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Endomorphisms of Kleinian Groups.

Thomas Delzant and Leonid Potyagailo

1 Introduction.

A group G is cohopfian (or has the co-Hopf property) if any injective endomorphism f : G → G
is surjective.

Answering a question of E. Rips, Z. Sela showed in [Se] that a torsion-free, non virtually cyclic
word-hyperbolic group (in Gromov’s sense) is cohopfian if and only if it is not a non-trivial free
product. The cohopficity of 3-manifold groups was studied by many authors; see [PW] and [OP]
where a more complete list of references on this subject is given.

A non-trivial free product A ∗ B is never cohopfian, as it contains the proper subgroup
A ∗ mBm−1 isomorphic to A ∗ B if m /∈ (A ∪ B). More generally, let the group G split as an
HNN-extension, G = A∗C = 〈A, t | tCt−1 = ϕ(C)〉, and suppose that t centralizes C. Then G
is not cohopfian (set f : G → G be the identity on A and f(t) = t2 ; then f is injective, not
surjective). It is shown in [OP] that this example can be realized as a Kleinian group. Note
that in this case, the group G splits over a parabolic subgroup C which is of infinite index in
the unique maximal parabolic subgroup C̃ of G containing C (where C̃ =< C, t >), and C̃ is
not conjugate into A. In such case we will refer to the group C and the corresponding splitting
of G over C as essentially non-maximal. On the other hand it is also shown in [OP] that G is
cohopfian if it does not split over an elementary subgroup. A natural question is whether all non
cohopfian torsion free one-ended Kleinian groups arise only in this way, in other words is G non
cohopfian if and only if G has essentially non-maximal splittings over parabolic subgroups ? The
main result of the paper (Theorem A below) is a criterion showing that essentially this is the
case.

Let G be a one-ended, non-elementary, geometrically finite Kleinian group. Instead of study-
ing directly the “absolute” cohopfian property of G, we extend this notion to the “relative” case.
Let E = {E1, ...., En} be a fixed set of elementary subgroups of G (a “peripheral system”) and
suppose that f : G → G is an endomorphism which sends each Ei into itself. Then Theorem
B below guarantees that f is a surjective if G has no essentially non-maximal splittings over
elementary subgroups relatively to the system E (i.e. a splitting in which every Ei is elliptic).

The notion of ”relative cohopficity” can be easily illustrated by the example of a surface with
boundary. Let S be a compact surface of genus g > 1 whose boundary is a finite collection of
loops αi (i = 1, ...n). Let Ei be the cyclic peripheral subgroup of G = π1(S) generated by αi
and E = {E1, ..., En}. The group G is a free group and is not cohopfian ; however it is cohopfian
relatively to E , i.e. if f : (G, E) → (G, E) is an injective endomorphism sending each group Ei

into itself then f is surjective.
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The proof of the co-hopficity criterion goes as follows. Let f : (G, E) → (G, E) be an injective,
non-surjective endomorphism of a one-ended Kleinian group G. In Section 3, refining the main
result of the paper [OP], we prove using the theory of groups acting on real trees that the group
G splits over elementary subgroups relatively to the system E (Proposition 3.1). Our further
goal is to find among all the trees Tn, a (G, E)-tree T and another injective, non-surjective map
F : (G, E) → (G, E) so that F sends all vertex and edge stabilizers of T into themselves. In the
simplest case, when the tree T is dual to a splitting of G as an amalgamated product G = A∗CB,
we obtain that F (A,C) ⊂ (A,C) and F (B,C) ⊂ (B,C). An argument based upon M. Bestvina-
M. Feighn’s accessibility theorem [BeF2] will then show (Section 6) that the pairs (A, (C ∪ E))
and (B, (B ∪ E)) are ”simpler” than (G, E). The general case will follow by induction.

In Section 7, we prove that if a group G admits an essentially non maximal splitting over a
parabolic group, then it is not cohopfian.

In Section 8 we treat the case of infinitely ended groups. The proofs here are based on the
techniques developed in the previous Sections.

Let us point out that the methods of Z. Sela’s paper [Se] do not work for geometrically finite
Kleinian groups containing parabolic subgroups of rank bigger than one. The main reason is that
the crucial point of many considerations in [Se] is so called ”shortening argument” which does not
work if the injectivity radius of the space tends to zero. In the present paper we apply different
methods. We also note that most of our arguments do not require constant negative sectional
curvature, what we really use is strict negativity of the curvature and two purely algebraic facts:
elementary groups are virtually abelian and geometrically finite groups are finitely presentable.
We believe that our results can be generalized to the case of geometrically finite subgroups of
the isometry group of Hadamard manifolds of pinched negative curvature as well as to relatively
hyperbolic groups with respect to a system of elementary virtually nilpotent subgroups.

Acknowledgments. We thank Misha Kapovich for helpful discussions and for a suggestion
how to prove Proposition 3.1. We also thank Greg McShane for reading and correcting the
manuscript. The second author is deeply grateful to the Max-Planck Institute für Mathematik
of Bonn for the hospitality, mathematical stimulation and support during his one-year stay at
the MPI where he has been working on this paper. We thank the referees for many valuable
suggestions.

2 Preliminaries and Formulations of the Results.

Let Hn be the real hyperbolic space of dimension n. A group G is Kleinian if G is a discrete
subgroup of the orientation preserving part of the isometry group Isom+Hn of Hn. The limit set
Λ(G) of G is the set of accumulation points of some (any) orbit G(z) (z ∈ Hn).

Recall that a Kleinian group H ⊂ Isom+Hn is elementary if its limit set Λ(H) ⊂ Sn−1
∞ is a

finite set, and H is a finite elementary group if and only if Λ(H) = ∅. An infinite elementary
group H is loxodromic (resp. parabolic) if the limit set Λ(H) contains two points (resp. one
point). By Bieberbach’s theorems (see e.g. [Ra]) every elementary subgroup H of Isom+Hn is a
finitely generated virtually abelian group, i.e. contains a free abelian subgroup A of finite index.
The rank of the group A is called the rank of H. A loxodromic elementary group is always
virtually cyclic (2-ended). A parabolic subgroup of rank bigger than one is a one-ended group.
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Notation. If C is elementary and infinite, it is contained in a unique maximal elementary
subgroup of G. This subgroup will be denoted C̃ throughout the paper.

A finitely generated Kleinian group G is geometrically finite if there exists an ε > 0 so that
the hyperbolic volume of an ε-neighborhood of C(Λ(G))/G is finite, where C(Λ(G)) ⊂ Hn is
the convex hull of the limit set of G (i.e. the smallest convex subset of Hn invariant under the
G-action) is finite.

We say that G splits as a graph of groups X∗ = (X, (Ce)e∈X1 , (Gv)v∈X0) (where Ce and Gv

denote respectively edge and vertex groups of the graph X) if G is isomorphic to the fundamental
group π1(X∗) in the sense of Serre [Se]. The Bass-Serre tree T is the universal cover in the sense
of Serre of the graph X = T/G. When X has only one edge, we will say that G splits as an
amalgamated free product (resp. an HNN-extension) if X has two vertices (resp. one vertex).

We will need the following definitions:

Definition 2.1. Let G act on a tree T . A subset H of G is called elliptic (resp. hyperbolic) in
T (and in the graph T/G) if H fixes a point in T (resp. does not fix a point in T ). If T is the
Bass-Serre tree of a splitting of G as a graph of groups, H is elliptic if and only if it is conjugate
into a vertex group of this graph.
We say that G splits relatively to a family of subgroups (E1, ...En), or that the pair (G, E) splits
as a graph of groups, if G splits as a graph of groups such that all the groups Ei are elliptic. A
(G, E)-tree is a G−tree in which Ei are elliptic for all i.

Definition 2.2. Suppose G splits as a graph of groups

G = π1(X,Ce, Gv) (1)

and suppose that edge groups (i.e. the groups Ce) of this graph are elementary. We say that
the edge stabilizer Ce is essentially non-maximal if the maximal elementary subgroup C̃e is not
elliptic in the splitting (1). The splitting (1) is essentially non-maximal if there exists at least
one such an edge. Otherwise we say that the splitting (1) is essentially maximal.

Theorem A. Let G ⊂ Isom+Hn be a non-elementary, geometrically finite, one-ended Kleinian
group without 2-torsion. Then G is cohopfian if and only if the following two conditions are
satisfied:

1) G has no essentially non-maximal splittings.

2) G does not split as an amalgamated free product G = A ∗C C̃, with C̃ maximal elementary,
such that the normal closure of the subgroup C in C̃ is of infinite index in C̃.

�

Note that if C is a non-trivial essentially non-maximal elementary subgroup of G, then |C̃ : C| =
∞. Therefore C is a parabolic subgroup of G, and rank (C) < rank C̃.
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Corollary 2.3. Let G be a non-elementary, geometrically finite, one-ended Kleinian group with-
out 2-torsion. Suppose that every elementary subgroup C over which G splits has a finite index
in the maximal elementary subgroup C̃, then G is cohopfian.

As explained in the Introduction, the proof of Theorem A is based on the study of the relative
case.

Definition 2.4. Let G be a group, and E = (E1, ..., En) a family of elementary subgroups. An
endomorphism of G is called endomorphism of the pair (G, E) if it sends each Ei into itself.

The pair (G, E) is cohopfian, if any injective endomorphism of (G, E) is surjective. We say
that the pair (G, E) is one ended if (G, E) does not split over finite subgroups.

Theorem B. Let G ⊂ Isom+Hn be a non-elementary, geometrically finite, Kleinian group with-
out 2-torsion and E = {E1, ..., Ek} be a family of elementary subgroups of G. Suppose that the
pair (G, E) is one-ended. Then (G, E) is cohopfian if the following two conditions are satisfied:

1) The pair (G, E) has no essentially non-maximal splitting over elementary subgroups.

2) The pair (G, E) does not split as an amalgamated free poduct G = A ∗C C̃, with C̃ maximal
elementary and the normal closure of C in C̃ is a subgroup of infinite index of C̃. �

Remark: Theorem A is the special case of Theorem B where the family E is empty.

We will need the following definition of acylindrical splittings introduced by Z. Sela in the torsion
free case and in [De] in the general case:

Definition 2.5. Let G split as a graph of groups G = π1(X) with elementary edge stabilizers
and T be the Bass-Serre tree dual to this splitting.

a) Torsion free case: The splitting (and the tree T ) is K-acylindrical if the stabilizer of each
segment of T of diameter at least K is trivial.

b) General case: The G-tree T is called (K,Φ)-acylindrical if the stabilizer of each segment on
T of the diameter at least K is a finite group1.

If G splits as a graph of groups G = π1(X) , one says that this splitting is (K,Φ)−acylindrical
if the Bass-Serre tree - the universal cover of X - is (K,Φ)−acylindrical.

�

Recall also (see e.g. [BeF1]) that a G-tree is called irreducible if it is minimal (i.e. there is
no proper invariant subtree) and if the label of every vertex of valence two properly contains
the labels of both edges incident to it (if the two edges are distinct). The relationship between
Definitions 2.2 and 2.5 is established in the following lemma.

1
Here Φ stands for “finite”.
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Lemma 2.6. Let G be a finitely presented Kleinian group, E = {E1, ..., Ek} be a family of
elementary subgroups of G, and suppose that the pair (G, E) is one-ended. The pair (G, E) has
no essentially non-maximal splittings iff there exists a constant K such that each irreducible
(G, E)-splitting over elementary subgroups is (K,Φ)-acylindrical. In this case, every essentially
non-maximal splitting of (G, E) as an amalgamated free product or an HNN-extension is (3,Φ)-
acylindrical.

Proof: Suppose that the pair (G, E) has no essentially non-maximal splittings and let G act
on a simplicial tree T with elementary edge stabilizers. Then G splits as the graph of groups
X = T/G. Let m denote the number of edges of X. We will first show that the tree T is 2m+1-
acylindrical. To this end, suppose that l is an embedded path in T consisting of n successive
edges such that n ≥ 2m+1. We want to show that the stabilizer C of l is a finite group. Arguing
by contradiction suppose that the group C is infinite. Since n ≥ 2m + 1 the path l contains at
least three distinct edges e1, e2, e3 which are in the same G-orbit. Let Ci be the stabilizer of the
edge ei and let αi and α′

i be its vertices (i = 1, 2, 3). Let e2 = g(e1) and e2 = h(e3) for some g

and h not belonging to C2. We have C ⊂
3

⋂

i=1

Ci and C2 = gC1g
−1, C2 = hC3h

−1.

