Hamiltonian pseudo-representations - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2007

Hamiltonian pseudo-representations

Résumé

The question studied here is the behavior of the Poisson bracket under C^0-perturbations. In this purpose, we introduce the notion of pseudo-representation and prove that for a nilpotent Lie algebra, it converges to a representation. This question remains open for general Lie algebras. An unexpected consequence of this result is that for many non-closed symplectic manifolds (including cotangent bundles), the group of Hamiltonian diffeomorphisms (with no assumptions on supports) has no C^{-1} bi-invariant metric. Our methods also provide a new proof of Gromov-Eliashberg Theorem, it is to say that the group of symplectic diffeomorphisms is C^0-closed in the group of all diffeomorphisms.
Fichier principal
Vignette du fichier
humiliere_hamiltonian_pseudorepresentations.pdf (191.53 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-00136107 , version 1 (12-03-2007)
hal-00136107 , version 2 (20-07-2007)

Identifiants

Citer

Vincent Humilière. Hamiltonian pseudo-representations. 2007. ⟨hal-00136107v1⟩
276 Consultations
123 Téléchargements

Altmetric

Partager

More