g]).

Such a sequence ρn will be called pseudo-representation of g, and ρ will be
referred to as the limit of the pseudo representation. We see that the limit
of a pseudo-representation of a Lie algebra satisfying (P) is a representation
of this Lie algebra.

It is proved in [1] that any abelian Lie algebra (nilpotent algebra of index
1) satisfies (P). The main result of this paper is that it holds for all nilpotent
Lie algebras.

Theorem 1. Any nilpotent Lie algebra satisfies (P).

Remark 1. This result generalizes Gromov-Eliashberg’s Theorem of C0 clo-
sure of the symplectomorphisms group in the group of diffeomorphisms.

Indeed, a diffeomorphism of R2n is symplectic if and only if its coordinate
functions (fi), (gi) satisfy

{fi, gj} = δij , {fi, fj} = {gi, gj} = 0.

Thus we can easily see that a sequence of symplectomorphisms gives a
pseudo-representation of a 2-nilpotent Lie algebra. If the support of the
coordinate functions were compact, we could immediately apply Theorem 1.
In fact, for compactly supported symplectomorphisms, these functions are
linear at infinity, and we have to adapt the proof to this case (See Appendix
A for details).
Remark 2. Consider the following example, which is derived from Polterovich’s
example presented in Section 2.3. Let χ be a compactly supported smooth
function on R, and set the following Hamiltonians on R2:

Fn(q, p) =
χ(p)√
n

cos(nq),

Gn(q, p) =
χ(p)√
n

sin(nq).

It is easy to see that Fn and Gn converge to 0, but that their Poisson bracket
equals χ(p)χ′(p) 6= 0.
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This example shows that when the Poisson brackets C0-converge, then
its limit is not necessarily the brackets of the respective limits. But in that
case, we can see that the Hamiltonians Fn and Gn do not generate a pseudo-
representation.
Remark 3. The theorem holds if we replace the symplectic manifold with a
general Poisson manifold. Indeed, Poisson manifolds are foliated by Poisson
submanifolds that are symplectic, and we just have to apply theorem 1 to
each leaf.

Question: What about general Lie algebras ? For instance, it is unclear
whether su(2) satisfies (P) or not. Propositions 12 and 13 give restrictions
on the possible counter- examples.

1.2 Bi-invariant Metrics

Here we consider a subgroup G of the group H(M) of Hamiltonian diffeomor-
phisms on M . If we denote φtH the flow generated by XH (when it exists),
and φH = φ1

H the time-1 map, H(M) is the set of all diffeomorphisms φ for
which it exists a path of Hamiltonian functions Ht ∈ Ham such that φ = φH .

Definition 2. A bi-invariant metric on G is a distance d on G such that for

any φ, ψ, χ in G,

d(φ, ψ) = d(φχ, ψχ) = d(χφ, χψ).

It will be said C−1 if its composition with the map Φ : H 7→ φ1
H is a continuous

map Φ−1(G) × Φ−1(G) → R, where Φ−1(G) ⊂ Ham is endowed with the

compact-open topology.

There are several well known examples of C−1 bi-invariant metrics, as, for
example, Hofer’s metric defined on Hc(M) (see [3] or [6]), Viterbo’s metric
defined on Hc(R

2n) (see [14]), and its analogous version defined by Schwarz
in [11] for symplectically aspherical closed symplectic manifolds.

As far as we know, if we remove the assumption of compactness of the
support, the question whether there exists such metrics is still open. Here
we prove that the answer is negative for a large class of symplectic manifolds.

Let (N, ξ) be a contact manifold with contact form α (i.e., a smooth
manifold N with a smooth hyperplane section ξ which is locally the kernel of
a 1-form α whose differential dα is non-degenerate on ξ). Its symplectization

is by definition the symplectic manifold SN = R × N endowed with the
symplectic form ω = d(esα), where s denotes the R-coordinate in R×N . For
any contact form α, one can define the Reeb vector field XR by the identities
ιXR

dα and α(XR) = 1. The trajectories of XR are called characteristics. The
question of the existence of a closed characteristic constitutes the famous
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Weinstein’s conjecture. It has now been proved for large classes of contact
manifolds (see e.g. [2, 4, 5, 10, 9, 13, 12]).