As g−1C2g ∩ C2 ⊃ C and C is infinite, we deduce that g−1C̃2g = C̃2 where C̃2 is the unique
maximal elementary subgroup of G containing C2. The same property holds for h. Thus the
elements g and h belong to C̃2 which also contains C. As G does not have essentially non-maximal
splittings, it follows that C̃2 fixes a point on the tree T and so there is a vertex v ∈ T whose
stabilizer D contains C̃2.

Let [α′
i, αi+1] denote the segment of the path l between the vertices α′

i and αi+1. A standard
argument [S, I-6.4] shows that either the element g fixes a point x in [α′

1, α2] or g acts on T without
fixed points. We have already shown that the latter case is impossible. Similarly, the element
h fixes a point y ∈ [α′

2, α3]. Now their common fixed point v belongs to the same connected
component of T \ e2 as one of the vertices x or y, say x. Thus h fixes the path between y and v
in T. This path contains the edge e2, and so h ∈ C2 which is impossible. Thus the group C must
be finite. In particular, if the graph X contains only one edge the splitting X (i.e. amalgam or
an HNN-extension) is (3,Φ)-acylindrical.

By the result of M. Bestvina-M. Feighn [BeF2] there is a uniform upper bound ν(G) < ∞
for the number of edges of all irreducible splittings of G with elementary edge stabilizers. Thus,
setting K = 2ν(G) + 1 we obtain the result. The necessary condition is proved.

Conversely, suppose that the group has an essentially non-maximal splittingG = π1(X,Ce, Gv)
relatively to the system E . As the pair (G, E) is one ended, every edge group Ce = C of X is an
infinite elementary subgroup of infinite index in C̃. Therefore C̃ is an infinite parabolic subgroup
of G, and C̃ does not fix a point in T - universal cover of X. Since the group C̃ is a finitely gener-
ated virtually abelian group, it then follows from [S, 6.5, Proposition 27] that there is an element
t in C̃ acting hyperbolically on T . The group C̃ contains an abelian subgroup of finite index C ′

and, so there exists k ∈ N that tk ∈ C ′, and tk centralizes the group C0 = C ∩C ′. Therefore, the
group C0 fixes also the edges e, tk(e), ..., tnk(e), ..., and, hence a segment of arbitrary big length.
We see that the graph X is not (K,Φ)-acylindrical for any K ∈ N. The lemma follows. QED.

In the final Section we will need somewhat different notion of acylindricity for splittings of an
infinitely ended group G over finite subgroups. We call such a splitting strictly K-acylindrical if
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the stabilizer of each segment of the corresponding Bass-Serre tree T of the diameter at least K
is a proper subgroup of some edge stabilizer of T. We prove in Section 8 the following theorem:

Theorem C. Let G ⊂ Isom+Hn be a non-elementary, geometrically finite Kleinian group without
2-torsion. Then G is cohopfian if and only if the following three conditions are satisfied:

1) G does not have essentially non-maximal splittings over infinite elementary subgroups.

2) G does not split as an amalgamated free product G = A ∗C C̃, so that the normal closure
of the subgroup C in C̃ is of infinite index in C̃.

3) Every splitting of G over finite groups is strictly M-acylindrical for a uniform constant M.

�

Remark 2.7. By Lemma 2.6 Condition 1) can be replaced by the following

1) There exists a constant K such that each irreducible splitting of G over an infinite elementary
subgroup is (K,Φ)-acylindrical. �

We now introduce some terminology which will be used in the suite .
A G-tree T̂ is called a resolution of a G-tree T if there exists G-equivariant simplicial map

ρ : T̂ → T .
Suppose that T is a (G, E)-tree and ϕ : (G, E) → (G, E) is a monomorphism. Let ϕ∗T denote

the G-tree defined as follows: as metric space, ϕ∗T is T , but the action of G on T is obtained
from the original action by composing with ϕ:

gϕ∗T (x) = ϕ(g)T (x).

The stabilizer of a vertex v (edge e) of the tree ϕ∗T is equal to ϕ−1(Gv) (respectively ϕ−1(Ce))
where Gv (respectively Ce) is the stabilizer of v (respectively e) on T .

A marking of the G-tree T is a subtree t of T which is a fundamental domain for the action
of the group G on T. A pair (T, t) will be called marked tree where t is a marking of T. If t
is a marking of T and f : G → G is an injective endomorphism we denote t̃ a marking of the
tree f ∗T containing t setwise. Two markings t, t′ of the tree T are isomorphic if there exists an
automorphism ϕ of G and a G-equivariant isometry I : ϕ∗T → T sending t to t′. Note that if the
graph T/G is finite there are at most finitely many different markings of T up to isomorphism.
We say that the G-tree T dominates the G-tree T ′ if there exists a resolution ρ : T → ϕ∗T ′ for
some automorphism ϕ of G. Similarly, we say that the marked tree (T, t) dominates the marked
G-tree (T ′, t′) if there exists a resolution ρ : (T, t) → (ϕ∗T ′, t′) sending the marking t to the
marking t′.
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3 Finding a splitting of a non-cohopfian pair (G, E).

Let G be a non cohopfian Kleinian group, and f : G→ G is an injective non surjective endomor-
phism, then the result of [OP] implies that G admits a non-trivial action on a simplicial tree with
elementary edge stabilizers. The following proposition provides a relative version of this result:

Proposition 3.1. Let G ⊂ Isom+Hn be a non-elementary, geometrically finite Kleinian group
without 2-torsion and E = {E1, ..., Ek} is a finite family of elementary subgroups of G. Suppose
that the pair (G, E) is non-cohopfian and let f : (G, E) → (G, E) be an injective endomorphism
which is not surjective. Then (G, E) has a non-trivial splitting over elementary subgroups.

Proof: We may assume (w.l.o.g.) that all the subgroups Ei are infinite maximal elementary
subgroups of G and Ei are loxodromic for the first s subgroups from E (0 ≤ s ≤ k). Suppose also
that the elements γi generate the infinite cyclic subgroup < γi > of finite index of Ei (i = 1, ..., s).
Let Aγi

denote the invariant axis of the element γi and distHn(·) be the hyperbolic distance
between subsets of Hn(i = 1, ..., s). We start with the following:

Lemma 3.2. Suppose that there exists i ∈ {1, ..., s} such that for all g ∈ G the quantity
distHn(Aγi

, fm(b)(Aγi
)) is bounded. Then, there exists natural numbers m0, n0 ∈ N and ele-

ments αm ∈ G such that for all m > m0:

fm(γn0

i ) = αmf
m0(γn0

i )α−1
m , km ∈ Z

Proof of the lemma: We will need the following result:

Uniform Klein Combination (UKC) Theorem. (M. Gromov [Gro], T. Delzant [De2],
G. Noskov [N]) Suppose G is geometrically finite group and γ is a loxodromic element and E be
its maximal elementary subgroup. Then there exists N such that for any element a ∈ G \ E the
elements γN and aγNa−1 freely generate the free group F2.

Assuming this Theorem we shall prove the Lemma. Let γi = γ and E = Ei. As the group E
does not have 2-torsion it is well known [DD, 6.12] that E = K o C where C =< γ >∼= Z and
K is a finite group of order l. There exists k ∈ N such that γk centralizes E. It is then easy to
check that there exists s ∈ N so that f(γkl) = γkls. Setting γ̃ = γklN , where N is given by the
above UKC Theorem, we have f(γ̃) = γ̃s.

By hypothesis, for every element g ∈ G there exists a constant K <∞ such that

distHn(Aγ, f
m(g)(Aγ)) ≤ K (m ∈ N).

Set gm = fm(g), and choose points wm ∈ Aγ and ym ∈ gm(Aγ) so that dHn(wm, ym) =
distHn(Aγ, gm(Aγ)) (j = 1, 2; m ∈ N). Let w′

m be the point g−1
m (ym) ∈ Aγ, then dHn(wm, gm(w′

m)) ≤
K. As the group < γ̃ > is a finite index subgroup of E, it acts co-compactly on the axis Aγ.
So there exist integers km, rm such that wm = γ̃km(zm), w′

m = γ̃rm(z′m), zm, z
′
m ∈ Ai and

dHn(zm, z
′
m) ≤ K1 < +∞ for some K1. We obtain

dHn(zm, γ̃
−kmgmγ̃

rm(zm)) ≤ K +K1 < +∞.
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As the group G is discrete and γ̃−kmgmγ̃
rm ∈ G (m ∈ N), it follows that ∃m0 such that ∀m >

m0 : γ̃−kmgmγ̃
rm = γ̃−km0gm0

γ̃−rm0 .
We deduce that for every g ∈ G there exists m0 ∈ N such that ∀m > m0 there exist integers

km and rm such that
fm(g) = γ̃kmfm0(g)γ̃rm (j = 1, 2), (∗)

where km := km − km0
, rm := −rm − rm0

. Now pick any element a ∈ G \ E and set g = aγ̃a−1.
We can also choose m0 so that (*) holds not only for g but also for g2 (after replacing km

(resp. rm) by tm (resp. sm)). We obtain

fm(g2) = γ̃tmfm0(g2)γ̃sm = γ̃kmfm0(g)γ̃rm+kmfm0(g)γ̃rm . (∗∗)

As fm0(E) ⊂ E, the subgroup f−m0(E) is elementary (being isomorphic to fm0(f−m0(E))) and
contains E. By the maximality of the latter, we get f−m0(E) = E. So fm(a) is an element which
does not belong to E (∀ m ∈ N).

The UKC Theorem now yields that the elements γN and hm0
= fm0(a)γNfm0(a−1) freely

generate the free group F2. As γ̃ = γklN and f(γ̃) = γ̃s, we obtain that fm0(g) = (hm0
)s

m0kl.
Thus, the elements γ̃ and fm0(g) also generate a free group. Then it follows from (**) that
rm = −km and so:

fm(g) = γ̃kmfm0(g)γ̃−km = γ̃kmfm0(aγklNa−1)γ̃−km , m > m0.

proving the lemma. �

Proof of the proposition: Let us choose a generating system S = {γ1, ..., γr, a1, ..., al} of G where
γi are generators of subgroups Ei ∈ E and the elements aj do not belong to E (1 ≤ i ≤ l). If for
some i ∈ {1, ..., s} there exists an element bi ∈ G such that the function distHn(Aγi

, fm(bi)(Aγi
))

is not bounded we add the elements bi and biγib
−1

i to the system S and retain the same notation
S for it. Consider now the following displacement function:

dm(f, S,G) = min
x∈Hn

max
s∈S

dHn(x, fm(s)(x)). (5)

It is proved [OP] that if the map f is not surjective then for any generating system S the function
dm(f, S,G) is not bounded (m ∈ N). In this case by the theorem of Bestvina-Paulin [Be], [Pa],
the group G acts stably and non-trivially on a real tree TR with elementary edge stabilizers.
Furthermore, it is proven in [Be], [Pa] that

limm→∞

l(fm(g))

dm(f, S,G)
= LR(g), (6)

where l(g) = inf dHn(x, g(x)) and LR(g) = inf dTR
(x, g(x)) are the translation lengths in the

hyperbolic space Hn and in the tree TR respectively. By Rips’ theorem [BeF1] there exists a
non-trivial simplicial G-tree with elementary edge stabilizers.

Arguing by contradiction suppose that for every simplicial G-tree one of the subgroups Ei

acts hyperbolically on it (i = 1, ..., k). By the relative version of Rips’ theorem [BF1, Theorem
9.6] there exists an element γ ∈ E , which acts hyperbolically on the real tree TR too, implying
that the quantity LR(γ) is strictly positive.
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After passing to a subsequence, we may choose an element g ∈ S and a point xm ∈ Hn which
realizes the mini-max in (5):

dm(f, S,G) = dHn(xm, f
m(g)(xm)),

and such that the following inequality holds:

0 < lim
m→∞

l(fm(γ))

dHn(xm, fm(g)(xm))
≤ 1.

Note that up to passing to a further subsequence we may suppose that for every m ∈ N the
group fm(γ) generates infinite virtually cyclic loxodromic group. Indeed if fm(γ) is parabolic
(∀ m > m0) then (6) yields that γ fixes a point in the tree TR which is impossible. So we may
assume (w.l.o.g.) that γ ∈ E1. As fm(E1) ⊂ E1 the group fm(E1) is an infinite virtually cyclic
loxodromic subgroup of G leaving the axis Aγ invariant (m ∈ N).

It follows from Lemma 3.2 that there exists an element b ∈ G such that the distance
distHn(Aγi

, fm(b)(Aγ)) is unbounded; for otherwise the element γ would act elliptically on the
tree TR as fm(γn0) is conjugate to the element fm0(γn0) (∀ m > m0). Furthermore we may
assume by construction, that the system S contains the elements b and h = bγb−1. Set hm =
fm(h) = bmf

m(γ)b−1
m . Notice that l(hm) = l(fm(γ)). To finish the proof of the Proposition we

will show that γ can not act hyperbolically on TR. There are two cases according to whether or
not the quantity Dm = distHn(xm, Aγ) remains bounded .

Case 1. Dm is unbounded.

As γ ∈ S, so dHn(fm(γ)(xm), xm) < dm(f, S,G). Let us choose a point wm ∈ Aγ which realizes
the distance Dm. Since l(hm) = l(fm(γ)) we obtain:

l(hm)

dm(f, S,G)
=

l(fm(γ))

dm(f, S,G)
=
dHn(wm, f

m(γ)(wm))

dm(f, S,G)
≤ e−Dm

dHn(xm, f
m(γ)(xm))

dm(f, S,G)
≤ e−Dm → 0.

implying that the element h = bγb−1 acts elliptically on TR and, so is γ. A contradiction.

Case 2. Dm is bounded.

Since h ∈ S, so dHn(hm(xm), xm) < dm(f, S,G). Choose zm ∈ Ahm
= bm(Aγ) such that

dHn(xm, zm) = distHn(xm, Ahm
) and denote this distance Mm. As distHn(Aγ, bm(Aγ)) → ∞ we

obtain that up to a subsequence Mm → +∞ (m→ +∞). Then

l(hm)

dm(f, S,G)
≤ e−Mm

dHn(hm(xm), xm)

dm(f, S,G)
→ 0,

As before it follows that the element γ acts elliptically on the tree TR contradicting our hypothesis.
Therefore, we have shown that there exists a non-trivial (G, E)-tree. The proposition is proved.�

4 Accessibility of Finitely Presented Groups

In this section we collect some results about different versions of accessibility (acylindrical and
hierarchical) for finitely presented groups. Let G denote an abstract (not necessarily Kleinian)
group.
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We will consider decompositions of finitely presented groups over so called elementary sub-
groups which we now define axiomatically:

Definition 4.1. Let G be a finitely presented group and C a fixed family of subgroups of G. We
call the family C and every element C ∈ C elementary if the following axioms are satisfied:

(1) If C ∈ C then every subgroup and every conjugate of C is in C.

(2) Every infinite subgroup belonging to C is contained in a unique maximal subgroup C̃ so that
C̃ ∈ C. The union of an ascending sequence of finite elementary groups is elementary.

(3) Every subgroup of C satisfies the following fixed-point condition: whenever C acts on a
simplicial tree τ , C preserves a point in τ , or a point on its ideal boundary ∂τ or a pair of
points on ∂τ (possibly permuting them).

(4) If C ∈ C is an infinite maximal elementary subgroup then its normalizer in G is contained
in C, i.e. gCg−1 = C implies that g ∈ C for all g ∈ G.

Examples of elementary families are well-known in the geometry of negatively curved spaces.
Namely, discrete subgroups of the hyperbolic space Hn or, more generally Hadamard spaces with
a pinched negative curvature, are elementary in the classical sense if their limit set is a finite set.
In this case they are also elementary according to our axioms (1 − 4). Indeed, the properties
(1), (2) and (4) are easy exercises, the only property which is non-trivial is the axiom (3) which
follows from Margulis’ lemma saying that every such group is virtually nilpotent (abelian in
the constant curvature case) and from Tits’ theorem [Ti] implying that every virtually nilpotent
group satisfies (3). Another important example one obtains by considering elementary subgroups
(i.e. virtually cyclic) of word-hyperbolic (Gromov) groups which are also elementary according
to the axioms (1-4).

A finite hierarchy of length k of the group G over elementary subgroups is defined inductively
(on k) as follows ([De-Po]):

Definition 4.2. Let G be a group and C a family of elementary subgroups of G. If G do not
split as an amalgamated free product or an HNN-extension over a subgroup in C we say that G
admits a hierarchy (of length 0). We say that G admits a finite hierarchy of length k if G splits as
G0 = G1

1 ∗C G
1
2 or G = G1

1 ∗C (C ∈ C), and one of the groups G1
1 or G1

2 admits a finite hierarchy
of length k − 1 and the other admits a finite hierarchy of length at most k − 1. We say that G
admits a hierarchy if this holds for some integer k (which we call the length of the hierarchy.)

We define then the number l(G) to be the minimal number of the lengths among all hierarchies
of G. Similarly l(G, E) denotes the minimal number of the lengths of all hierarchies of G such
that all the subgroups in E are elliptic in every decomposition appearing in this hierarchy.

Hierarchical Accessibility Theorem. Let G be a finitely presented group without 2-torsion
and C ⊂ G an elementary family of subgroups. Let E = {E1, ...Ek} be a fixed finite subset of C.
Then (G, E) has a finite hierarchy over elementary subgroups.

In other words, either l(G, E) = 0, or there exists a decomposition of (G, E) as an amalgamated
free product (or an HNN-extension)
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G = A ∗C B, (G = A∗C),

such that
max{l(A,A ∩ E), l(B,B ∩ E)} < l(G, E). (3)

Proof: The proof of the main Theorem 3.6 of the paper [De-Po], can easily be adapted to the
relative case, by keeping track of the peripheral system E . Let us sketch this proof. Recall that in
order to prove Theorem 3.2 in [De-Po] we used a version of an invariant c(·) (called complexity)
of finitely presented groups appeared first in [De1]. Consider a simplicial developable orbihedron
Π of dimension 2 whose fundamental group is G (see [Ha]) such that the vertex stabilizers of Π
are in C and every subgroup Ei fixes a vertex xi ∈ Π (i = 1, ..., k). We define first c(Π, E) to be
the pair (T (Π), b1(Π)), where T (Π) is the number of 2-dimensional faces of Π and b1(Π) is the
first Betti number of the underlying topological space of Π. Then c(G, E) is defined to be the
infimum (for the lexicographical order) over all such G-orbihedra Π.

If T is a (G, E)-tree, the main result of [De-Po, Theorem 3.2] produces a simplicial tree T̂ and
a resolution f : T̂ → T so that the invariant c(·) of the vertex stabilizers of T̂ strictly decreases.
All we need to check is that the groups Ei are still elliptic on the tree T̂ . To see this consider
the orbihedron universal cover P of the complex Π. The Axioms of Definition 4.1 allow one to
construct a G-equivariant map ρ : P → T ∪ ∂T (see [De-Po, 4.1]). Recall that the tree T̂ is
constructed to be the dual tree to the lamination Λ ⊂ P whose leaves are pre-images under ρ
of the midpoints of the edges of T . Let Ei ∈ E be an elementary subgroup which fixes a vertex
xi ∈ P . By hypothesis it also fixes a vertex vi in the tree T . As the map f is equivariant every
element g ∈ Ei stabilizes a component Ωi of P \ Λ which contains xi. Thus the group Ei is
contained in the stabilizer Gv̂i

of the vertex v̂i corresponding to the component Ωi which is a
vertex stabilizer of T̂ . The result now follows by the argument of [De-Po, Theorem 3.6]. �

Acylindrical Superaccessibility Theorem (relative to a subset). Let G be a finitely presented
group and E1, ..., Eq a fixed finite set of infinite elementary subgroups of G. Suppose that the pair
(G, E) is one-ended and there is a finite bound for orders of finite subgroups of G. Then for each
K ∈ R there exists a finite number of G-trees T1, ..., TM such that all subgroups Ei are elliptic on
Tj, and for every minimal (K,Φ)-acylindrical (G, E)-tree T , there exist an automorphism ϕ of G
sending each group Ei into itself and a resolution ϕ∗(Ti) → T (i ∈ {1, ...,M}).

This theorem in the torsion-free case (i.e. for K-acylindrical splittings) in the absolute form
(i.e. without the claim about subgroups Ei) was proved by Z. Sela [Se1]. The absolute form of
the case with torsion is given in [De]. The argument of [De] can be adapted to the relative case
along the following lines.

Proof: Let Π be a finite 2-dimensional CW-complex with π1(Π) ∼= G all of whose 2-faces are
either bigons or triangles. Suppose also that Π contains subcomplexes Bi (i = 1, ..., q) whose
fundamental groups are isomorphic to Ei. One can construct a G-equivariant simplicial map
ρ : P → T where P is the universal cover of Π. Let Λ̃ denote a lamination of P whose leaves
are preimages under ρ of the midpoints of the edges of T . By construction, Λ̃ is a G-equivariant
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lamination and let Λ denote Λ̃/G. One defines a subgraph Λk of Λ by describing its intersection
with each face ∆ of Π. Namely ∆∩Λk are those leaves of Λ in ∆ whose image under ρ is situated
within a distance at least k from the images of the vertices or the center of ∆. It is proven in [De]
(see Lemma 1.5) that the action on T of the fundamental group of each connected component of
Λk pointwise fixes a segment of the length k. It follows from the hypothesis that the fundamental
group of each connected component of Λk is finite.

One can collapse all the leaves of Λk and all sub-complexes Bi to points. As the number of
faces of Π and leaves in Λ\Λk is uniformly bounded, we note that the number of faces and edges of
the resulting orbihedron Π′ is uniformly bounded (here one uses the minimality of the tree T [De,
Lemmas 2.1, 2.2]). Each vertex stabilizer of Π′ is either finite or is one of the groups Ei. As the
orders of finite subgroups of G are uniformly bounded, there are only finitely many orbihedrons
with all these properties, so Π′ must belong to a finite set of orbihedrons {Ω1, ...,ΩM}, with M
depending only on the group G and the system of its subgroups Ei (i = 1, ..., q).

There exists a simplicial map θk between the complexes Π′ and Ωk (for some k ∈ {1, ...,M}).
This map induces an isomorphism (θk)∗ : G → πo1(Ωk) where πo1(Ωk) is the fundamental group
of Ωk (in the sense of orbihedra). Notice that θk lifts to an equivariant map θ̃k between P ′ and
Ω̃k which are the orbihedron universal covers of Π′ and Ωk correspondingly. If θ̃k(xi) = yj where
the stabilizer of the point xi ∈ P ′ is Ei and yj ∈ Ωk (i, j ∈ {1, ..., q}, k ∈ {1, ...,M}) then we
have (θk)∗(Cj) ⊂ Stab(yj) = Cj. After possibly replacing θk by a power we may suppose that
(θk)∗(Ei) ⊂ Ei. Following [De, Thm 3.1] let us consider the dual tree τ̂ to the lamination which
is the image of the lamination Λ in P ′ and let Tk be the same for the orbihedron Ωk. Arguing as
in the proof of the Hierarchical Accessibility Theorem, we obtain that the groups Ei are elliptic
in the tree τ̂ and there is an equivariant simplicial map τ̂ → Tk. The actions of the groups G and
πo1(Ωk) on the trees τ̂ and Tk respectively are conjugate by the map θk. Thus we have τ̂ = θk

∗(τk)
and the theorem follows. �

Definition 4.3. Let F be graph of groups decomposition of the pair (G, E). We say that the graph
F1 refines F if it is obtained from F by replacing of a vertex v ∈ F 0 by a non-trivial graph of
groups decomposition Fv of the pair (Gv, E ∩ S), where S is the set of edge groups of F .

A sequence {Fn} of graphs of groups decompositions of (G, E) is called a refining sequence
if for every n the graph Fn+1 refines Fn. We call the refining sequence {Fn} stabilizing if there
exists n0 such that Fn = Fn0

for all n > n0; and non- stabilizing otherwise.

We need another accessibility result, which we are now going to prove, for refined sequences of
splittings of finitely presented groups. Let G denote a finitely presented group equipped with the
family E of elementary subgroups.