Let us now state our result that will be proved in section 2.3

Theorem 3. If M is the symplectization of a contact manifold that admits

a closed characteristic, then there is no C−1 bi-invariant metric on H(M).

Corollary 4. If N is a smooth manifold with cotangent bundle T ∗N , then

there is no C−1 bi-invariant metric on H(T ∗N).

Remark. At least in the case of manifolds of finite volume, there proba-
bly exists non closed manifolds with such distances. Indeed, it follows from
our previous work [7] that Viterbo’s metric extends to Hamiltonians func-
tions smooth out of a ”small” compact set. Replacing Viterbo’s metric with
Schwarz’s metric, we can reasonably expect to have: If M2n is a closed sym-
plectically aspherical manifold and K is a closed submanifold of dimension
6 n− 2, then Schwarz’s metric on H(M) extends to H(M −K).

2 Proofs

2.1 Some identities for Hamiltonian representations

Lemma 5. Let g be a p-nilpotent Lie algebra, h an ideal of g, and r be a

linear map from g to Hamc(M) such that for all h ∈ h, g ∈ g, {r(h), r(g)} =
r([h, g]). Let h ∈ h, g ∈ g, H = r(h) and G = r(g). Then, for all τ ∈ R,

H ◦ φτG =

p−1
∑

j=0

r(ad(g)jh)
τ j

j!
,

where ad(g) : g → g, h 7→ [h, g].
Furthermore, if h ∈ h, g1, g2, g3 ∈ g and Gi = r(gi), then for all s, t, τ ,

H ◦ φsG1
◦ φtG2

◦ φτG3
=

∑

i+j+k6p−1

r(ad(g3)
kad(g2)

jad(g1)
ih)

si

i!

tj

j!

τk

k!
.
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Proof: This lemma is based on the following simple observation:

H ◦ φτG = H +

∫ τ

0

d

dσ
(H ◦ φσG) dσ

= H +

∫ τ

0

dH ·XG ◦ φσG dσ

= H +

∫ τ

0

{H,G} ◦ φσG dσ

= r(h) +

∫ τ

0

r([h, g]) ◦ φσG dσ,

for h ∈ h and g ∈ g. Then, a simple induction argument shows that for all
integer N ,

H ◦ φτG =

N−1
∑

j=1

r(ad(g)jh)
τ j

j!
+ RN (τ),

where

RN (τ) =

∫ τ

0

∫ σ1

0

· · ·
∫ σN−1

0

r(ad(g)Nh) ◦ φσN

G dσN · · · dσ1.

But for N > p, ad(g)Nh = 0 and hence RN(τ) = 0 which proves our claim.
The second assertion of Lemma 5 follows from the first one. Let us denote

R
h,g
N (τ) instead of RN (τ). Then we have

H ◦ φτG =

p−1
∑

i=1

r(ad(g1)
ih)

si

i!
,

and by a simple computation, the first part of our lemma applied to each
couple ad(g1)

ih and g2 gives

H ◦ φsG1
◦ φtG2

=

p−1
∑

i,j=0

r(ad(g2)
jad(g1)

ih)
si

i!

tj

j!
,

and similarly,

H ◦ φsG1
◦ φtG2

◦ φτG3
=

p−1
∑

i,j,k=0

r(ad(g3)
kad(g2)

jad(g1)
ih)

si

i!

tj

j!

τk

k!
.

It achieves the proof of our lemma, because the terms of the last sum are
zero for i+ j + k > p. �

Lemma 5 can somehow be extended to the case of pseudo-representations,
by replacing equalities with limits.
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Lemma 6. Let ρn be a pseudo-representation of a p-nilpotent Lie algebra

g. Let f, g ∈ g. Then for n large enough, ρn(f) ◦ φτρn(g) is C0-close to
∑p−1

j=0 ρn(ad(g)
jf) τ

j

j!
.

Similarly, if f, g1, g2, g3 ∈ g, then for n large enough,

ρn(f) ◦ φsρn(g1) ◦ φtρn(g2)
◦ φτρn(g3)

is C0-close to

∑

i+j+k6p−1

ρn(ad(g3)
kad(g2)

jad(g1)
if)

si

i!

tj

j!