Suppose {Fn} is a sequence of decompositions of the pair (G, E) so that the graph Fn+1 is
obtained from Fn by making an elementary refinement; i.e. the label of some vertex v of Fn is
replaced by an elementary splitting A ∗C B or A∗C , in which all the edge groups of the graph Fn

are elliptic. Collapsing a vertex is the inverse operation to the refinement. We call an edge e of
a graph of groups of (G, E) non-trivial if it is a loop or if the label of both of its vertices do not
coincide with the label of e, otherwise we call e trivial . Likewise, we call a vertex v of valence
two trivial if its label coincides with the label of one of the edges incident to it. Note that the
label of a trivial vertex is necessarily an elementary subgroup of G.
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Bestvina-Feighn’s Accessibility Theorem [BeF2] ensures that there exists m such that all
edges (and vertices) in Fn \Fm are trivial for n > m. Indeed, if it is not so then collapsing all the
edges of the graph Fn whose labels coincide with the label of one of its vertices, we will obtain
an irreducible graph of groups decomposition of (G, E) with elementary edge stabilizers having
an unbounded number of edges (when n→ +∞); this is prohibited by [BeF2].

Suppose now that the group G admits a non-stabilizing sequence {Fn} then for some vertex
vm whose label is Am we will have an infinite chain of elementary refinements :

Am = Am+1 ∗Cm+1
Cm, Am+1 = Am+2 ∗Cm+2

Cm+1, ... Am+k = Am+k+1 ∗Cm+k+1
Cm+k ... , (4)

where Cm+k is an infinite elementary subgroup of G (as G is one ended and splits over Cm+k). By
Definition 4.3 each splitting in (4) is non-trivial, so we have Cm+k ' Cm+k+1. It also follows that
for all but finitely many indices |Cm+k : Cm+k+1| < ∞ as the rank of the maximal elementary
group C̃m+k is finite. We obtain from (4) the following splitting in which all edges are trivial:

Am = ((...((Cm ∗Cm+1
Cm+1) ∗Cm+2

Cm+2) ∗ ... ∗Cm+k
Cm+k) ∗Cm+k+1

Am+k), ∀k ∈ N (4′)

Let Em denote the union of E and the labels of the edges incident to the vertex vm. We will need
the following lemma.

Lemma 4.4. Suppose that the pair (G, E) is essentially non-maximal and admits a non-stabilizing
sequence (4). Then the pair (Am, Em) splits as

Am = A ∗C C̃m, rank C < rank C̃,

where C ⊂
⋂

i≥1
Cm+i, A ⊂

⋂

i≥1
Am+i; and C̃m is maximal elementary subgroup of Am containing

C.

Remark 4.5. We thank M. Bestvina for a suggestion how to prove this lemma. In the paper
[Bo] a similar statement is proven (Theorem 6.1).

Before we give the proof of the lemma we first provide an example of infinite non-stabilizing
sequence of splittings which we borrow from [BeF1, p. 450].

Example. Take the free group F2 = F (x, y). Then we have the sequence of non-trivial splittings
(compare with (4)):

F2 =< x > ∗<x2> < x2, y >; < x2, y >=< x2 > ∗<x4> < x4, y >; < x4, y >=< x4 > ∗<x8> < x8, y > ...

Note that each of these splittings is non-trivial but all together they give a non-trivial splitting
of F2 where all edges are trivial:

F2 = (...((< x > ∗<x2> < x2 >)∗<x4>) ∗ ... ∗< x
2k >< x2k, y >) ∀k ∈ N.
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The group F2 splits as < x > ∗ < y > where the edge group is obtained as id =
⋂

k

< x2k > and

the other vertex group is

< y >=
⋂

k

< x2k, y > .

Proof of Lemma 4.4. Note that, since all edge groups of the graph Fn are quasi-convex subgroups
of G, it follows from the proof of [IKa, Lemma 3.5] that every vertex group of Fn is a quasi-convex
subgroup of G. Then by [Sw], we have that Am is a geometrically finite group, in particular, it
is a finitely presented group.

For every k ∈ N let Tk denote the Bass Serre Am-tree corresponding to the splitting (4’) (m
is fixed). Let P be a simply connected complex on which Am acts co-compactly so that every
subgroup Ei ∈ E fixes a point pi ∈ P (i = 1, ..., q).

Proceeding now as in the proof of the Acylindricity Theorem, we construct a Am-equivariant
simplicial map fk : P → Tk. To this end for a point p0 ∈ P we set fk(p0) = x0 (e.g. the vertex
whose stabilizer is Cm). Then extend this equivariantly by setting fk(gp0) = gx0 (g ∈ Am).
Consider now the lamination Λk of the complex P which is the pullback by fk of the midpoints
of the tree Tk. The components of Λk are called tracks. Note that the tree Tk is obtained from
Tk+1 by collapsing the orbit of one edge. It follows from this construction that Λk+1 is obtained
by adding the Am−orbit of one track (dual to the added edge in Tk+1) to the lamination Λk.

As the complex Π = P/G is finite, there exists a natural number k0 such that for all k ≥ k0

the tracks in Λk \ Λk0 fall into finitely many families of non-equivalent under Am mutually
parallel tracks [Du]. Let C be the stabilizer of an increasing sequence (when k → ∞) of such
parallel tracks. The map fk is equivariant so for every k there exists nk > k such that Cnk

contains C. As Ck ⊂ Ck−1 (∀ k) we obtain that C ⊂
⋂

k

Ck. The dual tree to this system of

tracks gives rise to a splitting of Am over C. Since the sequence Ck is strictly decreasing we also
have |Cm : C| = ∞. Similarly, by the equivariance of fk it follows that the stabilizers of the

complementary components to the tracks are either subgroups of Ck or
⋂

k

Ak.

Let Xm denote the corresponding graph of groups decomposition of Am. The splitting given
by Xm is non trivial (as the decomposition (4’) is non trivial for every k) and is relative to
the system of subgroups Em. So it refines the decomposition Fm of G. As the pair (G, E) does
not have essentially non maximal splittings, the splitting Xm is also essentially non maximal.
Furthermore, by the choice of m, the graph Xm may only contain trivial edges and vertices.
Thus, there is only one non-elementary vertex group A ⊂

⋂

Ai, and all the other vertex groups
are subgroups of Cm. Now the maximal elementary subgroup C̃m of Am containing C is elliptic
in Xm, so C̃m is conjugate either into A or into Cm. The former case is impossible by the non-
triviality of the splitting, so C̃m = Cm. Collapsing all vertices of Xm whose labels are elementary,
we get the non-trivial one edge splitting Am = A∗C Cm (note that we cannot get HNN-extension
which would be essentially non maximal in this case). The lemma is proved. �

It follows from the Lemma that the group C is infinite as the pair (G, E) is one-ended.
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5 Finding a G-tree invariant under endomorphism

Let G be a Kleinian group and E = {E1, ..., Ek} be a fixed finite family of elementary subgroups
of G.

Suppose that the pair (G, E) is not cohopfian. Then Proposition 3.1 tells us that (G, E) splits
as an amalgamated free product (or an HNN-extension) over an elementary subgroup. We get
infinitely many such splittings in the following Proposition.

Proposition 5.1. Let G be a non-elementary, geometrically finite, Kleinian group without 2-
torsion endowed with the system E. Then the following assertions are true:

1) If f : (G, E) → (G, E) is a non-surjective monomorphism, then there exists a (G, E)-tree τ
so that for every n ∈ N the tree fn∗(τ) is a non-trivial (G, E)-tree.

2) If in addition, the pair (G, E) is one-ended and has no essentially non-maximal splittings
then there exists a (G, E)-tree J such that for all n ∈ N, the tree f n∗(J) is a non-trivial,
(K,Φ)-acylindrical (G, E)-tree for some uniform constant K.

Proof: We prove the first part of the proposition by induction on the length l(·, E) of a hierarchy
of (G, E). Note that by proposition 3.1 we have l(G, E) ≥ 1. By the Hierarchical Accessibility
Theorem, (G, E) splits as an amalgamated free product or HNN, G = A∗CB or G = A∗C (C ∈ C)
with

max{l(A,A ∩ E), l(B,B ∩ E)} < l(G, E).

Let T denote the Bass-Serre tree dual to this splitting. If for all n ∈ N the trees f n∗(T ) are
non-trivial, let T = τ. If not, there exists m ∈ N such that up to conjugation fm(G) is a subgroup
of A or B, say A. As f is injective, the subgroup A is a non-elementary group and fm(A) & A.

As we have noticed in the previous chapter from [IKa], [Sw], it follows that A and B are
finitely presented groups.

So let us first check the statement of the proposition when l(G, E) = 1. Then l(A,A∩ E) = 0
and a contradiction : the pair (A, E ∩A) is not cohopfian, so proposition 3.1 applied to A implies
that A splits non-trivially relatively to A ∩ E .

Suppose now that l(G, E) > 1; as f is a non-surjective monomorphism of (A,A ∩ E) and
l(A, E ∩ A) < l(G, E) we can apply the induction hypothesis to A. So there exists a non-trivial
(A, E ∩ A)-tree TA such that fn∗(TA) is a non-trivial (A, E ∩ A)-tree for all n ∈ N. Let τ denote
f ∗(TA) which can be also considered as a G-tree (as f(G) ⊂ A). We get a sequence of G-trees
fn∗(τ) (n ∈ N), which are all non-trivial A-trees when restricted to A. Whence f n∗(τ) is a
non-trivial G-tree (∀ n ∈ N).

If E ∈ E then by the induction hypothesis, the group E∩A is a subgroup of a vertex stabilizer
of τ , say Gv. Thus, f−n(E ∩ A) is contained in the vertex stabilizer f−n(Gv) of the tree fn∗τ .
Since f(Ei) ⊂ Ei we obtain Ei ⊂ f−n(Ei ∩ A) ⊂ f−n(Gv). We have shown that the system E
is elliptic in the trees fn∗τ, and therefore fn∗τ is a non-trivial (G, E)-tree for every n ∈ N. The
first part of the proposition is proved.

The graph τ/G may be reducible. In this case we collapse in τ/G every edge whose label
is equal to the label of one of its vertices. Denote J the universal cover (in the sense of Serre)
of this new graph of groups decomposition of G. As G acts on τ without global fixed points,
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then obviously, G also acts without global fixed points on J, and the system E is elliptic on J.
Furthermore, as the set of the non-elementary vertex stabilizers of the trees J and τ is the same,
it follows from Part 1) that the trees fn∗J are also non-trivial (G, E)-trees (∀ n ∈ N). The pair
(G, E) is one-ended and has no essentially non-maximal splittings, so Lemma 2.6 now yields that
the reduced (G, E)-tree J is (K,Φ)-acylindrical for some uniform constant K. Then the trees
fn∗J are also (K,Φ)-acylindrical for the same constant K. Indeed, otherwise there is a segment
l of length K on the tree fn∗(J) whose pointwise stabilizer is an infinite subgroup C. Thus f n(C)
is an infinite subgroup fixing pointwise the segment l on J too. This is impossible.

�

Proposition 5.2. Suppose that the pair (G, E) is one-ended and does not have essentially non-
maximal splittings. Let f : (G, E) → (G, E) be a non-surjective monomorphism. Then there exist
a non-trivial (G, E)-tree T with elementary edge stabilizers and a non-surjective monomorphism
F : (G, E) → (G, E) such that F (Gs) ⊂ Gs for every vertex (resp. edge) stabilizer Gs.

Proof: Suppose f : (G, E) → (G, E) is an injective non-surjective endomorphism. We first claim
that there exist a non-surjective monomorphism F of (G, E) and a marked (G, E)-tree (T, t) which
dominates (F ∗T, t̃ ) (see Preliminaries for the terminology).

To be able to apply the Acylindrical Superaccessibility Theorem, we consider the minimal
G-subtree Jn of fn∗J. Let j be a marking of J and let j̃n be the marking of Jn containing j. By
Proposition 5.1 there exists a tree J so that fn∗(J) is a non-trivial (K,Φ)-acylindrical (G, E)-tree
for some uniform constant K. Clearly, the same is true for the minimal subtree Jn.

By the Acylindrical Superaccessibility Theorem, there exists a family of (G, E)-trees τ1, ..., τm
such that for every minimal (K,Φ)-acylindrical (G, E)-tree τ, the tree τi dominates τ for some
i ∈ {1, ...,m}. Furthermore, the number of possible markings of the trees τi (i ∈ {1, ...,m})
is finite (up to automorphism of (G, E)). So for a given resolution ρk : τk → τ we can find a
marking tk ⊂ ρ−1

k (t) of the tree τk such that ρk : (τk, tk) → (τ, t). Thus, we obtain a finite number
of marked trees (τ1, t1), ..., (τM , tM) (M ≥ m) such that for every minimal marked (G, E)-tree
(τ, t) there exists a marked tree (τk, tk) dominating (τ, t).

Passing to a subsequence, we can assume that there is a marked tree (τi, ti) which dominates
all the trees (Jn, j̃n). Note that, for every k ∈ N the tree f k

∗
τi is a non trivial (G, E)-tree, as it

dominates the non-trivial tree (f k+n)∗J for some n ∈ N.
Assuming (w.l.o.g.) that the above set of marked trees {(τ1, t1), ..., (τM , tM)} contains (J, j),

consider the following order relation on the set of indices {1, 2, ...,M}. We say that i ≥ k if
there exists an injective endomorphism F of (G, E) such that F is surjective iff f is, and the
marked tree (τi, ti) dominates the marked tree (F ∗(τk), t̃k). Note that this relation is transitive.
Indeed, if i ≥ k then there is a resolution from the marked tree (τi, ti) to the marked tree
(ϕ∗

1F
∗
1 τk, t̃k) where t̃k is a marking of the tree ϕ∗

1F
∗
1 τk containing tk. If also j ≥ i then there is a

resolution (τj, tj) → (ϕ∗
2F

∗
2 τi, t̃i) implying that (τj, tj) resolves (ϕ∗

2F
∗
2ϕ

∗
1F

∗
1 τk, t̃k). As each map Fi

is surjective iff f is surjective, the transitivity of this relation follows.
As M < +∞, we must have l ≥ l for some index l ∈ {1, 2, ...,M}. Therefore, there exists an

injective endomorphism F of (G, E) and a resolution ρm : τl → F ∗τl sending the marking tl to
the marking t̃l. Furthermore, the map F is surjective iff f is. Setting T = τl, t = tl, t̃ = t̃l we
obtained the marked (G, E)-tree (T, t) which dominates (F ∗T, t̃ ). This proves our claim.
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We have ρm(t) = t̃. The resolution ρm is a composition of finitely many folds [BeF1], so it does
not increase the number of G-orbites of edges of T . As t ⊆ t̃ = ρm(t) we obtain ρm(t) = t = t̃.
Whence Gs ⊂ F−1(Gs) and so F (Gs) ⊂ Gs for every vertex (resp. edge) stabilizer Gs of the tree
T. The map F and the tree T satisfy the conclusion of the proposition. �

6 Proof of Theorem B.

Let G ⊂ Isom+Hn be a non-elementary Kleinian group without 2-torsion equipped with a finite
system E = {E1, ..., Ek} of elementary subgroups and suppose that F : (G, E) → (G, E) is a
monomorphism of G sending each subgroup Ei into itself. Let Ẽi denote Ei if Ei is finite and
the maximal elementary subgroup of G containing Ei if Ei is infinite.

The aim of this section is to prove :

Theorem B. Suppose that the pair (G, E) is one-ended. Then (G, E) is cohopfian if the following
two conditions are satisfied:

1) The pair (G, E) has no essentially non-maximal splittings over elementary subgroups.

2) The pair (G, E) does not split as an amalgamated free product G = A∗C C̃, with C̃ maximal
elementary such that the normal closure of the subgroup C in C̃ is of infinite index in C̃.

Proof: Suppose f : (G, E) → (G, E) is an injective endomorphism. If the pair (G, E) is indecom-
posable over elementary subgroups then Proposition 3.1 implies that f is surjective. So we may
assume that (G, E) splits non-trivially over elementary subgroups. By Proposition 5.2 we can
find a non-trivial (G, E)-tree T and an injective endomorphism F of (G, E) sending each vertex
(edge) stabilizer of T into itself. We will need the following two lemmas:

Lemma 6.1. Suppose that there exists a graph of groups Y decomposition of (G, E) and an
endomorphism F of (G, E) sending all vertex and edge groups of Y into themselves. If F |Gv

is
surjective for every vertex group Gv of Y then F : G→ G is surjective too.

Proof: If the graph Y is a tree of groups then the vertex groups Gv (v ∈ Y 0) generate the whole
group G, and so the map F is surjective. Assume then that Y is not a tree, fix a maximal
subtree of Y, and let e be an edge which is not in the maximal subtree. By Proposition 5.2 there
exists a resolution ρ and marking t, so that ρ sends the marked tree (T, t) to the marked tree
(F ∗T, t). Let a be a vertex of e. As e does not separate T it follows that there exists an element
g ∈ G and lifts ã1 and ã2 of a to the marking t such that g(ã1) = ã2. We want to show that g
is in the image of F. As the subtree t is also a marking of the tree F ∗T, there exists g1 ∈ G so
that F (g1)(ã1) = ã2 by definition of the G-action on the tree F ∗T. This implies that the element
F (g1) · g

−1 belongs to the stabilizer Gã2
of the vertex ã2. By hypothesis F restricted to Gã2

is
surjective. So there exists g2 ∈ G for which F (g1) · g

−1 = F (g2). It follows that the element g is
in the image of F. The lemma is proved. �

The next lemma shows that we have only to worry about non-elementary vertex groups.
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Lemma 6.2. Suppose that Y is a splitting of the pair (G, E) which is essentially non-maximal
and the pair (G, E) satisfies condition 2) of Theorem B. Suppose also that F is an injective
endomorphism sending every vertex (edge) group of Y into itself. If the map F |Gv

is surjective
for every non-elementary vertex group Gv of Y then F : G→ G is surjective.

Proof: Collapsing each edge of the graph Y = T/G whose label is equal to the label of the vertex
incident to it, we may assume that the splitting Y is irreducible (as this operation does not
modify the non-elementary vertex stabilizers, so all the assumptions of the lemma remain valid
for the new splitting). Let us now consider edge groups and elementary vertex groups of the graph
Y = T/G. Since our group G is non-elementary, after collapsing all pairs of adjacent neighboring
vertices v1 and v2 whose labels are elementary groups we still get a non-trivial splitting of G
satisfying all the above properties. Similarly, if there is a vertex v whose vertex group Gv is
elementary and such that there is a loop e emanating from v, then we collapse this loop to v.
The resulting vertex group will be still elementary and the map F sends it into itself. So we may
assume that every edge e ∈ Y 1 which is not a loop has at least one vertex v ∈ ∂e whose label
is a non-elementary group Gv. Moreover there is no loop of Y emanating from a vertex whose
label is elementary.

We can also suppose that our graph Y does not have vertex groups which are non-maximal
elementary groups. Indeed, if Gv is such a group then, since Y is an essentially non-maximal
splitting, the maximal elementary subgroup G̃v containing Gv is contained in some other vertex
group, say Gv′ . However, the group Gv is contained in the stabilizer of the edge belonging to the
path between v′ and v. This contradicts the irreducibility of the graph Y.

Let us now prove that the restriction F |Ge
on every edge group Ge is surjective. Indeed,

as F is injective the group F−1(Ge) is elementary (being isomorphic to F (F−1(Ge)) which is a
subgroup of Ge) and we have F−1(Ge) ⊃ Ge since F (Ge) ⊂ Ge. Let v1 ∈ ∂e be one of the vertices
of e whose stabilizer Gv1 is not elementary. Since F |Gv1

is surjective, for any y ∈ Ge there exists
x ∈ Gv1 so that F (x) = y. If another vertex v2 ∈ ∂e has also a non-elementary stabilizer then by
the same reason and the injectivity of F we obtain that x ∈ Gv2 and so x ∈ Ge. Now if, Gv2 is a
maximal elementary subgroup of G we have F−1(Gv2) ⊃ F−1(Ge) ⊃ Ge. Thus F−1(Gv2) = Gv2

since Ge is infinite and is contained in the unique maximal elementary subgroup Gv2 . This shows
that x ∈ Gv2 and again x ∈ Ge.

Let us prove that F is surjective on every elementary maximal vertex group Ev (v ∈ Y 0) of
the graph Y . Let ei (i = 1, ..., l) be the edges incident to v and Ci be their labels. As there
is no loop emanating from the vertex v we get a decomposition G = A ∗Cv

Ev, where Cv is the
elementary group generated by Ci (i = 1, ..., l) and A is the group generated by labels of the
vertices of Y 0 \ {v}. We already know that our map F is surjective on every edge group Ci and
so it is surjective on Cv. Moreover applying the previous argument to each edge stabilizer of the
tree T, we conclude that the restriction of F on every G-conjugate of Cv is also surjective. It now
follows that F is surjective on the normal closure Nv of Cv in Ev. Since F maps the group Ev into
itself, and Nv onto itself, it induces an injective map Φ : Ev/Nv → Ev/Nv. By the hypothesis 2)
of the Theorem, the group Ev/Nv is finite, whence the map Φ is surjective, and so F is surjective
on Ev. We have proved that F is surjective on every edge and every elementary vertex group of
the graph Y . The conclusion now follows from the previous lemma. �

The remaining part of the proof of Theorem B consists of two steps.
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Step 1. Decomposition procedure.

Let Y be the graph of groups decomposition given by Proposition 5.2, and F the injective
endomorphism of (G, E), such that F sends every vertex and edge group of Y into itself. If F |Gv

is surjective for every non-elementary vertex group Gv of Y then Lemma 6.2 implies that F (and
so f) is surjective. We may therefore assume that there exists a non-elementary vertex group Gv

of the graph Y such that F |Gv
is not surjective. Then by Proposition 3.1 the pair (Gv, E ∪ Cv)

splits non-trivially over elementary subgroups, where Cv is the set of labels of the edges of Y
incident to the vertex v.

We claim now that every splitting Yv of (Gv, E ∪ Cv) is essentially non-maximal and the
pair (Gv, (E ∪ Cv)) satisfies Condition 2) of the Theorem. Let C denote an edge stabilizer of
Yv and C̃ be the maximal elementary subgroup of G containing C. We want to show that
the group C̃v = C̃ ∩ Gv is conjugate into some vertex group of the splitting Yv. Let Tv and T
denote respectively the corresponding Bass-Serre tree of the splittings Yv and Y. As the splitting
Yv = Tv/Gv refines the graph Y , it gives rise to a new splitting Yv of (G, E). Let Tv be the
corresponding tree. The splitting Yv of G is essentially non-maximal, so the group C̃ is conjugate
into the label of some vertex v1 of Tv. If v1 belongs to Tv there is nothing to prove. If not,
v1 ∈ (Tv \ {v}), and so the group C̃v fixing the vertices v1 and v of the tree T, also fixes a
path between them pointwise. Thus C̃v is a subgroup of an edge group of the graph Y and
by hypothesis is elliptic in the splitting Yv as was promised. Similarly the pair (Gv, E ∪ Cv) is
one-ended. As every splitting of the pair (Gv, E ∪ Cv) over elementary subgroups refines Y we
obtain that (Gv, E ∪ Cv) does not split as Gv = A ∗C C̃ where the normal closure of C in C̃ is a
subgroup of infinite index of C̃.

All the edge groups of the graph Y = T/G are quasi-convex subgroups of G. The results
[IKa, Lemma 3.5] and [Sw] imply that every vertex stabilizer Gv is a geometrically finite group,
and so is a finitely presented group [Ra]. Proposition 5.2 applies to the vertex group Gv giving
an injective endomorphism Fv of Gv which sends all vertex (edge) groups of Xv to themselves
and which is surjective iff F is. We now decompose relatively to the edge groups all other non-
elementary vertex groups of the graph Y, then pass to all non-elementary vertex groups obtained
further etc. The following Lemma guarantees that the decomposition procedure stops.

Lemma 6.3. This refining decomposition procedure stops after finitely many steps.