τk

k!
.

Proof: We start the proof with the same computation as in the proof of
Lemma 5.

ρn(f) ◦ φτρn(g) = ρn(f) +

∫ τ

0

{ρn(f), ρn(g)} ◦ φσρn(g) dσ

= ρn(f) +

∫ τ

0

ρn([f, g]) ◦ φσρn(g) dσ + Λτ,n(f, g)

with

Λτ,n(f, g) =

∫ τ

0

{ρn(f), ρn(g)} − ρn([f, g])) ◦ φσρn(g) dσ

By assumption, Λτ,n(f, g) C
0-converges to 0 when n goes to infinity.

Then, by a simple induction, we get for all integer N :

ρn(f) ◦ φτρn(g) − ρn(f) =
N

∑

j=1

ρn(ad(g)
jf)

τ j

j!
+ RN,n(τ) + SN,n(τ),

where,

RN,n(τ) =

∫ τ

0

∫ σ1

0

· · ·
∫ σN−1

0

ρn(ad(g)
Nf) ◦ φσN

ρn(g)dσN · · · dσ1

SN,n(τ) = Λτ,n(ad(g)
N−1f, g)

+

N−2
∑

j=0

∫ τ

0

∫ σ1

0

· · ·
∫ σj

0

Λσj ,n(ad(g)
N−2−jf, g))dσj · · · dσ1

For N > p, we have RN,n(τ) = 0 and SN,n(τ) C
0-converges to 0 when n goes

to infinity, which proves our claim.
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The second assertion of Lemma 6 follows from the first with exactly the
same reasoning as in the proof of the second assertion of Lemma 5. �

Although it is useless for the proof of our theorem, we end this section with
a proposition that extends Lemma 5 to normed Lie algebras not necessarily
nilpotent.

Proposition 7. Let g be a Lie algebra endowed with a norm | · |, h an ideal

of g, and r a continuous linear map from g to Hamc(M) such that for all

h ∈ h, g ∈ g, {r(h), r(g)} = r([h, g]). Let h ∈ h, g ∈ g, H = r(h) and

G = r(g). Then, for all τ ∈ R,

H ◦ φτG =
+∞
∑

j=0

r(ad(g)jh)
τ j

j!
,

where ad(g) : g → g, h 7→ [h, g].

Proof: We start the proof as for Lemma 5, and get for all integer N ,

H ◦ φτG =

N−1
∑

j=1

r(ad(g)jh)
τ j

j!
+ RN (τ),

where

RN (τ) =

∫ τ

0

∫ σ1

0

· · ·
∫ σN−1

0

r(ad(g)Nh) ◦ φσN

G dσN · · · dσ1.

The proof of Proposition 7 will be complete if we prove that RN converges
to 0 uniformly on M , when N goes to +∞.

First,

‖RN(τ)‖ 6

∫ τ

0

∫ σ1

0

· · ·
∫ σN−1

0

2‖ad(G)NH‖dσN · · · dσ1 = 2
τN

N !
‖ad(G)NH‖.

Since r is continuous, there exists C > 0 such that, for all g ∈ g, ‖r(g)‖ 6

C|g|. Therefore, using the inequality |[f, g]| 6 |f ||g|, we get the following
estimate:

‖RN (τ)‖ 6 2C|h|(τ |g|)
N

N !
.

And RN (τ) converges to 0 uniformly on M , for all τ . �

Remark: Using the same kind of estimates, Proposition 7 can be extended to
the case of several compositions and to the case of pseudo-representations,
as in the nilpotent case.
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2.2 Proof of theorem 1

Let g be a nilpotent Lie algebra. Its nilpotency index is by definition the
first integer p for which gp+1 = 0, where g1 = g and gi+1 = [g, gi].

Proof of Theorem 1: We know from [1], that the theorem is true for 1-
nilpotent Lie algebras. Let us suppose by induction that it holds for all
k-nilpotent Lie algebras with k 6 p − 1, and consider g a p-nilpotent Lie
algebra, and ρn a pseudo-representation of g with limit ρ. Let f, g ∈ g and
h = [f, g]. We want to prove {ρ(f), ρ(g)} = ρ(h).