Proof: By [BeF2] there exists a constant ν(G) such that every graph of groups decomposition of G
with elementary edge groups can contain at most ν(G) non-trivial edges and vertices. Denote by
Yn the graph of groups decomposition of (G, E) which we obtain after n refining decompositions
described above, and let Tn denote the corresponding Bass-Serre tree. Suppose that the sequence
Yn does not stabilize. Then there exists n0 > ν(G) such that every component Yn \Yn+1 (n > n0)
can only contain trivial vertices and edges (see Chapter 4 for the definitions). So there exists a
vertex vm0

(m0 = m(n0) > n0) of the graph Yn0
whose label is a non-elementary group Gm0

such
that the above decomposition procedure gives us the following refining sequence:

Gm0
= A1 ∗C2

C1, A1 = A2 ∗C3
C2, ...., (5)

where Ai are non-elementary and Ci are elementary vertex groups and Ci ⊂ Ci−1 (i = 1, 2, ...).
Then Lemma 4.4 implies that pair (Gm0

, (E ∪ Cm0
∩Gm0

)) splits as

Gm0
= A ∗C C̃m0

, (6)

19



where Cm0
is the set of the stabilizers of edges of Tn0

incident to the vertex vm0
, and C̃m0

is the
maximal elementary subgroup of Gm0

containing all Ci. Furthermore, by Lemma 4.4
rank(C) < rank(C̃m0

). We are now going to replace the infinite refining sequence (5) by one
splitting (6) over a subgroup of smaller rank. To this end, we apply our machinery described in
Chapter 5 to the splitting (6). Let Fm0

be the endomorphism of Gm0
obtained according to this

procedure. It preserves the first splitting Gm0
= A1 ∗C2

C1 in (5), sending each vertex (edge)
group of it into itself.

Let tm0
denote the Bass-Serre tree corresponding to the splitting (6). We claim that (F l

m0
)∗tm0

is a non-trivial (Gm0
, (E ∪ Cm0

∩ Gm0
))-tree for all l ∈ N (compare with Proposition 5.2). For

otherwise, F k
m0

(Gm0
) ⊂ A for some k ∈ N. We have also Fm0

(C̃m0
) ⊂ C̃m0

, and so F k
m0

(C̃m0
) ⊂

(A ∩ C̃m0
= C) which is impossible since rank(C) < rank(C̃m0

) and F is injective.
As the tree (F k

m0
)∗tm0

refines the graph Yn0
of G and n0 > ν(G), it may contain only one

conjugacy class of non-elementary vertex stabilizers and all its edge stabilizers are conjugate into
C. Collapsing all vertices in the graph (F k

m0

∗
(tm0

))/Gm0
whose labels are elementary, we reduce

it to an edge of groups such that the label of the edge is an infinite index subgroup of the label of
one of the vertices which is a maximal elementary subgroup. So without changing the notations,
we may assume (w.l.o.g.) that Fm0

sends vertex (edge) groups of the splitting (6) into themselves.
We now refine the splitting given by the graph Yn0

by replacing the vertex group Gm0
by the

splitting (6) and retain the same notation Yn0
for the new splitting.

Similarly, if the decomposition procedure for the pair (A, (E ∪ Cm0
∩ A)) does not stop after

finitely many steps there exists a decomposition A = B ∗K K̃A where B is non-elementary
and K is an infinite index subgroup of the maximal elementary subgroup K̃A of A containing
K. We get a splitting of Gm0

which refines the splitting Yn0
giving the new graph Yn0+1 of

groups decomposition of (G, E). By the argument given before Lemma 6.3 all these splittings
are essentially non-maximal relatively to the edge groups. Let Tn0+1 denote the Bass-Serre tree
corresponding to the splitting Yn0+1.

We now claim that if gK̃g−1 = C̃ (g ∈ G) then

rank(K) < rank(C).

Indeed, up to conjugation we may assume that either C ⊂ B or C ⊂ K̃A. In the latter case the
claim follows from Lemma 4.4 (as C = K̃A in this case). If C ⊂ B we have the decomposition
Gm0

= K̃A∗KB∗C C̃m0
. Note that C̃m0

is the maximal elementary subgroup of G (i.e. C̃ = C̃m0
⊃

C). Indeed for otherwise, C̃m0
fixes a path in Tn0+1 between two vertices which are stabilized by

C̃m0
and C̃. As the vertex stabilized by C̃m0

is of valence one in the tree Tn0+1, this path contains
the edge stabilized by C, and so C = C̃m0

which is impossible. Thus C̃ = C̃m0
. Let w be the

vertex of Tn+1 fixed by K̃. Then C̃ fixes the vertex gw. By the above argument the stabilizer of
gw is C̃m0

= C̃. So we obtain that K̃ = K̃A = g−1C̃g with g ∈ B. This would imply that C̃ is
conjugate into A contradicting the non-triviality of the splitting (6). This proves our claim.

It now follows that there are only finitely many decompositions of A refining the graph Yn0

over subgroups which are conjugate into the same maximal elementary subgroup C̃ of G. On the
other hand, the group G is geometrically finite, so it can contain only finitely many conjugacy
classes of maximal parabolic subgroups [Ra]. We deduce that the above decomposition procedure
will necessarily terminate after finitely many steps. The lemma is proved. �

Step 2. Surjectivity of f .
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Our process of decomposition of the group G has a structure of a rooted tree which we shall

describe now. By Lemma 6.3 this tree T is finite, and can be written as T =
M
⋃

n=1

Vn. The initial

group G corresponds to the root vertex O. Each vertex x of T belongs to set Vn of vertices of
level n for some n ∈ {1, ...,M}. Every vertex of level ≥ 2 has a unique parent. The parent vertex
X corresponds to a group GX with a fixed graph of groups decomposition for which Gx is one
of the vertex groups (we borrow this family terminology from the paper [BiJo]). In its turn the
vertex x will have a collection of “children” V (x) ⊂ Vn+1 which correspond to vertex groups of
the graph of groups decomposition of the group Gx. Edges of the tree T indicate “family ties”
between “parents” and “children”. Furthermore, by Proposition 5.2 to each vertex x ∈ Vn we
associate an endomorphism Fx : Gx → Gx which preserves the splitting of Gx sending the labels
of the “children” of x in V (x) ⊂ Vn+1 into themselves.

Those vertices v ∈ Vn which are either elementary or indecomposable over elementary sub-
groups (relatively to the edge groups) will be terminal vertices of the tree T . For every non-
terminal vertex x ∈ Vn we apply the decomposition procedure described on Step 1 to get vertex
groups V (x) ∈ Vn+1 and the corresponding endomorphism Fx sending them to itself etc.

After descending along the tree T we reach the final level VM all of whose vertices are terminal
(of course there could be some terminal vertices of T belonging to other levels). Now we are
going to go up in order to prove the surjectivity of the original map f . Each vertex w ∈ VM−1

is either terminal or there is a set of its “children” xi ∈ V (w) ⊂ VM which are all terminal. In
the former case the map Fw is surjective. In the latter case by Proposition 3.1 it follows that
Fw|Gxi

is surjective for every non-elementary vertex group xi ∈ V (w). Then by Lemma 6.2 we
obtain that Fw is surjective for every w ∈ VM−1. Similarly, w ∈ V (u) for some vertex u ∈ VM−2

(the “parent” of w). We have by Proposition 5.2 that the corresponding maps Fu|Gw
and Fw are

surjective or not simultaneously. Therefore, Fu|Gw
is surjective for all w ∈ V (u) whose labels are

non-elementary. Again by Lemma 6.2 Fu is surjective and so on.
Applying this procedure finitely many times we finally arrive at the first level V1 of T corre-

sponding to the vertices of the graph Y . We have just shown that for all non-terminal vertices
v ∈ V1 the maps Fv are surjective and, so the map F |Gv

is surjective. Similarly, Lemma 6.2
implies that the map F : G → G is an automorphism of G. Then our initial map f : G → G is
an automorphism too.

To finish the proof we only need to show that f |E is surjective on every E ∈ E . As f(E) ⊂ E
the conclusion is obvious when E is finite. If it is not the case then by the uniqueness of the
maximal elementary subgroup Ẽ of G containing E we have f(Ẽ) = Ẽ as f(E) is an infinite
subgroup of both. So f |Ẽ : Ẽ → Ẽ is an automorphism. Then using the fact that any increasing
sequence of subgroups of a virtually abelian group of finite rank must stabilize, we deduce that
f(E) = E. Theorem B is proved. �

7 Necessary Condition in Theorem A.

The necessary condition in Theorem A follows directly from the following result:

Theorem D. A finitely generated discrete group G ⊂ Isom+Hn is not cohopfian if one of the
two conditions below is satisfied:
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1) G has an essentially non-maximal splitting

G = π1(X,Gv, Ce), where each vertex group Ce is elementary (1′)

2) The group G splits as an amalgamated free product G = Γ ∗C C̃, so that C̃ is a maximal
elementary subgroup of G and the normal closure of C in C̃ is a subgroup of infinite index
of C̃.

We start with:

Remarks 7.1. 1) In particular infinite elementary subgroups of Kleinian groups are not co-
hopfian (case 2 with Γ = C = 1).

2) Examples of discrete geometrically finite groups in Hn which are described in 1) and 2) of
Theorem D, exist, see [OP].

3) If every elementary group over which G splits is in fact abelian and if there exists a splitting
X described in Condition 2) then there is another splitting over elementary subgroups which is
essentially non-maximal: the maximal elementary vertex group can be written as a central HNN-
extension with a base containing all corresponding edge stabilizers. However, this is not the case
in general, as there exists (torsion-free) virtually abelian groups with finite abelianization.

We will first study essentially non-maximal splittings of G:

Proposition 7.2. Suppose G splits as a graph of groups (1’), where one of the edge groups
Ce = E of the splitting (1’) is essentially non-maximal, and let Ẽ be the maximal elementary
subgroup of G containing E with infinite index so that Ẽ is hyperbolic in the splitting (1’). Then
there exists an element g ∈ Ẽ so that g centralizes E and gn 6∈ E (n ∈ N).

Proof of 7.2: Let T be the Bass-Serre tree corresponding to the splitting (1’). The group Ẽ
contains a normal free abelian subgroup Ã of finite index. As Ẽ acts on T hyperbolically it
follows that the group Ã also does. Hence by [S, I-6.5, Proposition 27] it follows that Ã leaves a
line L ⊂ T invariant. As Ã is normal in Ẽ the group Ẽ also leaves L invariant. Then either Ẽ
acts by translations on L; or it acts dihedrally on L (permuting the end points of L). So, there
is a projection η of Ẽ on Z or onto Z2 ∗ Z2. Moreover since the subgroup E of Ẽ fixes an edge
e in T it fixes the axis L pointwise. So we may suppose that e ⊂ L and that E is the kernel of
η (which is the kernel of the action of Ẽ on L). It follows that up to passing to a subgroup of
index 2 and retaining the notation Ẽ for it, we have the following exact sequence:

0 −−−→ E −−−→ Ẽ
η

−−−→ Z −−−→ 1,

Let t denote the element of Ẽ which is mapped on the generator of Z, so we have tn 6∈ E (∀n ∈ N).
There exits m ∈ N so that tm ∈ Ã and up to replacing t by tm and passing to a further subgroup
of finite index we may suppose that t ∈ Ã. Also tn 6∈ E (∀n ∈ N).

Let A denote the group Ã ∩ E which is a normal abelian subgroup of E of finite index. We
have:
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0 −−−→ A −−−→ E
ξ

−−−→ F −−−→ 1, (∗),

where F is a finite group.

Definition. An automorphism of E will be called the automorphism of the sequence (*) if its
restriction to A is trivial and if it induces the identity on F . The group of the automorphisms of
(*) is denoted Aut(∗).

Let s : F → E be a set theoretic cross-section of ξ and ψ ∈ Aut(∗). Put cψ(f) = ψ(s(f))s(f)−1, ∀f ∈
F .

Lemma 7.3. The following assertions hold:

a) cψ(f) is a 1-cocycle of F taking values in A.

b) For each f ∈ F the map ψ → cψ determines a group homomorphism

Aut(∗) → Z1(F,A).

Proof: a) Notice first that cψ(f) ∈ A since ψ induces the identity map on F . We have then:
s(f · g) = s(f) · s(g) · α(f, g), where α(f, g) ∈ A.

ψ(s(f ·g))·(s(f ·g))−1 = ψ(s(f)s(g)α(f, g))·α−1(f, g)(s(f)s(g))−1 = ψ(s(f))ψ(s(g))s(g)−1s(f)−1,
since ψ(a) = a (∀a ∈ A). Further we derive :

ψ(s(f ·g))·(s(f ·g))−1 = ψ(s(f))s(f)−1+s(f)ψ(s(g))s(g)−1s(f)−1 = ψ(s(f))s(f−1)+ρ(f)cψ(f) =
cψ(f) + ρ(f)cψ(f), where ρ(f) denotes the action of f ∈ F on A given by conjugation by s(f).
This proves a) by the definition of a cocycle (see [Br, p. 88]).

b) cψ1ψ2
(f) = ψ1ψ2(s(f))s(f)−1 = ψ1[ψ2(s(f))s(f)−1s(f)]s(f)−1 = ψ1(cψ2

(f) · s(f))s(f)−1 =
cψ2

(f) + cψ1
(f), here we used that cψ2

(f) ∈ A and that ψ1 keeps it unchanged. We have proved
b). The lemma is proved. �

Proof of the proposition. Recall that tn ∈ Ã \ E (∀ n ∈ N). Let ψ be an inner automorphism of
Ẽ given by the conjugation via t. As t acts identically by conjugation on A it is easy to verify
that it also induces the identity on F , i.e.:

t̂f t̂−1 = f, ∀ f ∈ F,

where t̂ = ξ(t). So ψ is an automorphism of the sequence (∗) and we get cψ(f) = ts(f)t−1s(f)−1.
Since the group F is finite the first cohomology group H1(F,A) is finite too and, so there exists
p ∈ N such that cψp(f) is a coboundary. It follows that there exists a ∈ A that cψp(f) =
a − ρ(s(f)) · a = a + ρ(s(f))(−a). Writing this in the multiplicative form we have cψp(f) =
as(f)a−1s(f)−1 = tps(f)t−ps(f)−1 implying that ∀ s(f) ∈ E : a−1tps(f)t−pa = s(f). Putting
g = a−1tp we obtain that g is not trivial (tp 6∈ A) and centralizes E. The proposition follows.

�

Note that above we also obtained the following fact which will be used further:
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Remark 7.4. The group of the automorphisms of the sequence (*) is finite modulo conjugation
in E (in other words the subgroup of Out(E) which preserves (*) is finite)

Indeed in the above proof for some power p ∈ N of ψ ∈ Aut(∗) we will have:
ψp(s(f))s(f)−1 = as(f)a−1s(f)−1. Thus ∀e ∈ E ψp(e) = aea−1 since e · s(f−1) ∈ A for some
f ∈ F and ψp is the identity on A. �.

Lemma 7.5. Suppose that the group G splits as a graph of groups G = π1(X,Gv, Ce) with
elementary edge stabilizers such that one of the edge group E = Ce is essentially non-maximal
then G splits as an amalgamated free product or an HNN-extension:

G = A ∗K B, or G = A∗K , (6)

where K is essentially non-maximal and contains E.

Proof:
Let T denote the tree which is the universal covering ofX and let Ẽ be the maximal elementary

subgroup of G containing E. The group Ẽ acting on T without fixed points has an invariant line
L ⊂ T (see the beginning of the proof of Proposition 7.2). Since the subgroup E fixes a point in
T it also fixes L pointwise. Let ê ⊂ L be an edge of T and α̂ and β̂ its vertices. We first claim
that the stabilizer F of the edge ê in G coincide with the stabilizer K of ê in Ẽ (i.e. the kernel
of the action of Ẽ on L). Indeed, both groups contain the group E which is an infinite group so
by the uniqueness of the maximal elementary subgroup Ẽ containing E it follows that F ⊂ Ẽ
which implies that F = K. Similar argument shows that the subgroup N of G leaving the line
L invariant coincide with Ẽ. Indeed, the group N is elementary which follows from the fact that
it has a projection to Z or Z2 ∗ Z2 whose kernel is the elementary group K, consequently N is
an elementary group containing Ẽ, and thus Ẽ = N .

Let α, β, e denote the images in X of α̂, β̂, ê respectively under the projection p : T → X.
Let us first consider the case when e does not separate the graph X. Then the group G is the
HNN -extension G = A∗K = 〈A, t | tKt−1 = φ(K)〉 where A is the fundamental group of the
graph of groups Y = X \ e. Denote Ŷ the component of the preimage p−1(Y ) adjacent to the
edge ê at the point α̂ ∈ T . Clearly p(Ŷ ) = Y , so we may assume up to conjugation in G that
the stabilizer of Y is A. As none G-translate of ê is contained in Ŷ and T is a tree we have
L ∩ Ŷ = {α̂}. Let h ∈ Ẽ \ E be an element acting on L by translations. As h(α̂) ∈ L \ {α̂}, so
h can not belong to the stabilizer of Ŷ . Consequently, the group Ẽ is hyperbolic in the splitting
G = A∗K .

The case when the edge e separates X is similar: we obtain the splitting G = A∗KB where A
and B are the fundamental groups of the graphs which are respectively connected components U
and V of X \e. Denote Û and V̂ the components of p−1(U) and p−1(V ) which are adjacent along
the edge ê in T , in particular α̂ ∈ Û and β̂ ∈ V̂ . The stabilizers Û and V̂ are up to conjugation
the groups A and B. Again we have Û ∩ L = {α} and V̂ ∩ L = {β}. There exists an element
h ∈ Ẽ \K which acts by translations on L so h(α̂) ∈ L \ {α̂}, and the same for β̂. Consequently,
the element h does not belong to the stabilizers of Û and V̂ . This shows that Ẽ is not elliptic
with respect to the splitting G = A ∗K B. The lemma is proved. �

Proof of Theorem D : Let us first consider Condition 1) of the theorem which is:
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1) G has an essentially non-maximal splittings.

Then it follows from Lemma 7.5 that there is a splitting (6) of G as an amalgamated free product
or an HNN-extension which is essentially non-maximal. The edge group K is an elementary
essentially non-maximal subgroup and let K̃ be the maximal elementary subgroup ofG containing
K which is hyperbolic in the splitting (6). By Proposition 7.2 it follows that there exists an
element t ∈ K̃ \K which centralizes K.

Consider first the case of amalgamated product, i.e. G = A ∗K B. Let us define the map
f : G → G so that f(a) = tat−1, and f(b) = b (∀a ∈ A, ∀b ∈ B). As t commutes with all
elements from K, the map f is obviously a homomorphism. Furthermore, if a ∈ A \ K then
tat−1 ∈ tAt−1 \ K. So the group G1 = f(G) is isomorphic to the amalgamated free product
tAt−1 ∗K B, and every element g ∈ G1 has the following normal form:

g = ta1t
−1 · b1 · ... · takt

−1 · bk, or g = b1 · ta1t
−1 · ... · bk · takt

−1, ai ∈ A \K, bj ∈ B \K. (7)

If now g = f(γ) = 1 for some γ ∈ G , then using (7) it is easy to see that γ ∈ A or γ ∈ B. So
by injectivity of f on A and B we obtain γ = 1. Thus f : G → G1 is an isomorphism. We need
only to show that G1 $ G.

The group G1 being a subgroup of G acts on the Bass-Serre G-tree T corresponding to the
splitting G = A ∗K B. Denote by α and β the vertices of T whose stabilizers are A and B. Set
d = min

g∈G
distT (gtg−1(α), α) then d > 1 since t is not conjugate into A and B. In particular, t

cannot normalize A (since otherwise tAt−1 fixes the path between t(α) and α pointwise and so
tAt−1 is conjugate into K which is impossible). An easy calculation shows that

min
α

distT (g(α), α) = 2k(d+ 1), where α ∈ {a, b}.

It follows that the set L(G1) of translation lengths of elements of G1 acting on T is equal to
{2k(d+ 1) | k ∈ N} which is a proper subset of L(G) (e.g. 2 ∈ (L(G) \ L(G1)). This shows that
G1 $ G.

Consider now the case of an HNN-extension G = A∗K = 〈A, h | hKh−1 = φ(K)〉 and let T
be the corresponding Bass-Serre tree. There are two more subcases: a) h ∈ K̃ and b) h 6∈ K̃.
In the subcase a) we proceed as follows. By the proof of Proposition 7.2 there exist p ∈ N and
a ∈ A(K) so that the element g = hp · a commutes with every element of K, where A(K) is the
maximal abelian subgroup of K. Now we define the map f : G→ G to be the identity on A and
set f(h) = hp+1 · a. It is easy to check that f is an injective endomorphism (since hp+1 acts by
conjugation on K in the same way as h does) which is not surjective.

In the subcase b) we proceed similarly to the case of an amalgamated free product, namely
put f(a) = tat−1, ∀a ∈ A and f(h) = h, where t is an element in K̃ \K acting hyperbolically
on the tree T and centralizing K. Then any element g of the group G1 = f(G) = tAt−1∗K =
〈tAt−1, h|hKh−1 = φ(K)〉 can be written as:

g = ta1t
−1 · hε1 · ta2t

−1 · ... · takt
−1 · hεk , or g = hε1 · ta1t

−1 · hε2ta2t
−1 · ... · takt

−1, (7)

where εi ∈ Z and if εi < 0 and ai ∈ K then εi+1 ≤ 0, and if εi > 0 and ai ∈ K then εi+1 ≥ 0.
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Let α be the vertex of T whose label is A and M be the line in T which is formed by the
vertices hn(α) (n ∈ Z). As h 6∈ K̃ the element t does not belong to the maximal elementary
subgroup containing h and so t(α) 6∈ M . It is now straightforward that the translation length

l(g) of the element g in (7) is equal to 2kd +
k

∑

i=1

|εi|, where d = ming∈G distT (gtg−1(α), α).

Indeed each term tait
−1 in (7) adds 2d to the expression of l(g) and the term hεi contributes |εi|

to it. For a fixed d ≥ 1 the set {2kd +
k

∑

i=1

|εi| | k ∈ N, εk ∈ Z} is a proper subset of N which

is the set of translation lengths of G acting on T . This shows that in this case G1 is a proper
subgroup of G. Part 1) of Theorem D is proved.

Consider now Condition 2) of Theorem D which is:

The pair (G, E) splits as an amalgamated free product G = Γ ∗C C̃, so that C̃ is a maximal
elementary subgroup of G and the normal subgroup of C̃ generated by C is of infinite index in
C̃.

Suppose that G splits as an amalgamated free product G = G ∗C Ev, where v is vertex
whose label is a maximal elementary subgroup Ev = C̃. We are going to construct a proper
monomorphism from G into G which is the identity on B and which sends Ev into itself being
not surjective on it. We denote Nv the normal subgroup of Ev generated by C; by hypothesis
|Ev : Nv| = ∞.

The group Ev is virtually abelian of finite rank, let A be a finite index normal free abelian
subgroup of Ev. Denote D = A ∩Nv and F = Ev/A. As Nv and A are normal in Ev the group
D is normal in Ev too. Let also s : F → Ev be a normalized cross-section of the projection of
Ev onto F . The group F acts on A by conjugation a→ s(f)as−1(f). Consider the vector space
A ⊗ Q which we equip with a scalar product invariant under the induced action of F . As the
subspace D ⊗ Q is invariant under the induced action of F there exists a subspace V in A ⊗ Q
complementary to D⊗Q which is also invariant under this action. We can now find a subgroup
B of A so that V = B ⊗ Q and so A⊗ Q = (D ⊗ Q) ⊕ (B ⊗ Q). The group B has the following
properties: B ∩D = {id} (since A is torsion free); B is normal in Ev; and the group A′ = D⊕B
is a normal free abelian subgroup of Ev of finite index. Denote F ′ = Ev/A

′. Consider the map
hn : A′ → A′ defined as hn(d+ b) = d+nb for every d ∈ D and b ∈ B. One can now find a group
Hn and a homomorphism ϕn : Ev → Hn so that the following diagram commutes :

0 −−−→ A′ i
−−−→ Ev

p
−−−→ F ′ −−−→ 1

hn





y

ϕn





y

∥

∥

∥

0 −−−→ A′ in−−−→ Hn
pn

−−−→ F ′ −−−→ 1.

In fact the group Hn is the largest quotient of A′ o Ev such that the left-hand square of the
above diagram commutes (see e.g. [Br, page 94]). Note that ϕn is injective and not surjective
since hn is ( ∀n ∈ N). Furthermore, ϕn is the identity on D. We need now to show that Hn is
isomorphic to Ev. Let us define a set-theoretic cross section sn : F ′ → Hn of the projection pn
(see the diagram) to be sn = ϕn ◦ s. It is known (see e.g. [Br, III.3.12]) that the equivalence
classes of extensions of A′ by F ′ are in 1− to−1 correspondence with the elements of H2(F ′, A′).
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If α ∈ H2(F ′, A′) is the element which corresponds to the upper row of the commutative diagram
then it satisfies i(α(g, γ))s(gγ) = s(g)s(γ) (g, γ ∈ F ′). We have

sn(g)sn(γ) = ϕn(s(g)ϕn(s(γ)) = ϕn(s(g)s(γ)) = ϕn(i(α(g, γ))s(gγ)) = in(hn(α(g, γ)))sn(g, γ).