Let us denote g̃ the Lie subalgebra of g generated by f and g. Then,
ρn restricted to g̃ is a pseudo-representation of g̃, and we will be able to
apply Lemma 6. Moreover, the Lie algebra generated by f and h is nilpo-
tent of index at most p − 1, and hence {ρ(f), ρ(h)} = ρ([f, h]). Similarly
{ρ(g), ρ(h)} = ρ([g, h]). Now, if we denote h̃ the ideal of g̃ generated by h,
we see that for all h̃ ∈ h̃, g̃ ∈ g̃, we have

{ρ(g̃), ρ(h̃)} = ρ([g̃, h̃]),

so that we will be able to apply Lemma 5 with ρ in the place of r.
Let us denote G = ρ(g), F = ρ(f) and H = ρ(h). For s ∈ [0, 1], consider

the Hamiltonian flow ψt = φ−ts
H φtFφ

s
Gφ

−t
F φ

−s
G . It is generated by the following

Hamiltonian

Ls(t, x) = (F − F ◦ φ−s
G ◦ φ−t

F − sH) ◦ φtsH(x),

Considering similarly, Gn = ρn(g), Fn = ρn(f) and Hn = ρn(h), we get flows
ψtn and Hamiltonians Lsn(t, x).

We first consider the derivative

d

ds
(Fn − Fn ◦ φ−s

Gn
◦ φ−t

Fn
− sHn) = {Fn, Gn} ◦ φ−s

Gn
◦ φ−t

Fn
−Hn

= Hn ◦ φ−s
Gn

◦ φ−t
Fn

−Hn + ({Fn, Gn} −Hn) ◦ φ−s
Gn

◦ φ−t
Fn
.

Let us consider, for s, t and τ in [0, 1], the Hamiltonian functionQn(s, t, τ) =
Hn ◦ φ−s

Gn
◦ φ−t

Fn
◦ φτHn

. According to Lemma 6, for n large enough, it is

C0−close to
∑

i+j+k<p ρn(ad(h)
kad(f)jad(g)ih) s

i

i!
tj

j!
τk

k!
, which converges with

n to
∑

i+j+k<p ρ(ad(h)
kad(f)jad(g)ih) s

i

i!
tj

j!
τk

k!
. Then, by Lemma 5 the above

triple sum equals Q(s, t, τ) = H ◦ φ−s
G ◦φ−t

F ◦ φτH . Hence Qn(s, t, τ) converges
to Q(s, t, τ).

Let us now define Pn(s, t, τ) =
∫ s

0
Qn(σ, t, τ)dσ, Rn(s, t) = Pn(s, t, st) and

similarly P (s, t, τ) and R(s, t). Then Rn(s, t) converges to R(s, t).
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Notice that Rn has been constructed to satisfy:

Lsn(t) = Rn(s, t) +

(
∫ s

0

(Hn − {Fn, Gn}) ◦ φ−σ
Gn

◦ φ−t
Fn
dσ

)

◦ φtsHn
(x).

Since ρn is a pseudo-representation, Hn−{Fn, Gn} converges to 0, and hence
Lsn(t) − Rn(s, t) converges to 0 too. If we denote for s fixed ξtn the flow
generated by Rn(s, t) (and similarly ξt the flow generated by R(s, t)), ξ−tn ◦ψtn
is then generated by

(Rn(s, t) − Lsn(t, ·)) ◦ ξtn,
which C0-converges to 0. Therefore, γ(ξ−tn ◦ ψtn) converges to 0.

On the other hand, ξtn γ-converges to ξt (because Rn(s, t) C
0-converges to

R(s, t)), and ψtn = φ−ts
Hn
φtFn

φsGn
φ−t
Fn
φ−s
Gn

converges for γ to ψt = φ−ts
H φtFφ

s
Gφ

−t
F φ

−s
G

(because, Hn, Kn, Gn converge respectively to H , K, G).
Finally we get γ(ξ−tψt) = 0 for all s and t, which implies ξ−tψt = id for

all s and t. It follows that its Hamiltonian is 0 for all s and t. Since its
Hamiltonian function is exactly (R(s, t) − Ls(t, ·)) ◦ ξt, we get:

∫ s

0

(H − {F,G}) ◦ φ−σ
G ◦ φ−t

F dσ = 0,

and taking derivative with respect to s, we obtain H = {F,G}, namely

ρ([f, g]) = {ρ(f), ρ(g)}

as wanted. �

2.3 Proof of theorem 3

Let us consider the following Hamiltonian functions on R2 (this example
is due to Polterovich) with symplectic form written in polar coordinates
rdr ∧ dθ.

Fn(r, θ) =
r√
n

cos(nθ),

Gn(r, θ) =
r√
n

sin(nθ).

We see that {Fn, Gn} = 1 and that Fn and Gn converge to 0. Now, consider
g the 3-dimensional Heisenberg Lie algebra (i.e., the Lie algebra with basis
{f, g, h} such that [f, g] = h and [f, h] = [g, h] = 0) and set ρn(f) = Fn,
ρn(g) = Gn and ρn(h) = 1. Then, ρn is a pseudo-representation of g in
Ham(R2). The limit ρ of ρn satisfies ρ(f) = 0, ρ(g) = 0, ρ(h) = 1. Since
{ρ(f), ρ(g)} 6= ρ(h), ρ is not a representation of g.
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Since g is nilpotent (of index 2), this example shows that Theorem 1 is false
in general if we replace Hamc(M) with Ham(M) for a non-compact manifold
M , and uniform convergence with the uniform convergence on compact sets
(compact-open topology).

If we read carefully the proof of Theorem 1, we see that the whole proof
can be repeated in this settings except the two following points where the
compactness of supports are needed

• Each time we consider the flows of the Hamiltonians, they must be
complete. This is automatic for compactly supported Hamiltonians,
but false in general. With the notations of the proof, the flows needed
for the induction step are those of Fn, F , Gn, G, Hn, H , Rn(s, t) and
R(s, t).

• We use a C−1 bi-invariant metric. This exists on Hc(M), but we do
not know whether it exists on H(M).

Let us introduce some notations. For f, g ∈ g generating a Lie algebra h

and r a linear map g → Ham(M). We denote Pr(f, g) the set of all polyno-
mial functions with indeterminate t and coefficients in r(h). We see that Fn,
F , Gn, G, Hn, H , Rn(s, t) and R(s, t) (for s fixed) are in either Pρn

(f, g) or
Pρ(f, g). We also see that if h, k are elements of h, then Pr(h, k) ⊂ Pr(f, g).
Hence Pρn

(f, g)∪Pρ(f, g) contains all the Hamiltonians needed, at any step
of the induction.

The following lemma follows from the above discussion.

Lemma 8. Let M be a non-compact symplectic manifold, g a nilpotent Lie

algebra, and ρn a pseudo-representation of g in Ham(M), with limit ρ. Sup-

pose there exists two elements f and g in g, such that:

• all the elements of Pρn
(f, g) and Pρ(f, g) have complete flows,

• {ρ(f), ρ(g)} 6= ρ([f, g]),

then, the group of Hamiltonian diffeomorphisms H(M) admits no C−1 bi-

invariant metric. �

Proof of Theorem 3: Let us first consider the symplectization of S1. We just
adapt Polterovich’s example by setting :

ρn(f)(s, θ) =
es/2√
n

cos(nθ),

ρn(g)(s, θ) =
es/2√
n

sin(nθ).
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The symplectic form being defined on R× S1 by d(esdθ) = esds∧ dθ, we get
{ρn(f), ρn(g)} = 2. Since ρ(f) = ρ(g) = 0 we have a pseudo-representation
of the 3-dimensional Heisenberg Lie algebra, and its limit is not a repre-
sentation. According to Lemma 8, we then have to prove that all elements
of Pρn

(f, g) and Pρ(f, g) have complete flows, for f , g generators of the 3-
dimensional Heisenberg Lie algebra, and ρn, ρ as in the example.

In the case of ρ, we have Pρ(f, g) = {λtα | λ ∈ R, α ∈ N}. The flows of all
these elements are Id at any time. In the case of ρn,

Pρn
(f, g) = {λρn(f)tα + µρn(g)t

β + νtγ | λ, µ, ν ∈ R, α, β, γ ∈ N}.