Setting αn(g, γ) = hn(α(g, γ)) we obtain from the above identity that αn(g, γ) is an element of
H2(F ′, A′). Since α(g, γ) takes its values in A′ we can write α(g, γ) = d(g, γ) + b(g, γ) where
d(g, γ) ∈ D and b(g, γ) ∈ B. We also have the following commutative diagram:

0 −−−→ A′ i
−−−→ Ev −−−→ F ′ −−−→ 1

π1





y

π2





y

∥

∥

∥

0 −−−→ B = A′/D
j

−−−→ Ev/D −−−→ F ′ −−−→ 1

where πi are the natural projections and j is the natural inclusion. Define a section σ : F ′ →
Ev/D to be σ = π2 ◦ s. Similarly we then show that σ(g)σ(γ) = j(p2(α(g, γ)))σ(g, γ) (g, γ ∈ F ′).
As b = π1 ◦ α we obtain that b is also an element of H2(F ′, A′). Since the group F ′ is finite it
follows from [Br, III.10.2] that the group H2(F ′, A′) is annihilated by |F ′|. Choosing n to be
n ≡ 1(mod |G|) we obtain that b = nb and so αn = d + bn = d + b = α. This implies that
α and αn define the equivalent extensions and, so the groups Ev and Hn are isomorphic. Let
n0 = |F ′| + 1 then the map ϕn0

is an endomorphism of Ev which is injective, non-surjective and
is the identity on D. Since D is an abelian normal subgroup of Nv of finite index, it follows
that ϕn0

is the identity on Nv too (because if h represents a coset in Nv/D then the element
ϕn0

(h) · h−1 commutes with all elements in D and so ϕn0
(h) ≡ h(mod D)). By Remark 7.4 it

follows that
∃ k ∈ N, ∃ a ∈ D ∀h ∈ Nv : ϕkn0

(h) = aha−1.

Setting F |Ev
= a−1 · ϕkn0

· a, we obtain an injective, not surjective endomorphism of Ev which
is the identity on Nv. Extending now F by the identity to the fundamental group of the graph
X \ {v} we obtain a monomorphism F : G → G which is injective and not surjective. Theorem
D is proved. �

8 Cohopficity of Groups with Infinitely Many Ends.

In this section we provide a criterion establishing the co-Hopf property for multi-ended groups.
We start with an abstract finitely presented group G. Let us recall that if G has infinitely many
ends then the Dunwoody’s accessibility Theorem [Du] states that there exists a graph of groups
decomposition G = π1(X,Gv, Ce) such that all edge groups Ce are finite and all vertex groups Gv

are one-ended. Furthermore the sets of vertex and edge groups of X are unique [DD, Proposition
7.4]. We will further call this graph of groups DS-graph of G (referring to Dunwoody-Stallings’
theorems for splitting of groups with infinitely many ends [Du], [St]).

We denote µ(G) the number of edges of a DS-graph of G. If G = A ∗F B (resp. G = AF∗)
and F is a finite group then max{µ(A), µ(B)} < µ(G). Indeed as finite groups are always elliptic
in any splitting we can always reach the terminal DS-graph of G by taking further decomposition
of A and B over finite subgroups.
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Before we state the main result of this section we give a more precise definition of an acylin-
drical splitting for a multi-ended group (compare with Definition 2.5):

Definition 8.1. Let G = π1(Y ) be a splitting of a group G as a graph of groups with finite edge
stabilizers and T be the corresponding Bass-Serre tree. We call this splitting (and respectively the
tree T ) strictly K-acylindrical if the stabilizer of each segment of T of the diameter at least
K is a proper subgroup of some edge stabilizer of T. �

We will prove the following.

Theorem E. Let G be an infinitely ended finitely presented group and let X∗ = (X,Gv, Ce)
denote its DS-graph. Suppose that every one-ended vertex group Gv is cohopfian. Then G is
cohopfian if and only if every splitting of G over finite groups is strictly K-acylindrical for some
uniform constant K.

Proof of the sufficient condition: Assume that all splittings of G over finite groups are K-
acylindrical for some fixed K ∈ N. Note first that this property is then also true for each vertex
group of any graph of groups decomposition of G over finite groups. Indeed, every splitting of
such vertex group Gv over finite groups refines the splitting of G. Consequently, all splittings of
Gv over finite groups are strictly K-acylindrical (for the same constant K). This remark will
be constantly used in the argument which will mainly repeat the proof of Theorem B given in
Sections 5 and 6. We will only indicate some modifications (and simplifications) which are to be
done.

Suppose by contradiction that f : G→ G is an injective endomorphism which is not surjective.
Let us prove the statement by induction on the invariant µ(.). Note that if µ(G) = 0 then G
is one-ended which is impossible by our hypothesis. So let us assume that µ(G) > 0 and the
statement is true for all groups with the value of µ(·) less than that of G.

Among all splittings of G over finite subgroups we choose one: G = A ∗E B or G = A∗E for
which E has a minimal order. Note that E cannot be trivial, as every free product decomposition
is not strictly K-acylindrical for all K. Let T denote the Bass-Serre tree corresponding to this
splitting. As in Section 5 we consider the sequence of G-trees Tn = fn∗T with finite edge
stabilizers. Note that if Tn is a trivial G-tree then arguing as in Proposition 5.1 we obtain that
one of the groups A or B is not cohopfian. By the hypothesis it follows that it is not a one-ended
group. We note that max(µ(A), µ(B)) < µ(G) as every splitting of A and B over finite groups
refines the above splitting of G. Using now the induction on the invariant µ(·), we obtain similarly
to 5.1 that the trees Tn are all non-trivial G-trees.

Let l denote a path of length K in the tree Tn. Then the stabilizer of l is a subgroup of the
stabilizer l in the tree T . By the strict acylindricity of T it now follows that its order is strictly
less than the order o(E) of the group E. As G does not split over a subgroup of order less than
o(E), it does not split over the stabilizer of l. Then by Theorem 3.1 of [De] we obtain finitely many
G-trees τ1, ..., τk such that every tree Ti is dominated by one of τj’s where i ∈ N, j ∈ {1, ..., k}.
Then applying the argument of Proposition 5.2 (which does not use the fact that the group G is
Kleinian nor one-ended) we obtain a strictly K-acylindrical G-tree τ with finite edge stabilizers
and a new monomorphism F : G → G which sends all vertex (resp. edge) stabilizers of τ into
themselves. In addition, F is surjective if and only if f is.

The vertex groups of a DS-graph of Gv are cohopfian as they are vertex groups of a DS-graph
of G. So by the induction hypothesis the map F restricted to every vertex stabilizer of τ is
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surjective. Furthermore, as every edge stabilizer of τ is finite and is preserved by F , F restricted
on it, is surjective too. Thus to finish the proof we only need to consider the case when G is not
generated by the vertex groups of the graph τ/G.

Following now the argument given in Lemma 6.1 we obtain a HNN-extension G = A∗H =
〈A, H | tHt−1 = ϕ(H)〉 so that F (A) = A, F (H) = H, F (tHt−1) = tHt−1. Then the element
a = t−1 · F (t) normalizes H. Now if a is not conjugate into A then there is an infinite path in
the Bass-Serre tree corresponding to the splitting G = A∗H whose pointwise stabilizer is H. This
is impossible as all splittings of G over finite subgroups are strictly acylindrical. Thus up to
conjugation we obtain that a ∈ A and there is an element b ∈ A so that F (b) = a. This proves
that t is in the image of F and so F is surjective. The sufficiency is proved.

To prove the necessary condition suppose that for every K ∈ N the group G admits a splitting
over finite groups which is not strictly K-acylindrical. Set K = 2µ(G)+1 and let X denote such
graph of groups decomposition of G and T its Bass-Serre tree. Then there is a path l ⊂ T whose
pointwise stabilizerH is equal to the edge stabilizer of every edge of l. The argument is now similar
to the proof of Lemma 2.6. As the length of the path l is greater than 2µ(G), it must contain at
least three different edges e1, e2, e3 belonging to the same G-orbit. So, e1 = g(e2), e3 = h(e2) for
some distinct elements g and h in G \H. It follows that both elements g and h normalize H.

Suppose first that one of them, say g, acts hyperbolically on the tree T. Then replacing g
by some power, we may assume that it centralizes the group H. Considering the corresponding
splitting of G over H as an amalgamated free product G = A ∗H B or HNN-extension G = A∗H
we show that G is not cohopfian analogously to the proof of Theorem D (see the part concerning
Condition 1).

If now both elements g and h act elliptically on T then the element γ = gh also normalizes H
and is hyperbolic. Indeed if not, g and h must have a common fixed point [S]. Then arguing as
in Lemma 2.6 we would obtain that g and h fix the edge e2 pointwise which is impossible. The
proof now finishes similarly. The Theorem is proved. �

The following is a slightly different version of the above Theorem.

Corollary 8.2. Let G be an infinitely ended finitely presented group and let X∗ = (X,Gv, Ce)
denote its DS-graph. Suppose that every splitting of G over finite groups is strictly K-acylindrical
for a uniform constant K. Then G is cohopfian if and only if the pair (Gv, C ∩Gv) is cohopfian
for every vertex v, where C is the set of edge groups of X∗.

Proof: The proof of the sufficiency refines that of Theorem E by keeping track of edge groups.
Indeed the map F sends all vertex and edge stabilizers of the tree τ into themselves. As edge
stabilizers of τ are all finite, up to replacing F by some power we may assume that F is the
identity on the set C of the edge stabilizers of the graph τ/G. If this graph is already DS-graph
we stop; if not we repeat the above procedure for every vertex stabilizer G1

v of it. Then the
Acylindricity Theorem of Section 4 allows us to find a new map F 1

v : G1
v → G1

v and a new
decomposition of G1

v over finite subgroups such that F 1
v sends all edge and vertex stabilizers

of this decomposition and all the subgroups in C into themselves. Again by taking power, if
necessary, we may assume F 1

v to be the identity on each group in C. Thus we have refined the
graph τ/G by the decomposition of the vertex group G1

v and have found a new endomorphism of
G which is equal to F on (τ/G)\{v} and to F 1

v on the above graph of groups decomposition of G1
v.

Continuing in this way we will arrive after finitely many steps to the DS-graph X ∗ = (X,Gv, Ce)
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and a map Φ : G→ G which sends every vertex group Gv into itself and is the identity on every
edge group. Furthermore, by construction Φ is surjective if and only if the map F is. As all pairs
(Gv, C ∩Gv) are cohopfian the map Φ is surjective by the proof of Theorem E.
The necessary condition is easy. Indeed, suppose first that fv : (Gv, C ∩ Gv) → (Gv, C ∩ Gv) is
a non-surjective endomorphism. Up to taking power we may suppose that fv is the identity on
peripheral subgroups C ∩ Gv. Extending then fv by the identity to the rest of the group G we
get a non-surjective endomorphism of G which is impossible. �

Theorems E and A allow us to get a criterion for the co-Hopf property of infinitely ended Kleinian
groups.

Theorem C. Let G ⊂ Isom+Hn be a non-elementary, geometrically finite Kleinian group without
2-torsion. Then G is cohopfian if and only if the following three conditions are satisfied:

1) G does not have essentially non-maximal splittings over infinite elementary subgroups.

2) G does not split as an amalgamated free product G = A ∗C C̃, so that C̃ is a maximal
elementary subgroup of G and the normal closure of the subgroup C in C̃ is of infinite
index in C̃.

3) Every splitting of G over finite groups is strictly K-acylindrical for a uniform constant K.

Remark 8.3. By Lemma 2.6 the condition 1) can be replaced by the following:

1’) Each irreducible G-splitting over infinite elementary subgroups is (M,Φ)-acylindrical for some
uniform constant M > 0.

Proof: The necessity of each of these conditions was already proved. To prove the sufficiency
let us suppose that G is not cohopfian. Then by Theorem E there exists a one-ended vertex
group Gv of a DS-graph of G which is not cohopfian. Then Theorem A implies that Gv admits a
splitting described by one of the conditions 1) or 2) (where the group G is replaced by Gv). As
all edge groups of DS-graph of G are finite this splitting of Gv refines a DS-graph of G. Obviously
this gives a splitting of G which does not verify one of the conditions 1) or 2). Theorem C is
proved. �
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