The Hamiltonian vector field of λρn(f)tα + µρn(g)t
β + νtγ is

(

e−s/2
√
n(λ sin(nθ)tα − µ cos(nθ)tβ)

) ∂

∂θ

−
(

1

2
√
n
e−s/2(λ cos(nθ)tα + µ sin(nθ)tβ)

)

∂

∂s
,

which is equivalent through the symplectomorphism

(R × S
1, d(esdθ)) → (R2 − {0}, rdr ∧ dθ)), (s, θ) 7→ (e−s/2, θ)),

to the vector field

(

r
√
n(λ sin(nθ)tα − µ cos(nθ)tβ)

) ∂

∂θ

+

(

1√
n

(λ cos(nθ)tα + µ sin(nθ)tβ)

)

∂

∂r
.

The norm of this vector field is bounded by a polynomial function in t that
does not depend on (r, θ). Therefore, it is a consequence of Gronwall’s lemma
that it is complete.

In the case dimN = 1, one of the connected component of N has to
be S1 (otherwise there is no closed characteristic). The above example can
be applied to this connected component and extended by 0 on the other
components.

Let us consider now the case d = dim(N) > 1. Denote by γ a closed
characteristic, parameterized by θ ∈ S1. Since the Reeb vector field is trans-
verse to the contact structure ξ, there exists a diffeomorphism that maps
a neighborhood V0 of the zero section in the restricted bundle ξ|γ, onto a
neighborhood V1 of γ in the contact manifold N . Since ξ|γ is a symplectic
bundle over S1, it is trivial. We thus have a neighborhood U of 0 in R2n

and a diffeomorphism ψ : S1 × U → V1 ⊂ N . The pull back of ξ by ψ is a

11



contact structure on S1×U which is contactomorphic (via Moser’s argument)
to the standard contact structure dθ − pdq on S1 × U . Therefore, the above
diffeomorphism ψ can be chosen as a contactomorphism.

Then the symplectization Sγ of the closed characteristic gives a symplectic
embedding SS1 →֒ SN . This embedding admits S(S1 × U) as a neighbor-
hood. Moreover, if we denote s, θ and x the coordinates in S(S1 ×U), ψ has
been constructed so that s and θ are conjugated variables and the direction
of x is symplectically orthogonal to those of s and θ. That will allow the
following computations.

Just like in the above example, we have a pseudo-representation of g if we
consider

(ρn(f))(s, θ, x) =
χ(x)es/2√

n
cos(nθ),

(ρn(g))(s, θ, x) =
χ(x)es/2√

n
sin(nθ), (1)

and (ρn(h))(s, θ, x) = 2χ(x)2. Indeed, we have again {ρn(f), ρn(g)} = ρn(h),
but its limit ρ satisfies {ρ(f), ρ(g)} = 0 6= 1 = ρ(h) and is not a represen-
tation. The fact that the elements of Pρn

(f, g) and Pρ(f, g) have complete
flows follows from the case d = 1. �

Proof of Corollary 4 Let M be a smooth manifold, and choose a Rieman-
nian metric on it. Then, consider the symplectization SST ∗M of the sphere
cotangent bundle ST ∗M . The cotangent bundle can be seen as the compact-
ification of SST ∗M , the set at infinity being the zero section of T ∗M (or
{−∞} × ST ∗M if we see SST ∗M as R × ST ∗M).

The Reeb flow of ST ∗M projects itself to the geodesic flow on M , and the
closed characteristics are exactly the trajectories that project themselves to
closed geodesics. Since any closed manifold carries a closed geodesic(see [8]),
we can consider Example (1). It clearly extends to the compactification (the
Hamiltonian functions involved and all their derivatives converges to 0 when
s goes to −∞), and we can achieve the proof as for Theorem 3. �

A A proof of Gromov-Eliashberg theorem.

In this section, we show how our methods allow to recover Gromov-Eliashberg
Theorem.

Theorem 9 (Gromov, Eliashberg). The group of compactly supported

symplectomorphisms Sympc(R
2n) is C0-closed in the group of all diffeomor-

phisms of R2n.

12



Proof. Let φn be a sequence of diffeomorphisms that converges uniformly to
a diffeomorphism φ. Denote (fni ), (gni ) (resp. fi, gi) the coordinate functions
of φn (resp. φ). These coordinate functions can be seen has Hamiltonian
functions linear at infinity (i.e., that can be written H + u with H ∈ Hamc

and u linear map). Moreover, for a given sequence (fni ) or (gni ), the linear
part does not depend on n.

Since φn is symplectic, we have:

{fni , gnj } = δij , {fni , fnj } = {gni , gnj } = 0.

Thus the coordinate functions of φn give a pseudo-representation of the 2-
nilpotent Lie algebra g generated by elements ai, bi, c, with the relations

[ai, bj ] = δij , [ai, aj] = [bi, bj ] = 0, and [ai, c] = [bi, c] = 0.

Since φ is symplectic if and only if

{fi, gj} = δij , {fi, fj} = {gi, gj} = 0

the proof will be achieved if we prove that the limit of this pseudo-representation
is a representation. Consequently, we have to adapt the proof of Theorem
1 to the case of Hamiltonian functions linear at infinity, for 2-nilpotent Lie
algebras. Gromov-Eliashberg Theorem then follows from the next two lem-
mas.

Lemma 10. Let u, v be two linear forms on R
2n and Hn, Kn be compactly

supported Hamiltonians, such that

Hn → H, Kn → K, {Hn + u,Kn + v} → 0.

Then {H + u,K + v} = 0.

Lemma 11. Let u, v, w be linear forms on R2n, and Hn, Kn, Gn, be com-

pactly supported Hamiltonians such that

Hn → H, Kn → K, Gn → G,

{Hn + u,Gn + w} → 0,

{Kn + v,Gn + w} → 0,

{Hn + u,Kn + v} − (Gn + w) → 0.

Then {H+u,G+w} = 0, {K+ v,G+w} = 0 and {H+u,K+ v} = G+w.
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Let us consider a C−1 biinvariant distance γ on Hc(R
2n) which is invariant

under the action of linear at infinity Hamiltonians (such a condition is clearly
satisfied by Hofer’s distance). For a sequence of Hamiltonian functions that
are linear at infinity with the same linear part, we can speak of its limit for
γ by setting:

(φHn+u)
γ→ φH+u if and only if γ((φH+u)

−1φHn+u, Id) → 0.

Moreover, if (φHn+u)
γ→ φH+u and (φKn+v)

γ→ φK+v then

(φHn+uφKn+v)
γ→ φH+uφK+v.

Indeed, we have

γ((φHn+uφKn+v)
−1(φH+uφK+v), Id)

= γ(φ−1
K+v(φ

−1
H+uφHn+u)φK+v(φ

−1
K+vφKn+v), Id)

6 γ(φ−1
H+uφHn+u, Id) + γ(φ−1

K+vφKn+v, Id).

Finally notice that if ‖Hn −H‖C0 → 0, then φHn+u
γ→ φH+u.

We are now ready for our proofs.

Proof of lemma 10. We just adapt the proof of Cardin and Viterbo [1] to the
”linear at infinity” case.

First remark that the assumptions imply {u, v} = 0. Then, a simple
computation shows that the flow

ψtn = φtHn+uφ
s
Kn+vφ

−t
Hn+uφ

−s
Kn+v

is generated by the Hamiltonian function linear at infinity

∫ s

0

{Hn + u,Kn + v}(φσKn+vφ
t
Hn+u(x))dσ,

which C0-converges to 0 = {u, v} by assumption. Therefore, ψtn converges
for any s and any t to Id. But on the another hand, according to the above
remark, it converges to φtH+uφ

s
K+vφ

−t
H+uφ

−s
K+v. Hence φtH+uφ

s
K+vφ

−t
H+uφ

−s
K+v =

Id which proves {H + u,K + v} = 0. �

Proof of lemma 11. First notice that the assumptions imply {u, v} = w,
{u, w} = 0 and {v, w} = 0, and that the equalities {H + u,G + w} = 0,
{K + v,G+ w} = 0 follow from lemma 10. Here we consider the flow

ψtn = φ−ts
Gn+wφ

t
Hn+uφ

s
Kn+vφ

−t
Hn+uφ

−s
Kn+v

14



which is generated by
(

−s(Gn + w) +

∫ s

0

{Hn + u,Kn + v}(φσKn+vφ
t
Hn+u)dσ

)

◦ φtsGn+w.

This expression can be written
(

∫ s

0

(An +Bn)dσ

)

◦ φtsGn+w,

where An = Gn − Gn(φ
σ
Kn+vφ

t
Hn+u) and Bn = ({Hn + u,Kn + v} − (Gn +

w))(φσKn+vφ
t
Hn+u).

By assumption, Bn C
0-converges to 0 and An can be written:

An = (Gn −Gn(φ
t
Hn+u)) + (Gn −Gn(φ

σ
Kn+v)) ◦ φtHn+u

=

∫ t

0

{Gn, Hn + u}dτ +

(
∫ σ

0

{Gn, Kn + v}dτ
)

◦ φtHn+u

=

∫ t

0

{Gn + w,Hn + u}dτ +

(
∫ σ

0

{Gn + w,Kn + v}dτ
)

◦ φtHn+u,

which implies that An C
0-converges to 0 too. It follows that the generating

Hamiltonian of ψtn C
0-converges to 0, and hence that ψtn γ-converges to Id.

Since it also converges to ψt := φ−ts
G+wφ

t
H+uφ

s
K+vφ

−t
H+uφ

−s
K+v, we get ψt = Id

for any s and t. Thus, the generating Hamiltonian of ψt vanishes identically:
(

−s(G+ w) +

∫ s

0

{H + u,K + v}(φσK+vφ
t
H+u)dσ

)

◦ φtsG+w = 0.

But since G+ w commutes with H + U and K + v, we get:
∫ s

0

({H + u,K + v} − (G+ w))(φσK+vφ
t
H+u)dσ = 0.

Taking derivative with respect to s, we obtain {H + u,K + v} − (G+ w) =
0. �

B Few additional remarks using the theory

of distributions.

The following results on Poisson brackets are obtained with the help of dis-
tributions. No assumptions are made on the Lie algebra generated by the
Hamiltonian functions. They show in a certain way why it is difficult to find
examples of pseudo-representations whose limit is not a representation.
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Proposition 12. If Fn C
2-converges to F and Gn C

0-converges to G. Then,

{Fn, Gn} converges to {F,G} in the sense of distributions. As a consequence,

if {Fn, Gn} C0-converges to H, then {F,G} = H.

Proof. For any smooth compactly supported function φ,

〈{Fn, Gn}, φ〉 =

∫

∂Gn

∂q

∂Fn

∂p
φ−

∫

∂Gn

∂p

∂Fn

∂q
φ

= −
∫

Gn
∂

∂q

(

∂Fn

∂p
φ

)

+

∫

Gn
∂

∂p

(

∂Fn

∂q
φ

)

.

By assumption, the integrands C0-converge and hence the integrals converge

to −
∫

G ∂
∂q

(

∂F
∂p
φ
)

+
∫

G ∂
∂p

(

∂F
∂q
φ
)

which equals 〈{F,G}, φ〉. �

Proposition 13. If Fn C
0-converges to F , Gn C

0-converges to G and {Fp, Gq}
C0-converges to H when p and q go to infinity, then {F,G} = H.

Proof. Take once again a compactly supported smooth function φ. Write

〈{Fp, Gq} − {F,G}, φ〉 = 〈{Fp − F,Gq}, φ〉 + 〈{F,Gq −G}, φ〉.

By Proposition 12, the first term converges to 0. Hence for all ε > 0, there
exists an integer q0 such that for any q > q0, |〈{F,Gq −G}, φ〉| 6 ε.

Similarly, for each fixed q, there exists an integer p0 such that for any
p > p0, |〈{Fp − F,Gq}, φ〉| 6 ε.

Therefore, for all ε and all integers p1, q1, we can find p > p1, q > q1 such
that |〈{Fp, Gq} − {F,G}, φ〉| 6 2ε.

Thus we can construct two extractions χ, ψ such that 〈{Fχ(n), Gψ(n)} −
{F,G}, φ〉 converges to 0. Since we have 〈{Fχ(n), Gψ(n)} − H, φ〉 → 0, it
implies 〈{F,G}, φ〉 = 〈H, φ〉, and this equality holds for any φ. �
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